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Let ﬁ be the Kaplan—Meier estimator of a distribution function F
computed from randomly censored data. We show that under optimal
1nbegrab111ty assumptions on a function ¢, the Kaplan—Meier integral
e an, when properly standardized, is asymptotically normal.

1. Introduction and main results. Assume that X;,...,X,,... are
independent and identically distributed (i.i.d.) random variables on the real
line, defined over some probability space (£, %, P). Let F' denote their com-
mon distribution function (d.f). Under [x?F(dx) < o, put

w= [+F(dx) and o®=VarX, = [x?F(dx) —

The CLT then states that for each real a,

(1.1) hm IP(‘/__ Y (X, —n) Sa) =®(a) = ‘/_.f exp( )dz

In applications (1.1) is often needed for proper transformations of the X’s
rather than the X’s themselves. So, let ¢: R = R be any measurable function
such that [¢? dF < . Since along with X,,..., X,,... also
o(X),...,p(X,),... areiid., (1.1) may be applied to the transformed ran-
dom variables as Well. Introducmg the empirical d.f’s

1 n
Fn(x)=_Zl(Xi5x)’ x €R,
nia
Equation (1.1) becomes
(12) nl/2 [¢ d(F, — F) »#(0,0”) in distribution,

where now

2=/¢2dF— (j<de)2.
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CLT UNDER RANDOM CENSORSHIP 423

The objective of the present paper is to extend the CLT in full generality, that
is, for a general transformation ¢, to the random censorship model. Censor-
ship typically comes up in the analysis of lifetime data. Rather than

X,..., X, the variables of interest, one observes
Z;,=min(X,,Y;) and §; =1 _y,, l<i<n,
where Y,,...,Y, is another i.i.d. sequence from some (censoring) d.f. G being

also independent of the X’s; §; indicates whether X; has been observed or
not. Clearly, when the X’s are not all available, the CLT (1.1) is of no help,
for example, to establish confidence intervals for the “mean lifetime” u =
[xF(dx). In view of (1.2), however, an alternative approach would be to
replace F, by any efficiently chosen substitute for F, which is computable
from (Z;, ,), 1 <i < n. Now, it is well known that the nonparametric maxi-
mum likelihood estimator of F is given by the time-honoured Kaplan—Meier
(1958) product-limit estimator (PLE) defined by

. n 8is n] Lizins
1.3 1-F = 1-—F—
(13) () = T |1 - e
Here, Z,., < -+ < Z,., are the ordered Z-values, where ties within lifetimes

or within censoring times are ordered arbitrarily and ties among lifetimes
and censoring times are treated as if the former precedes the latter. §;;.,; is
the concomitant of the ith order statistic, that is, 8imy =6 if Z;,, =Z;. As
before, let ¢ be any F square integrable function. Put

S, = [edF,.
It is easily seen from (1.3) that

where for 1 <i < n,

8 jin)

W, =

mn

6[i:n] i1 n—j
n—i+1;.j|n—j+1

is the mass attached to the ith order statistic Z;, under ﬁn With no
censoring present, all 8’s equal 1 so that each W collapses to 1/n. Since also
Z,=X; we are back to the sample mean. Under censoring, however, S,
becomes a function of the Z order statistics properly weighted by the random
Ws.

As a main consequence of our Theorem 1.1 we shall obtain (1.2) with F‘ in
place of F,. This is the CLT under random censoring. Of course, due to
censoring effects some changes for o2 will be needed. Also it may happen
that the limit of the Kaplan—Meier integrals [¢ dF is no longer [¢ dF.
Actually, we shall prove more than asymptotic normahty Theorem 1.1 pro-
vides a representation of a Kaplan—Meier integral as a sum of ii.d. random
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variables plus a remainder. Such representations are extremely useful in
applications and give more insight than just distributional convergence if one
wants to study the joint distribution of (several) Kaplan—Meier integrals and
other statistics of interest. The results are stated under minimal integrability
assumptions on ¢. If there is no censoring, they will reduce to the familiar
condition [¢? dF < «. The desired asymptotic normality is stated in Corol-
lary 1.2. Also no continuity assumptions on F or G will be necessary. To
formulate our result, some additional notation will be required. Let H denote
the d.f. of the observed Z’s. By independence of X, and Y},

(1-H)=(1-F)(1-G).
Write F{a} = F(a) — F(a — ). Let A be the set of all atoms of H, possibly

empty. Under [|¢| dF < « it was shown in Stute and Wang (1993), that with
probability 1 and in the mean,

(14)  lim [¢dF, - /(MH)cp(x)F(dx) + 1y e 0@ (7a) Flra)-
Here
Ty = inf{x: H(x) =1} <
is the least upper bound for the support of H. That paper also contained a
detailed discussion of various situations in which the right-hand side of (1.4)

equals [ ¢ dF. For the general case, introduce the (sub-) d.f.

F(x), if x < 7y,

F(x) B F(TI_{) + l{THGA)F{TH}’ ifx > Ty -

Then the right-hand side of (1.4) becomes [¢ dF. So the proper extension of
(1.2) would incorporate

f(pd(ﬁ'n —F)

An important role in our analysis of [ qod(Fn — F) will be played by the
subdistribution functions

H(z) =P(Z<2,8=0) = [ (1-F())G(dy)
and

H'(z)=P(Z<z,6=-1)= [ (1-G(y-))F(dy), z<R.
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Define
- H(d
Yo(x) = eXP{f_w 1%}»
1 -
71(%) = T g0y S e <@ (@) vo(w) ' (dw)
and

1 <x,v<w ~ ~
vo(x) = [ [ il_ﬁi:v))]ZO(w)Ho(dv)Hl(dw).

In the definition of vy, (and also in the proof section), [*, denotes integration
on (-, x). The following assumptions will be needed in Theorem 1.1:

(15) [ (x)¥8(x)H'(dx) = [[@(Z)7o(Z)5] dP <
and
(1.6) [le(2)|CY?(x)F(dx) < .
Here
_ x— G(dy)
&) - T EmIL T

Condition (1.5) is the properly modified “second moment” (or variance) as-
sumption on ¢, while (1.6) only incorporates the “first p-moment.” It is
mainly to control the bias of [ ¢ dF,, which is a function of ¢ rather than ¢2.
Stute (1994a) gives a detailed account of this issue. Among other things, it
was shown there that though the bias tends to zero, the rate of convergence
may be worse than n~!/2. Hence for the general situation considered in this
paper, (1.6) cannot be dispensed with. This does not mean that for a particu-
lar ¢ one might have in mind, (1.6) is implied by (1.5), or vice versa. A
detailed discussion of y, — y, as well as of (1.5) and (1.6) will be postponed
until the end of this section. The function C(x) comes from the variance of a
process (evaluated at x) related to but not identical to the cumulative hazard
function of the censored data. In particular, this process will be a stochastic
integral such that its integrand is not predictable.

THEOREM 1.1. Under (1.5) and (1.6), we have

[odh, =t & o(Z)n(Z)o+ 17t ¥ m(Z)(1 - 5)
(1.7) . .

-n7' Y v(Z) +R,,
i=1
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where
IR,| = 0p(n"1/?).

REMARK. It is easily seen that in (1.7) the summands of the first sum have
expectation [ ¢ dF, while the summands of the second and third sum have
identical expectations. In other words, (1.7) yields a representation

(1.8) f¢d(ﬁn—ﬁ) =n1 iUi+Rn,
i=1
where the U’s are i.i.d. with mean zero. Put o? = Var U;.
COROLLARY 1.2. Under (1.5) and (1.6),
nl/? fqo d(ﬁn - ﬁ) -#(0,0?) indistribution.
Note that

o? = Var {p(Z)7,(2)8 + v(Z)(1 - 8) = %(2)}-

So far asymptotic normality has been mainly established for indicators
¢=1_u . x < Ty See, for example, Breslow and Crowley (1974), Lo and
Singh (1986) and Major and Rejt6 (1988). Upon integrating by parts, their
result may be readily extended to ¢’s which are of bounded variation and
which vanish to the right of some T < 7. See Gijbels and Veraverbeke (1991)
for an extension of this technique to multiple Kaplan—Meier integrals. Susarla
and Van Ryzin (1980) apparently were the first to treat a ¢, namely,
o(x) = x, which is of unbounded variation. For technical reasons they pro-
posed to truncate the Kaplan—Meier integral at some finite M = M, but
such that M, — «. Note, however, that [¢ dF, for ¢ > 0 is biased downward
[see Mauro (1985), Stute and Wang (1993) and Stute (1994a)), so that every
truncation only leads to a further increase of the bias.

Gill (1983) considered the Kaplan-Meier integral for the identity function
over the whole real line and for nonnegative continuous nonincreasing ¢’s
satisfying further integrability assumptions. Schick, Susarla and Koul (1988)
obtained, for this class of ¢’s, a weak representation of /¢ dF, in terms of a
sum of i.i.d. random variables plus a remainder. In all these papers, integra-
tion by parts was essential. To the best of our knowledge, no CLT for a
reasonably larger class of ¢’s is available at present. What is more, applica-
tion of counting process techniques needed further truncation, which required
additional assumptions in the analysis of [¢ d(AFn — F). See, for example,
Corollary 3.2 in Gill (1983). Finally, often an F, was considered properly

. modified so as to become a true d.f. irrespective of whether the largest datum
is censored or not. As pointed out by Wellner (1985), this artificial handling
has some serious drawbacks on the bias of [¢ dF,. Stute and Wang (1994)
showed that the jackknife-corrected Kaplan—Meier integral is much more
cautious about attributing weights to Z,,, when §;,.,) = 0.
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In this paper, a general ¢ will be considered. As a consequence, no
integration by parts can be applied nor do we have to stop the Kaplan-Meier
process at the largest Z.

We now make some comments on our proof. Lemma 2.1 presents a deriva-
tion of [ ¢ dF, which does not follow the traditional route of expressing F, in
terms of the Aalen—Nelson estimator of the cumulative hazard function of F.
In particular, for arbitrary ¢ rather than indicators of intervals, the afore-
mentioned relation seems unsuitable because of its nonlinearity. Further, we
shall make heavy use of U-statistics theory. Projection techniques will be
applied on several occasions.

We close this section with a discussion of the technical assumptions (1.5)
and (1.6).

First, when there is no censoring at all, we may formally set G = §, = Dirac
at infinity. In this case, all §’s equal 1. Furthermore,

H°=0, H'=H=F, 1vy,=1 and 7,=0
on the real line. Consequently, the right-hand side of (1.7) collapses to

n n
nt Y e(Z)8=n"" Y o(X)).
i=1 i=1

Under censorship, the assumptions (1.5) and (1.6) are clearly satisfied when-
ever

f¢2dF<oo and ¢(x) =0 onsomeT <x < 7y.

The second condition, however, rules out many examples so that an analysis
must be carried through which also allows for handling those ¢’s which have
noncompact support. In the following we shall discuss censoring only when F
and G are continuous. This is just for convenience since under continuity,
identification of the involved quantities is a little simpler. Identification of
[ dF, for example, in the general case may be found in Stute and Wang
(1993). Now, for each x < 7, we have

Yo(x) = 1T-Gln)"
Conclude that

1 TH
Yi(x) = 1——E(7)fx ¢(w)F(dw)

and

H (TH ¢(w)1v<x/\w
) = =l - e )

= f_TZgo(w)C(x A w)F(dw).
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Furthermore,
[E['Y1(Z)(1 - 8)] = [E['Yz(z)]
_/ 1{v<w)¢(w)70(w)ﬁ0 dvVE(d
- [ (dv) A (dw)
mw rmw Loy cw
=f_wf—w%—’;((—vu))-)-G(dv)F(dw).
Since also

E[o(2)70(2)8] = [ "o(x)F(dz) = [o(x)F(dx),

the U’s appearing in (1.8) are indeed centered.
Condition (1.5) just states that ¢(Z)y,(Z)é has a finite second moment.
Equivalently,

(1.9) [e?(1 - G) T dF <.
As to the function C, note that, for example,

1 s Gy 1
1-F(x) ) w[1-G(y)]?  1-H(x)

C(x) <

Hence (1.6) is implied by

lo| dF
(1.10) f(]_—fITI/Z- < o0

To further illustrate (1.6), assume that (apart from continuity)
(1.11) 1—F ~c¢(1—G)? inaneighborhood of 7,

for some ¢ > 0 and B > 0; large values of B indicate heavier tails in the
censoring distribution. Condition (1.10) then is implied by

: ol dF . 1+p
(112) f(—]'-TE)? <o with a= 2

Clearly, (1.9) and (1.12) may be achieved for a large class of ¢’s, F’s and Gs.
Only for further illustration, assume that ¢ is bounded, but not necessarily of
bounded support. Then (1.9) and (1.12) hold true if B> 1, that is, if, as
mentioned earlier, there is enough information on F in the tails. For B =1,
we may include logarithmic factors in (1.11) to make (1.9) and (1.10) still hold
true. Without such a modification, that is, for (1.11) with B = 1, the bias may
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be of the order an~'/? with some nonvanishing factor a; see Stute (1994a).
This indicates that Theorem 1.1 is now no longer valid.

We only mention that bootstrap versions of Theorem 1.1 and Corollary 1.2
are readily available by imitating the arguments in Section 2 for the boot-
strap sample.

2. Proofs. Some further notation will be needed. Denote by

n
H(z)=n"') 1{Z,«sz)
i=1
and

Hi(z) =n1 21{2<z s=j  J=0,1,

=1

the empirical (sub-) distribution function estimators of H, H° and H!,
respectively. Recall

8 jin)

8. i—l[ n—j

[i:n]
W, = - -
on—-i+1ljg|n—-j+1

Our first lemma provides a useful expression of

/(P dﬁn = Z‘qu‘)(ztn)

in terms of the (unordered) (Z, §)’s and the functions H,, H? and H!. To
understand its background, observe that (under continuity)

(=) F(dx) = [o(X) 5 ‘Xg&) dp
(d2)

= [qo(w)exp{f_ww———lH_ H(z) }Fjl(dw).

This is a proper representation of [¢ dF in terms of estimable quantities.
Lemma 2.1 below constitutes its empirical analog. It will be stated for a
continuous H. This is only for notational convenience since then there will be
no ties among the Z’s so that their ranks may be easily expressed in terms of
H, . In the final proof of Theorem 1.1 we will see how the general case may be
traced back to the present one.

- LEMMA 2.1. For a continuous H, we have

n

Z m‘p(Zz n) fﬁo(w)exp{nf

1 - -
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Proor. Check that

= o(Z;.,) 8i:m i-1 n—j \%m
El in®(Zi:n) E.l noirt B a1
_ Z (p(Zi:n)&[i:n]‘ il 1-— 6[j:n]
-1 n—i+1l j n—j+1
1¢ i1 1-8;
== Z,.) 8. 1+ Lzl
n zgl QD( t.n) [t.n]J=1( n _j
1 n n 1— ) 1(Z,~<Z,-}
ni§1¢( 2 lj=1—I1 n—Ranij)
1¢ n 1- 8
=— 2 ¢(Z,;)8; exp le.zln1+————!——
i @ (- B(Z)
1
= " Z ?(Z;)8;
i=1

) 1
x exp{ 21 Liz;<z)(1 = ‘Sf)lnll " m]}

j=

whence the result comes. O

To give an outline of the proof, replace the In(1 + x) term by x, which is
legitimate at least for all small x > 0. The exponential term then becomes

w— HY(dz)
expl [ o H(z) |
Integration w.r.t. I-?,} and further expansion finally leads to a U-statistic of
degree 3. Its Hajek projection is the desired leading term in (1.7) and
therefore determines the limit distribution of a Kaplan—Meier integral. Fur-
ther clarifying remarks will be made whenever it seems appropriate.

We now make things rigorous. Expand the exponential term in Lemma 2.1
as follows: with w = Z,,

_ H°d= — 1 5
exp{ -} = exp{f_z; 1—_—%(%)}[1 + nf_z; ln[l + m]Hrg(dz)

2z~ H°(d2)
_f_w 1—H(z)]

1 A, Zi— 1 ~ Zi~ ﬁo(dz) ’
]
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where A, is between the two terms in brackets. Write

Z;— H'(dz)
Ap=nf"1 —;T(—))]Hr?(d2> L T HG =Bt O
with
Zi- 1 - Z,- I-T,?(dz)
B, =n[" |1+ m]ﬂ?(dz) -/ 1-H(s)
and

c z- HY(dz) z,— H(dz)
in’ '[—oo 1-H,(2) /_w 1-H(z)’
As in the first section, put

«— H°(d
Yo(x) = y(x) = exp{f_oo I——E'-ITZz%}

In terms of these quantities we have thus obtained

n n
Z ‘Vingo(zi:n) = n_l Z (p(Zl)Y(Zl)&l[l + Bin + Cin]
i=1 i=1

n
n ' Y 30(Z;)8,e%(B;, + Cin}z'
i=1

(2.1)

We shall first study C,, in greater detail. This quantity is closely related to
the cumulative hazard function process for the censored data evaluated at Z,.
We need a special representation of C;,, which will lead us to a proper
decomposition of

n~! zn: QD(Zi)’Y(Zi)SiCin-

i=1
For this, note that for z < Z,.,,
1 1 - H,(2) 2 [H,(2) - H(2)]"

1-H(z) [-HP 1-H(> [1-H)[1-H()]

Hence

Z;- ( ) Z,- 2 -
_ _f [1 — HY(dz) + [_w THo _H(Z)H,?(dz)

[1-H(=)]
— 1 ~
. (22) —f_zw 1—_E(7)H0(dz)

z-  [H(2)-H®]
e RGP me
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Conclude that

n! Zn: QD(Zi)'Y(Zi)SiCin

i=1

--/// 1‘””[’1”_“’;((:;27("))Hn(du)ﬁ,?(dv)ﬁ;(dw)

Ly<w - ~
+af [t ;,w()vy)(w)ﬂ,?(dv)ﬂ,:(dw)

Ly <wye(w)y(w)
-//- 1)—H(v)

I-ITO(dv)I-jnl(dw) + R,

where
[H(2) - H(2)]"

70 71
— H(z)]2[1 — Hn(z)] H)(dz)H,(dw).

Rn1F= f/¢(w)7(w)1{z<w) [1

As we shall see, the first three integrals will contribute to the expansion of
[@dF,, while the remaining terms will become negligible. The next two
lemmas will provide a representation of the first two integrals as sums of i.i.d.
random variables (plus remainder). Of course, the third one is a sum already.

NOTE. For Lemmas 2.2-2.7 below we temporarily make the assumption

(2.3) ¢(x) =0 forall T <x andsomeT < 7.

As a consequence of (2.3), all denominators appearing in proofs are bounded
away from below. Thus they will not cause any troubles and may be handled
along the same lines as in, for example, F6ldes and Rejté (1981) or Csorgd
and Horvath (1983). The integrability condition reduces to [ ¢? dF < .

LEMMA 2.2. Under [¢? dF < « and (2.3),

(/] l(v<,,[,lviw};P((:;;Z’(w)‘Hn(du)ﬁ,?(dv)ﬁ,}(dw)

_ 1{v<u,v<w)¢(w)7(w)
=5 awr

X [ H,(du) H*(dv) H'(dw) + H(du)H}(dv) H'(dw)
+H(du)H°(dv) B} (dw) — 2H(du)H*(dv) HY(dw)] + R,z,
where R, satisfies

o(n™1), in probability,

|Rn2| = -1 . “ye
O(n~'lnn), with probability 1.
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ProOF. The integral on the left-hand side is a V-statistic of the bivariate
data (Z;, 8,), 1 <i < n; the one on the right-hand side is related to its Hajek
projection. The result follows from Theorems 5.3.2 and 5.3.3 in Serfling (1980)
and Berk’s (1966) SLLN for U-statistics (needed to control the “diagonal”
u = w). Note that an application of these results neither requires symmetry
of the U-kernel nor real-valued observations. Actually, symmetry is often
assumed only to make proofs smoother [see the comment in Serfling (1980),
page 172], and U-statistics of multivariate random vectors were already
considered in Hoeffding (1948). O

LEMMA 2.3. Under [¢? dF < « and (2.3),

1y <y - -

/[ l’ip(Hu;)l,z(w)Hf(dv)HJ(dw)
- 1‘“<‘”"°(w)7(w)[ﬁ° dv) HY(dw) + HY(dv) H'(dw)
_f/ 1 - H(v) (dv) H, (duw n{dv *

—H°(dv) H'(dw)| + R,,,
where the remainder satisfies

o(n™1), in probability,

R =
1B ol O(n™'Inn), with probability 1.

ProOF. Similar to before. O

Since some of the triple integrals in Lemma 2.2 cancel with some of the
double integrals in Lemma 2.3, we finally obtain the following result.

COROLLARY 2.4. Under [¢? dF < » and (2.3),

nt Y o(Z)y(Z)8.C,,
i=1

1 <u,v<w ~ ~
- _/ff . [’1 — ;((giz(w)Hn(du)HO(dv)Hl(dw)

1.0 . i
22 o) B aw)

+ Rnl - an + 2Rn3.
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In view of (2.1) we end up with

[odF, = [o(w)y(w)Hi(dw) + [ 1‘”1"”:"(;’()])(”ﬁl(dw)ﬁ,?(dv)

1 <u,v<w ~ ~
)l e 1’;((33 ) f10(do) 1 (dw) B, (dw)

o(Z;)8,e"{B;, + Cin}2

DO |

n n
+n 'Y o(Z)y(Z;)8,B;, +n 7t X
i=1 i=1
+Rn1 _Rn2 + 2Rn3.

To prove the assertion of Theorem 1.1 under continuity of H and the
additional assumption (2.3), it suffices to bound R,; and the last two sums.

LEMMA 2.5. Under [¢® dF < » and (2.3),

Inn
IR, = O(—n—) with probability 1.

ProoF. Immediate consequence of the LIL for empirical measures, the
ordinary SLLN and assumption (2.3). O

To obtain a proper bound for
n
Sa=n"1Y o(Z)v(Z)8B,,
i=1

note that
2

x
x——2—sln(1+x)sx for x > 0.

As a consequence
1 L ITT 0 dz
Z; n ( ) < B

(24) - _2—n,—f_m m < <0.

in =

Apply (2.3), (2.4), Glivenko—Cantelli and the SLLN to get the following
lemma.

LEMMA 2.6. Under [¢? dF < » and (2.3),

1
IS, = O(;) with probability 1.

Finally, set

n
S, =n"'Y 3le(Z;)|8,e*{B;, + Cin}2‘
i=1
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Under (2.3), inequality (2.4), Glivenko—Cantelli and the LIL for cumulative
hazard functions on compacta immediately yield the following lemma.

LEMMA 2.7. Under [¢? dF < « and (2.3),

Inn
IS,z = O(—n—) with probability 1.

To summarize the results obtained so far, under [ ¢? dF < o, continuity of
H and (2.3), we have

[edb, =n"" ¥ e(Z)vo(Z)3;
i=1

+n P Y yi(Z)1-8) —nt X v(Z) + R,
i=1

i=1

(2.5)

where
IR,|=0(n'Inn) P-as.
Conclude that Theorem 1.1 follows under (2.3).

REMARK. Note that (2.5) also yields the LIL for [ ¢ dF,,, under (2.3), for an
arbitrary square integrable ¢. The LIL is also valid under much weaker
conditions, but its proof requires considerably more effort.

We are now in the position to give the proof of Theorem 1.1.
PROOF OF THEOREM 1.1. Assume first that H is continuous. In particular,

Hiry} = 0. For a given € > 0 choose an F square integrable ¢ vanishing
outside of (—o, T'], for some T < 7y, such that

(2.6) J(e-&)y*dH" <&
and
(2.7 [le —@lCV*dF <,

which is possible under (1.5) and (1.6). Set ¢, = ¢ — . We shall prove that,
as n — o,

n1/2[/<p1 dﬁ'n - fcp1 dF~] = Op(e'/?).

“In view of (2.5), a Cramér—Slutzky type argument will then complete the
proof of Theorem 1.1. Now, using our previous notation, Lemma 2.1 yields

[erdF, =n"t L oi(Z:)8,v(Z,)exp By, + Ciy]-

i=1
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Hence

n'/2 f‘P1 d(ﬁn - ﬁ) =n"1? i [‘Pl(zi)sﬁ’(zi) - f‘Pl dﬁ]
i=1

n
+n7V2 Y 0/(2,)8,7(Z)[exp(B, + Ciy) — 1]
i=1

By (2.6), the variance of the first sum is less than or equal to &. The second
sum is bounded in absolute value by

n
n 2y |‘Pl(zi)|5i7(zi)|Ain|eXP[|Bin| + |Cin|]‘
i=1
From (2.4),

2.8 Bl < <1
28) Bl < Sa=EZ )
Since continuity of H implies continuity of F and G on x < 74 [cf. the
discussion in Stute and Wang (1993), page 1604], Theorem 2.1 in Zhou (1991)
may be applied to get

sup |C;,| = Op(1).

l<i<n
Actually, Zhou’s result was formulated for the cumulative hazard function
process, but it may be easily seen that the difference between his process
evaluated at Z; and our C;, is Op(1) uniformly in 1 <i <n. See Stute
(1994b) for a further discussion of the cumulative hazard function process on
large sets, which may be equally well applied to bound the C’s.

Altogether we see that the exponential factor is Op(1) uniformlyin 1 <i <

n. It remains to bound

n
n~1/% %y |¢1(Zi)|8i7(zi)|Ain|-
i=1

Since A,;, = B;, + C,,, it suffices to bound the sums with B;, and C;, in
place of A;,. By (2.4) and (2.8), :

n
nl/z Y |¢1(Zi)|3i7(zi)|Bin|
i=1

n .. HY%d) |7
<n”! 1(Z)195; i f———— .
El"”( )|ay(z)[/_w RG] ]

Since (1 — H)/(1 — H,) is stochastically bounded from above on z < Z,.,, as
'n — o [cf. Shorack and Wellner (1986), page 415], it remains to bound

H(dz) ]1/2

-1 . R ; B _Tm
(2.9) n i=21|¢1(Z,)|3m(Zz)[/_w [1 - H(2)]?
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By a symmetry argument, the expectations of the summands in (2.9) are all
equal. For i =1, say, condition on Z; and apply Hélder’s inequality to
E[ ---1'/2 to finally bound the expectation of (2.9) from above by

(2.10) [lex(2)|C2(2) F(dz) < e.

We now bound the sum corresponding to C,;,. For this, recall the expansion
(2.2). As a consequence it is required to bound each of the sums

[H,(2) - H(2)]
1- H(2)]’[1 - H,(2)]

n - ﬂo d - ﬁo d
(2.12) Y _2 |<p1(z,.)|8iy(Z,-)f_Z; ”(123 H(z)( = ’

(2.13) e Z lei(Z:) 5, V(Z)f % 1

In (2.11), first replace 1 — H, by 1 — H in the denominator of the integrand.
Then take expectations of each of the three sums. For the first, one readily
sees that the resulting bound is of the same order as that for (2.9), namely,
(2.10). Similarly, by Holder, for (2.12). For (2.13) a little more work is needed.
For the ith summand, condition on Z; = z,, apply Holder again and write

20- H,(2) - H(2) . ’
—_—— " H%dz
{f—w TETB TR )}

_ [20 fzo- Hn(zl) _H(zl) Hn(zZ) _H(z2)
—» oo [1-H(z)]* [1-H(2y)]

The expectation of this quantity is again O[C(z,)] uniformly in z, so that
also the expectation of (2.13) admits the bound (2.10) (up to constants). This
completes the proof of Theorem 1.1 for a continuous H.

Next we consider the situation when F and G have no common jumps but
may have separate discontinuities otherwise. This case (which is sufficient for
practical purposes) has been studied in detail in Stute and Wang (1993). In
particular, it was shown on page 1605 in Stute and Wang (1993) that a
quantile transformation may be applied so as to trace everything back to
uniformly distributed Z’s. The same procedure also applies here. Finally, to
handle common jumps, we apply an idea already elaborated in Gill [(1980),
page 74]. If {x;} are the common jumps of F and G, replace each x; by a small
interval [x;, x; + A;), where L;A; < », and move the G-mass of x; to x; + A,.
Extend F and ¢ to the new time scale by putting, for example, F(x) = F(x,)
on x; <x <x; + A;. Due to our convention that in W,, tied uncensored and
censored observatlons are treated as if the first precede the latter, [ ¢ d(F -
F) remains unchanged on the extended time scale. Obviously the “no common

211 12 Y (e Z) 1672 [* [ AY(d2),
i=1 —

»(dz).

ﬂr?(dzl)'ﬁr?(dz2)'
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jumps” condition is satisfied now. Also, our integrability conditions (1.5) and
(1.6) hold true in the new context, so that in summary we obtain the
representation (1.7) on the extended time scale. Check that the right-hand
sides of (1.7) agree on both scales. This completes the proof of Theorem 1.1. O

REMARK. Our technique may be readily extended so as to yield,
under the assumptions of Theorem 1.1, a functional CLT for the process
n'/2(f ¢ d(F, — F)).

Acknowledgment. Thanks to a referee who suggested the last argu-
ment in the proof of Theorem 1.1 for removing the “no common jumps”
condition.
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