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ASYMPTOTIC THEORY FOR THE FRAILTY MODEL!

By S. A. MURPHY

Pennsylvania State University

The frailty model is a generalization of Cox’s proportional hazards
model which includes a random effect. Nielsen, Gill, Andersen and
Sgrensen (1992) proposed an EM algorithm to estimate the cumulative
baseline hazard and the variance of the random effect. Here the asymptotic
distribution of the estimators is given along with a consistent estimator of
the asymptotic variance.

0. Introduction. The topic of heterogeneity in the analysis of duration
times has received much attention in a wide variety of fields, such as de-
mography [Vaupel (1990)], econometrics [Heckman and Singer (1984)] and
statistics [Clayton and Cuzick (1985), Aalen (1988), Nielsen, Gill, Andersen
and Sgrensen (1992)]. The heterogeneity may be caused by an unobservable
covariate as explained by Heckman and Singer or due to block effects as in the
Danish twin studies described by Vaupel. An additional source of dependence
is due to the subject effect when recording serial events per subject [Oakes
(1991)].

A simple model for heterogeneity which is reminiscent of the proportional
hazards model is via the concept of frailty as proposed by Vaupel, Manton and
Stallard (1979). The frailty is an unobserved random factor applied to the base-
line hazard function of the duration time. So if the hazard function of a subject
with a frailty value of 1 is given by «a(#), then the hazard function of a subject
with a frailty value of z is given by za(t). In this paper the frailty is assumed
to follow a gamma distribution with mean 1 and unknown variance. Mathe-
matically this is convenient as the gamma distribution is a conjugate prior. In
some settings there is some justification for the assumption that the frailty
follows a distribution skewed to the right, such as a lognormal or gamma dis-
tribution [Aalen (1988)]. At any rate, as discussed by Manton, Stallard and
Vaupel. (1986) often the fit of a model is more sensitive to assumptions on the
form of a(#) than on the form of the frailty distribution. Heckman and Singer
(1984) give a functional form to a and leave the form of the frailty distribution
unspecified. Other settings allow the specification of both the form of « and of
the frailty distribution. In this paper, « is not parametrized and, in the man-
ner of Cox’s treatment of the proportional hazards model, covariates influence
the hazard function proportionally. In other words, the assumption is that
conditional on the value of the unobserved frailty, the duration times follow
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the usual proportional hazards model. Nielsen, Gill, Andersen and Sgrensen
(1992) consider maximum likelihood estimation in this model. The estimation
is carried out via an EM algorithm and works quite well. Murphy (1994) con-
siders consistency of the maximum likelihood estimators when the model has
only two parameters: A, the integrated version of a; and 6, the variance of the
gamma-distributed frailty. In this article, the asymptotic distribution of these
estimators is given along with estimators of their asymptotic variances. If 6
is zero, then the frailty is identically equal to 1, indicating no heterogeneity.

1. The statistical model. In the following this model is placed in a count-
ing process framework. This is convenient not only because of the generality
but also because this framework facilitates the recognition that the Fisher in-
formation is invertible and that the model is identifiable. However, counting
process technology is primarily used in forming means and variances and not
in proofs of the weak convergence; there empirical processes are used.

Much of following description is a review of the counting process approach
presented in Nielsen, Gill, Andersen and Sgrensen (1992). Using their nota-
tion, the frailty or random effect is defined on the probability space (', G', Py)
and is denoted by Z = (Z1,...,Z,). Let (1, {GItIE[O,'T]}’ P’ ) be a filtered prob-
ability space for each Z = z, so that under P/, (i.e., conditionally on Z = z),
the multivariate counting process N = (N;: i = 1,...,n) has intensity process
\ given by

Ai(u) = z;Yi(u)a(u).

The N; represent the aggregate of the counting processes for group Z, so that
each N; can have more than one jump. The members of the ith group share
the same frailty, Z;. The Z; are assumed to be independent random variables
each distributed according to a gamma distribution with mean 1 and vari-
ance 6. The Y; are observable, nonnegative, predictable processes and « is an
unknown baseline hazard rate. The goal is to estimate 6 and the cumulative
baseline hazard A(t) = fot a(u) du based on observation of (N,Y) only and
via maximum likelihood estimation. There are at least two ways to form the
likelihood of (N,Y). The first method is to write the likelihood of (N,Y,Z) as
the density of (N,Y) given Z = z and the density of Z, and integrate over z.
Actually only a partial conditional likelihood of (N,Y) given Z = z is speci-
fied, and it is assumed that the remaining term in the conditional likelihood
does not involve z [Nielsen, Gill, Andersen and Sgrensen (1992) state this in
Assumption 2, “Conditional on Z = z, censoring is noninformative of 2”]. The
partial likelihood (N,Y) given Z = z is

lﬁl{mzmu)a(t»W“ expf-2; fo ’y;dA}}.

=17
Multiplying by the density of Z and then integrating over z yields the partial
likelihood
(1.1 ﬁ nt((l+0N,'(t—))}7i(t)a(t))ANi(t)
| (1+ 6 J5 Y;()dA(2))/6+Ni(D

i=1
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It is also straightforward to see that the distribution of Z; given (N,Y) is a
gamma distribution with mean

1+ 60N;(7)
1+0[; YidA

and variance

1+60N;(7)

0(1+0fJYidA)2'

A second method of forming the partial likelihood of (N,Y) is to use the
innovation theorem [Bremaud (1981)]; that is, in order to derive the intensity
of N with respect to the observed history (i.e., the product of the trivial sigma
field on ' with G”), Z; is replaced by its conditional mean relative to this
history. Therefore the intensity of N is

) _ 1+6N;(u—) :
Ailu) =7 0 1 Yi(s) dA(s) (iwalw).

The partial likelihood function is then given by

- 14+ 6N;(u—) ‘ AN;(u)
E,g(l -+ 0-[0 - K(S) dA(s)Yl(u)a(u)>

(1.2)
T 1+6N;(t—)

* eXp(_ o 1+ 0/ Yi(s)dA(s)

Y,-<t>dA<t))].

Since A is continuous, we can use integration by parts to show that equations
(1.1) and (1.2) are equivalent. Both are full likelihoods for (6, A) if the omitted
term does not depend on (6, A) [Nielsen, Gill, Andersen and Sgrensen (1992)
call this noninformative censoring for the parameter (6, A)].

The true values of the parameters [say, (6o, A,)] lie in [0, c0) x {absolutely
continuous cumulative hazards}. However, maximization of the log-likelihood
over this parameter space leads to the same difficulties as in estimation of a
density function (no maximizer). An effective route out of this difficulty is to
extend the parameter space so that the estimator A is allowed to be discrete.
The parameter space is then [0, 00) x {cumulative hazards}. This is the type
of extension of parameter spaces which allows one to consider the empirical
distribution function as a nonparametric maximum likelihood estimator of
a continuous distribution function. To allow for a discrete estimator, replace
a(u) by AA(u), the jump of A at the point «, in (1.1) and (1.2). Consider-
ation of L, yields the result that the maximizer A is a step function with
positive steps at each jump time of the N;’s. The natural logarithm of (1.1) is
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given by
nL,(6,A) = an/O In(1+ 6N;(u—)) dNi(x)
=1

— (67 + Ni(r) In(1+6 /0 Yiw)dA(w))
+/()Tln(Y'i(u)AA(u))dN,~(u).

If 6 = 0, the second term above is defined by its right-hand limit at 0, that
is, [y Y; dA. Nielsen, Gill, Andersen and Sgrensen (1992) maximize L, via
the EM algorithm. The EM algorithm solves the score equations set to zero
in an iterative fashion. Murphy (1994) proves that the maximum likelihood
estimators are consistent.

To calculate the score equations, one might differentiate L, with respect to
the jump sizes of A and . However, an equivalent method which is useful as a
thinking tool is to consider one-dimensional submodels through the estimators
and differentiate at the estimator; that is, set A;(-) = [y 1+thi(u)dA(u) and
0; = th2A+ 6 for hy a function and Ay a scalar, and differentiate att =0 to
get S, (A, 8)(h1, k). Then if (A, ) maximizes L, S,(A, 8)(h1, hz) = 0 for all
(h1, h2). The form of S, is given by S, = S,1 + Sn2, where

LA 140Ny (r) [
=n1 L i dah L S - dA
Sn1(A,8)(h1) = n ;l /0 I e Y 7 /0 Y, d.

and
A= T Ni(u-)
S,o(A, 0)(hg) = hont _ i) o,
2(A, 0)(ha) = han ?:1:/0 oD i)
_ T 1+6N;(7) T
2 A - v 7 .
+0 (1n(1+a/0 Y; dA) 1+0£YidAof0 lch).

For 6 = 0, the last term is interpretated as its limit as 6 approaches zero to
get (fy YidA)?/2 — N;(7) [y Yi dA.

Here the class of & is taken to be the space of bounded variation functions
cross the reals. Define the norm to be ||A||g = |1l + |h2|, where || A1, is the
absolute value of #1(0) plus the total variation of A; on the interval [0, 7].
Define H, to be the product space of bounded variation functions on [0, 7]
and real-valued scalars with norm ||A||g = ||k1lly + |h2] < p. If p = oo, then
the inequality is strict. In the following, p is assumed finite unless stated
otherwise. Define (A, 6)(h) = [; h1 dA+h26. Then the parameter space ¥ can
be considered to be a subset of [°°(H ), which is the space of bounded real-
valued functions on H, under the supremum norm |U|| = supscg, |U (h)|. The
score function S, is a random map from ¥ to I*°(H ) for all finite p.
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2. Asymptotic Distribution. Assume that the (N;,Y;) are i.i.d. copies
of (N,Y), where Y is a.s. left-continuous with right-hand limits and takes on
nonnegative values. The process M defined by

1+ 60N (u—)
0 1460 /% Y(s)dA(s)

M) = /0 " dN(u) - Y (u) dAo(u)

is a martingale with respect to the filtration o{N(s); Y(s), s < t}; t € [0, 7].
The variance parameter 6 lies in a known interval, say, [0, K ]. The cumula-
tive baseline hazard A, is strictly increasing and is continuous on [0, 7] for
7 < 0o. Call the first jump of N, T';. Convergence in probability (denoted by
£*) and weak convergence is in terms of the outer measure [Pollard (1990)].

THEOREM 1. Assume the following:

(a) SUPyc(o.11A(t) — Ao(2)] =+ 0 and |6 — 6p| — - 0;

(b) there exists some constant K for which |Y|, < K and N(7) < K a.s.;
(¢) infye0,1 EY (1) > 0;

(d) PIY(T1+)=1]>0.

Then
(Vr(A—A,),/n(6—6)) = &

on I*(Hp); & is a tight Gaussian process on I°(Hp) with mean zero and
covariance process

Cov(#(h), #(H)) = [ moih(K) dA, + o y(R),

where o = (01, 032) is a continuously invertible linear operator from H,, onto

H.,,, with inverse =1 = (0(_11), 0'('21) )- The form of o is as follows:

60 7 YhydA,
1+6, ) YdA,

_hzg(ﬂ_(/o’szAo _ N(T)))

o1(h)(u) = hi(u)E(ZY (u)) - E ZY (u)

1+ 67 YdA,
and
_ 2L, (6, A) JTmY dA, T
oa(h) = th(‘T (00’A0)> - Em(/o ZY dA, — N(T))
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where the second partial of L, with respect to 6 is given by

_3%La(6,A)
362 (60,4,)
& [T Niw—) \? YidA, \?
_ 1 o s\w—) . AT 0
=n ;fo <1+00Ni(u_)) i) N‘(T)(1+00f5YidAo)
_ T OodeAo
260-%|In(1 /Y A,) - 0
+ 200 [n( +60 | Yida,) 1+ 607 Y, dA,

(i) |
2\ 1+ 6y fOT Y;dA, )
When 0y = 0, the last term above is defined by its limit, which is %( LY dA,)3.

Assumption (c) ensures that N has sufficient activity on the entire interval
so as to estimate the parameter A,. Note that (d) excludes the possibility of N
having at most one jump. Some version of this assumption should be necessary
because, as pointed out by Nielsen, Gill, Andersen and Sgrensen (1992), the
model is unidentifiable if all of the N; have only one jump.

If the censoring is noninformative [Andersen, Borgan, Gill and Keiding
(1993)] and we assume that A, is absolutely continuous, then the partial like-
lihood is a full likelihood for estimation of (A, 6), and (A, 6) will be efficient.
This is proved via Theorems 3.1 and 3.3 of van der Vaart (1992). The conclu-
sions of Lemmas 1 and 3 in the Appendix are exactly van der Vaart’s conditions
(2.2), (2.3) and (2.4). Local asymptotic normality is easily verified by using the
boundedness of N and Y. Finally, asymptotic linearity of (A,b) is proved in
the process of proving Theorem 1 [see (2.1) below].

The proof of Theorem 1 is based on the general theorem which has been
stated by many people in various forms; the following is from van der Vaart
(1992). The parameter space is ¥ C [*°(H ) and the score function is a random
map S,: ¥ — [*(Hp). The true parameter value is ¢,, and a maximum
likelihood estimator is . The asymptotic version of S, is S. We have that
S,() = 0, S(¢,) = 0 and § — ¥y, = 0p+(1) as elements of {*(Hp). The
notation “lin” before a set denotes the set of all finite linear combinations of
elements of the set.

THEOREM 2. Assume the following:

(a) (asymptotic distribution of score function) /n(S,(¥,) — S(¢,)) = ¥,
where ¥ is a tight Gaussian process on [*°(H p);

(b) (Fréchet differentiability of the asymptotic score) S() — S(y,) =
=S(Wo) (W — o) + 0.9”*(’1_1/2 VI — Poll), where S(i,): lin{y — ¢,: e v} —
I®(Hp)isa continuqus linear operator;

(¢) (invertibility) S(,) is continuously ingertible on its range;

_(d) (approximation condition) ||(S, — S)(¥) — (S, — 8)(¥,)Il = og(n712 v
g — o).
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Then,
Vi — o) = S(o) "1y

This theorem is straightforward to prove. Write

V(S (o) — S(¥o))
= V/R(S(¥,) = S(§)) — v ((Sr — S)(P) — (S — S) (o).

First the rate of convergence of (J/ —i,) follows from the rate qf convergence
of (S,(¥,) — S(1,)) because of the continuous invertibility of S(¢,) and the
Fréchet differentiability condition. This can be seen by taking the norm of both
sides and dividing by ||1Z/ — oll. Use the fact that continuous invertibility of
S(,) is equivalent to “S(i,) is 1:1 on its range and its inverse is a bounded
linear operator” and that this implies

o ISWo) (¥ = o)l
T 2®

for some & > 0. . .
Using (b) to solve the above equation for S(,)(/n(—,)), we see that we
can use Slutsky’s theorem [van der Vaart and Wellner (1993)] to prove that

S (Yo)(Vn( — o)) converges weakly to # . Indeed, we have that
SWo) (VR — P10)) = V/A(Sn (W) = S(Y0)) + 05+(1)

as members of [*°(H ). All that is left is to use the continuous mapping the-
orem to derive the result of the theorem. This is easily done since %" must
belong to the closure of the range of S(i,), and via the Hahn—-Banach theorem
we can define a continuous extension of S(,)~! to the closure of the range.

To prove Theorem 1, set §y = (A, 6), ¥, = (Ao, 60) and note that the score
equation S, is defined in Section 1. Let S = (S;, S2) be the expectation of
S,.. In Lemma 1 we verify (a) and (d) for the frailty model. The proof of (a)
relies on Pollard’s (1984) martingale central limit theorem in D[O0, 7] under
the supremum norm metric and the fact that this will imply weak convergence
in [*°(H ) for any finite p. The proof of (d) is primarily technical.

The asymptotic distribution of the score function, \/nS,(A,, 6o), is that of
a tight Gaussian process in [*°(H ) with

80 [ YhidA,
1+ 60 [F YdA,

N(u-) “Y dA, )]2
h - ZY (u)dA,.
* 2(1+00N(u_) 1+00f()_YdAo (u)

The above variance can be rewritten as

fOT o1(h)(w) hy(u) dAo + oa(h) ha.

Var(¥ (h)) = fo E[hl(u)—




THE FRAILTY MODEL 189

So the Fisher information is given by o = (o1,032) and is a linear operator
from Lo(dA,) xR into itself. The classical relationship between the asymptotic
variance of the score function (the information for ¢) and the derivative of the
score equation, S(i/,) holds; that is, in Lemma 3 we see that —S (wo)\/ﬁ(gf/ —
,), evaluated at 4, is

]0 " o1(h)(w) dva(A — Ag) + oa(R)VA(6 — 60).

We need to prove continuous invertibility of S(i,). Intuitively it is clear
that the invertibility of the derivative of the score equation should be closely
connected to the invertibility of the Fisher information. The Fisher informa-
tion is defined in an almost-everywhere sense (dA,) whereas we will need
invertibility everywhere due to the discreteness of A. However, we will get a
start in the proof of invertibility by using the fact that the Fisher information
is 1:1, that is,

]0 " r1(B)(w)hy(w) dAo(u) + aa(h)hy > 0,

for all A = (h1, hg) € Lo(dA,) xR which are nonzero and bounded. In Lemma 2
we prove the above assuming (c) and (d) of Theorem 1. We use the above
fact [i.e., o0 is 1:1 in La(dA,) x R] to prove that o considered as a bounded
linear operator from H,, to H, is 1:1. It turns out that o is the sum of
a continuously invertible linear operator plus a compact operator. Since H,
is a Banach space this implies that o must be continuously invertible. This
is a stronger result than continuous invertibility of S(¢,) and should not be
necessary. Lemma 3 gives the details of the above argument in order to verify
(b) and (c) of Theorem 2.
Once (b) is verified, we have, for any finite p,

/0 " 01(R)(w) dy/r(A — Ay) + aa(h)V/a(d - 60)
= VA(Sn(ho) — S())(R) + 05+ (1)

uniformly in A € Hp. To complete the proof of Theorem 1, all we need to

do is verify that the variance of S(y,) 17// (g) is as stated. Note that the
continuous invertibility of o implies that, for finite p, there exists finite ¢
for which ~1(g) € H, if g € H,. To get a weak convergence result for ¢ at
g € H,, we put h = 071(g) in the above equation to get

/0 " g1(w) dvi(A — A,) + ga/m(6 — o)
= «/ﬁ(sn(‘/’o) - S(‘/’O))(O'_l(g)) + 09*(1)

(2.1

uniformly in g € H,. This then shows us that S (¢o)_17// (g) is equivalent in
distribution to ¥ (c~(g)) with variance [j g10;)(g)dA, + ggo-(‘zl)( g). This
concludes the proof of Theorem 1.
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An advantage of proving continuous invertibility of o is that we can now
use the naive approach to estimation of the asymptotic variance of ¢ = (A, ),
that is, form the second derivative matrix of L, by taking derivatives with
respect to the jump sizes of A and 6 (jumps of A occur at the j jumps of the
N;’s). Invert this very large matrix and multiply by —1. Form the vector of
(g1(u1), g1(u2), ..., g2), where the u;’s are the locations of jumps of the N;’s.
Premultiply and postmultiply the large inverted matrix by this vector to form
the estimator of the asymptotic variance of

([ e1@ avi(A - A) + g2v/n(s - 00)).

This procedure is identical to estimatigg o1 and o3, solving g1 = ¢1(h) and
g2 = G2(h) and using [j glé'(_ll)(g) dA + gz&(‘zl)(g) as the estimator of the
asymptotic variance. The estimators of the o;’s are formed in the obvious
fashion:

no9 fo Yih dA

F1(h)(w) = h1<u>n‘IZZ Yi(u)—n7t 3y

Z;Y;(u)
i= 11+0f0 YldA

— By _12 Y(u)

—— Y (["Y,dAZ, - Ni(r)

and
o PLnB,4)) 3 MY dA
902 6.4 H1+6/]Y,dA

where Z; = (14 6N;(7))/(1+ 6 [ Y: dA).

Ga(h) = ([ viddz, - nio),

THEOREM 3. Assume (a)~(d) of Theorem 1. Then, for (gi,82) € H)p, the
solution h = 671(g) to g1 = 61(h), g2 = 62(h) exists with probability going
to 1 as n increases and

f 8163)(8) dA + g2555(g)
converges in probability to [; glo-('ll)( g)dA, + g20'(_21)( g).

This theorem can proved by the following two steps. First &, which is a
continuous linear operator from H, to H,.,, must (with probability going to
1) be one-to-one and onto in order to ensure the existence of 0‘1( g). Next
we show that suPyq,19)(8)(w) — 07)(£)(w)| and 16)(8) ~ o3)(9)] con-
verge to zero in probability. This will imply that f; glo-(l)( g)dA converges
to [y glo-(l)( g)dA, [using integration by parts and the fact that ‘7(1)( g)is of
bounded variation].

The proofs of these two steps depend heavily on the fact, from Lemma 3,
that ¢ is continuously invertible and on the nice form of &, that is, for each
n large and with high probability, & is the sum of an invertible operator plus
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a compact operator. The compact operator is compact not only considered as
a continuous linear operator under the || - |z norm, but also under the norm
I - loo defined by ||2llco = sUP,cro, |A1()] + |h2|. We omit the proof.

APPENDIX

The norm || || on [*°(H ) is equivalent to the larger of the supremum norm
on the space of the first component and the absolute value on the space of the
second component; for example, p||A Aolloo Vp|0 Oo| < ||¢ Uol < 2p||A —

Ajlleo V p|0 0o|. In the proofs of the lemmas, this equivalence will be used to
replace ||/ — ¢, ||. Another fact that is frequently used is that the expectation
of Z given the path of N,Y on [0,7]is (14 69N (7))/(1+ 6o 5 Y dA,).

LEMMA 1. Assume (a) and (b) of Theorem 1. Then, for any finite p, the
following hold:

(a) N/ﬁ(sn(l;bo) —S(o)) => ¥ on loo(Hp); and
(b) for any 6, which decreases to zero as n increases,
sup 1(Sn = S)(¥) — (8n — S) (o)l

= o0g+(1).
=l <8 n=2 v ||y — |l

PROOF. To prove part (a), note that /nS,(¢,)(h) is equal to ®(Z,)(h),
where @ is a continuous function from D[0, 7] x R to {*°(H,), defined by

D(Z)(h) = Z1(7)h1(7) — Z1(0)h1(0) — /OT Z1(u—-)dhi(u) + Zohs

and Z, = (Zn1, Zn2),
B n T 6 f _ngtdAO'
Zoa(t) = n V2 ][ _ bk ]dMi :
10 =nT Y | &)~ T | M)

where g;(u) is equal to 1 if u is at most ¢, and zero otherwise. The scalar Z
is given by

Br T o N;(u—) YT Y;dA, )
1z S— dM;(u).
" ;./0 (1+00Ni(u—) 1+60fy YidA, ()

To show that Z, converges weakly to a continuous Gaussian process in
D[0, 7] x R, use Theorem 13 of Pollard [(1984), page 179] to verify the central
limit theorem, V3 [Pollard (1984), page 92]. Because the Y;’s and the N;’s
are bounded, this is trivial and is omitted. These theorems give asymptotic
tightness of Z, as a process in D[0, 7] x R, under the supremum norm and
using the projection sigma field. This translates into weak convergence in
outer measure in D[0,7] x R, under the supremum norm and using the
Borel sigma field [Pollard (1990), page 51]. Now use the continuous mapping
theorem to get part (a) [Pollard (1990), page 46].
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The proof of part (b) relies on functional central limit theorems for

n-1/2 Xn:[UiYi(u) —E(UY(u))] inI>([0,7])
i=1

and

n~ 23U Y (u)Yi(v) — E(UY (w)Y (v))] in 1°([0,7]?),
i=1
where the U, U;’s are i.i.d. bounded random variables. The asymptotic tight-
ness is proved via Theorems 1.4.6 and 2.3.4 of van der Vaart and Wellner
(1993) and by utilizing the assumption that the Y;’s are left-continuous with
right-hand limits with total variation bounded by a constant.

We show that, uniformly over A € H, and [|A — A,|| < 6,, both (S,1—S1) x
(A,0)(h)—(Sr1—81)(A,, 00)(h) and (Sn2—S2)(A, 0)(h)—(Sn2—S2)(A,, 60)(h)
are 0g+(n12 v ||A — A,lleo V |8 — 60]). We do this by dividing both sums into
two parts, to concentrate on the parameters one at a time. To illustrate the
proof technique yet not get bogged down in the technical details, we consider
here the first term of

(Snz — 82)(A, 60)(h) — (Snz2 — S2)(Ao, 60)(h)

in the case when 6y is nonzero and A # A,. This term is given by

e 1+ 6o f; Y;dA 1460 [JYdA
1 0 _ 0
hz[n ;m[lwofo’Y}dAo] Eln[1+0ongdAo '

In order to show that this term divided by ||A — A, |00 i8S 04+(1) uniformly in
lA = Aolloo < 8, we first linearize by using the inequality |In(1+ x) — x| < x2
for x > —%. For each i we want to set
. B0Jg Yid(A— Ay
1460 fy YidA, ’

this is valid since the fraction goes to zero uniformly over i in probability. The
linearization is given by

[y Yid(A-A,) GofOTYd(AﬁAO)]]
fan 2[ 1460 fy YidA, E 1460 /5 YdA, |

and the error term is bounded above by

. oofgnd<A—Ao>]2
han ;[ 1+ 60 J; Y, dA,

80 [T Y d(A — Ao>]2
1 + 00 fOT YdAo

+ Ith[

So the error term is bounded above by

4p6o®||A — Aonﬁo[n—1 Y IYIE+ EnYn%],
i=1
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which divided by ||A — A, is certainly og+(1) uniformly in [|A — Aol <

8, (since |Y||, is a.s. bounded). Consider now the linearization, rewritten as
|heBo Jg n Y2 Z,(u)d(A — A,)(u)|, where

. Yi(u) B Y(u)
Zn(w) =n"" ;<1+00fJYidAo E[1+00f07YdA0:|).

To finish this part of the proof we prove that
[ Zuwd(a - A)w)

(A1) sup
|A=Aoslloo<Sn

converges to zero in probability. To prove this, first note that as mentioned
above one can show that Z, converges weakly to a tight Gaussian process,
say, Zo in 1°([0,7]). Define the function ¢ from [*([0,7]) to I1°(H,) by
&(V)(h) = [§ V(u) dh(u). This function is continuous, so by the continuous
mapping theorem ¢(Z,) converges weakly in [*(H,) to ¢(Z ). Now we note
that with probability going to 1, (A.1) is bounded above by a continuous func-
tional of ¢(Z,), say, k,, defined by

kn(@(V) = sup | [ V() dh(u)]
[|Alloo<8n,heHg'J O

To use the extended continuous mapping theorem [van der Vaart and Wellner
(1993)] in order to prove that k,($(Z,)) = o0g-(1), it is sufficient to notice
that %,(¢(Zo)) goes to zero as n increases, that is, we need to verify that
the sample paths of ¢(Z) are uniformly continuous at the point h = 0. This
is true because, with probability 1, ¢(Z) has paths which are uniformly
continuous with respect to the semimetric defined by its variance function
p(h,g)=E[$(Z,)(h— g)1? [see van der Vaart and Wellner (1995)]. However,
p(h,g)* = E[[fUY — E[UY])d(h — g)12, where U = [1+ 6o f§ Y dA,17L.
Using integration by parts and the fact that the total variation of Y is bounded,
one gets that sup . <s,, reH, p(h,0) goes to zero as 8, goes to zero. U

LEMMA 2. Assume (c) and (d) of Theorem 1. Then, for h1 a bounded function
on [0,7] and hg a finite real scalar,

fo " o1(h)(w) ha(u) dA, + oa(h) g

T u=
=/ E[hl(u)— bofo” Y dA,

N(u—) “Y dA, >]2
A - ZY(u)dA, =0
* 2<1+00N(u—) 1+ 60 /o~ Y dA, (1)

implies that hg = 0 and h; =0 a.s.

PROOF. Note that the left-hand side of the above equation is the variance
of Sp1(to)(h)+8n2(i,)(h), so that the theorem states that the score functions
are not collinear. This proof is very similar to that used in Murphy (1994) in
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order to prove identifiability of the frailty model. Indeed, this theorem says
that the Fisher information is invertible (maybe not continuously invertible),
which functions as a local measure of identifiability.

Define 4; by
hi(t) = E[ bofo YdA, ( Nw-) [ YdA, )] Y(uw)
1 - 1+00f0_YdAO 1+00N(u—) 1+00f0_YdAo EY(u),

for all u € [0,7]. Note that hy is left-continuous with right-hand limits and
that ~; = Ay a.e. (dA,). It is also useful to note that the set of discontinuities
of hy is countable. The left-continuity of all components involved implies that

00 [ YhidA, _h( Nw-) [T YdA, )]Y(u)
1460/ YdA, “\1+60N(u—) 146/’ YdA,

for every u and a.e. d&. Let T be the first jump of N. Call the set for which
the above holds A. Intersect A with {Y(T1+) > 1}, {Y(T'1) > 1} and the set
of T'; not a member of the discontinuities of ;. Since A and the last two sets
have probability 1, the intersection has positive probability by assumption (d).
On this intersection, we have that

Y (w)hn(u) =[

N 6 [T YhidA, 1y dA,
f(r) = 2o TSR (o TR )
1+00f01YdA0 1+0()f01YdA0
and
. 00 Jo  YhidA, 1 T1Y dA,
Ru(T14) = i et ),
1+0()f01YdAo 1+ 6o 1+00f01YdA0

Since A1(T1) = h1(T1+), this will imply that Ay =
We start the proof over again, but this time with A2 = 0. We have

6o [ Y h1dA,
1+ 69 f(;t Y dA,

for all u and a.e. d<?. This implies that

hi(w)Y(u) = Y(w),

Ay EY () + 8oha (u) /0 EY ()Y (x)dA, = 6, /0“ EY ()Y (w)hi(v) dA,,

forall u € [0,7]. If A1 can be shown to be identically equal to 0, then the proof
will be done. The supremum and infimum of A on [0, 7] are either attained
at a point or attained by evaluating a right-hand limit of A1 at a point. For
simplicity assume the former; the proof is similar if the latter holds. Suppose
the maximum value of A1 is attained at tmax and ﬂl(tmax) > 0. Set u = tmax
to get Ai( tmax) = 0. Next suppose that the minimum value of A4 is attained
at tmin and A1(tmin) < 0. Set & = tmin to get A1(tmin) = 0. This gives us that
hi=0a.e. (dA,).
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LEMMA 3. Assume (a)<(d) of Theorem 1. Then, for any finite p, the following
hold:

() as [ — ol goes to zero, S(i) — S(Wo) = S(Wo) (¥ — o) + oIl — Poll),

where S(l//o)! lin{y — ¢o: ¢ € ¥} — I°(H)), is a continuous linear operator;
(b) S(¥,) has a continuous inverse on its range.

PrROOF. From the equations of S,, we see that S;(A, 6) and S2(A, ) must
have the following forms:

Si(A,0)(h) = /0 ME(ZY)dA, — E(—l%?f\,—% fo ledA>
0

and

S2(A, 0)(h)

_ 4 N(u-)
= hzfo E<—-—1 NG ZY(u)) dA,

+ hoI{0 = O}E[%([ YdA)2 ~ N(7) fo YdA]

+ hoI{0 # O}G‘ZE[ln(l + 0/07 Y dA) - %o/{)f YdA].
0

It is clear that —S(4,)(,)(h) should be the variance of /nS.(¢,)(h),
which is in turn equal to the variance of ¥ (h) as given in Section 2. So
we aim for this in deriving S. The idea will be first to write S(A, 6) linearly
ind(A - A,) and 6 — 6, plus error terms, then to use integration by parts to
write S(,)( — ¥, )(h) in a similar way to the form of Var(# (h)) in Section 2.

Using the fact that the expectation of Z given the paths of N and Y on [0, 7]
is (L+6oN(7))/(1+ 6o [5 Y dA,), one can with some algebraic manipulation
get

S1(A,0)(h) = —E fo MZY d(A— A,)

[T Y dA, "
E 6 [ ZY d(A - A,
T T 60 Y dAy) 0/0 ( )
_ fg hiY dA, T _
+(0 OO)E—"——HoongdAo(fo ZY dA, - N(7))

+errori1(A, 0)(h)
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and
S2(A,6)(h)
. _ 2
T 2(f3YdA,)?
o (1+ 60/ Y dA,)

FYdA, \?
N5 rraa) |

+ Y(u)dA,

Jo Yd(A-A,)
+ hoE
(1460 ] YdA,)
The error terms are very easily shown to satisfy
lerror;(A, 6)(h)]

su —0
nemr 1A = Aglloo V 10 — o]

(/OT ZY dA, - N(T)) + errory(A, 0)(h).

as |A— Ao V|0—6p| goes to zero. This follows from the boundedness of N, Y,
A and 0. Note that S1(A, 6) + Sa(4, 8)(h) — errory (A, §)(h) — errora(A, 6)(h)
is equal to —(fy o1(h)d(A —Ao)+0'2(h)(5—00)), where 0 and o3 are defined
in Section 2. L '

To verify part (b), we must show that, for some p and ¢ >0,

IR : :supher‘lfg Ul(h)dll/l +0'2(h)l/f2| > e
yeliny 2plY1lleo V Pl '

To do this we will prove that o, viewed as a linear operator from H, to H, is
onto and continyously invertible. This implies that, for some g > 0, o 1(Hy)
is contained in H,. Then we note that the quotient above is no smaller than

inf SUPjeq-1(a,) | Jo T1(R)AY1 + oa(h)Pe]
yelin¥w 2pldlic V Pl2l

which is equivalent to

b

inf UPhe, | fo h1di1 + hoipal
yelin¥ 2plYileo Vv plipel

This, however, is larger than q/2p.

Recall that for A € H,, the norm of 4 is defined by ||k|lg = ||h1]ls + |kl
It is straightforward to show that o is a bounded linear operator from H
to H. To prove continuous invertibility, we write o as the sum of a continu-
ously invertible linear operator plus a compact operator, and we show, using
Lemma 2, that o is one-to-one. Since H, is a Banach space this will imply that
o is continuously invertible with range H, [see Ruydin (1973), pages 99-103].

To begin, we show that ¢ is one-to-one, that is, for 2 € Ho, with ||A| g > 0,
we have that ||o(h)| g > 0. If this were not the case, then both o1(A)(x) =0
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for all u and o3(h) = 0. By Lemma 2, we get that A;(u) = 0 a.e. (dA,) and
hg = 0. Now we have that, for A = (h1,0),

8o [ Yhy dA,
146y f(;r YdA,

Since EZY (u) > 0, we get that A is identically zero. This is of course a
contradiction.

Write o(h) as the sum of two linear operators. The first linear operator is
3(h) = (hi(w)EZY (u), he [ EK?(u)ZY (1) dA,), where

_ N@w-) [*vdA,
T 14+60N(u—) 1+6fYdA,’

and the second is o (k) — 2(k). The inverse of 3, is
SY(h)(u) = (hl(u)(EZY(u))‘l, hg(/oT EKz(u)ZY(u)dAo)"l).

Because infyco,1 EZY () > 0 and [j EK?(u)ZY(u)dA, > 0, 37l is a
bounded linear operator. This follows from assumptions (b), (¢) and (d) of
Theorem 1.

All that is left is to show that 3(h) — o(h) is compact. Let {A,},>1 be a
sequence in H;. We must prove that there exists a convergent subsequence of
o(hy,) — 2(hy,). Since h,; is of bounded variation, we can write %,; as the dif-
ference of increasing functions. Both of these increasing functions are bounded
in absolute value by at most 2. This means that we can use Helly’s selection
theorem to find a pointwise convergent subsequence. Let A* be the limit of
the convergent subsequence of {4,},>1. We must prove that the same sub-
sequance of o (h,) — 3(h,) converges to o(h*) — 2(h*) in norm. This follows
by the dominated convergence theorem and assumption (b). To illustrate this,
consider the term

o1(h)(u) = hy(w)EZY (u) — E ZY(u) =0 for all u.

K(u)

00 J7 Yhin dA,
J0Jo 2 Pin %420
B 6 pvaa, 2Y™
in o(h,) — 2(h,). Then
0o Jo Y (h1, — h}) dA, T YIZIY o
_pE——22 e g4,
B o ivaa, ¥ ,,<0°/o V= PN Y da,

which for the subsequence will converge to zero by the dominated convergence
theorem. O ‘
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