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CONSISTENCY AND MONTE CARLO SIMULATION OF
A DATA DRIVEN VERSION OF SMOOTH
GOODNESS-OF-FIT TESTS

By WILBERT C. M. KALLENBERG AND TERESA LEDWINA!

University of Twente and Technical University of Wroctaw

The data driven method of selecting the number of components in
Neyman’s smooth test for uniformity, introduced by Ledwina, is extended.
The resulting tests consist of a combination of Schwarz’s Bayesian infor-
mation criterion (BIC) procedure and smooth tests. The upper bound of
the dimension of the exponential families in applying Schwarz’s rule is
allowed to grow with the number of observations to infinity.

Simulation results show that the data driven version of Neyman’s test
performs very well for a wide range of alternatives and is competitive with
other recently introduced (data driven) procedures. It is shown that the
data driven smooth tests are consistent against essentially all alterna-
tives. In proving consistency, new results on Schwarz’s selection rule are
derived, which may be of independent interest.

1. Introduction. Let X, X,,..., X, be iid. r.v’s. Consider the good-
ness-of-fit problem of testing the simple null hypothesis H, that the X;’s
have distribution function F, where F, is a given continuous distribution
function. Without loss of generality, assume that under H,, the distribution of
X, is the uniform distribution on [0, 1].

The so-called smooth test statistics [cf., e.g., Rayner and Best (1989)] form
a well-known class of test statistics for testing H,. They are given by

k

(1.1) T,= Y {n—1/2 5 ¢j(X,.)} . k=1,2,...,
i=1

Jj=1

where ¢, ¢;,..., is an orthonormal system in L,([0,1]) with ¢,(x) = 1.
Choosing for {¢;} the orthonormal Legendre polynomials on [0, 1], one gets
the test introduced and investigated by Neyman (1937). Further on we refer
to this test as Neyman’s test with test statistic NV,. Another member of the
class of special interest is obtained by taking ¢;(x) = V2 cos(jmx), the cosine
system. This orthonormal system is used in the data driven testing procedure
of Eubank and LaRiccia (1992) and plays a role in Bickel and Ritov (1992).
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Recommendations in the literature for choosing the number % of compo-
nents in (1.1) are often inconsistent with each other. An extensive discussion
on this is given in Inglot, Kallenberg and Ledwina (1994), where also a
criterion is developed for selecting k.

Recently, Ledwina (1994) introduced a new way of selecting % in Neyman’s
smooth test of uniformity. Unlike earlier proposals, depending on alternatives
of special interest, the new procedure provides an automatic choice of k&,
based on the data. Roughly speaking it works as follows. First, Schwarz’s
(1978) selection rule is applied to find a suitable dimension S, say, of an
exponential family model for the data. Then Neyman’s test is applied within
the fitted model, resulting in the test statistic Ng. So Schwarz’s rule serves as
a kind of first selection, followed by the more precise instrument, being
Neyman’s test in the “right” dimension.

There is now a lot of interest in this kind of procedure as is seen in the
papers of Bickel and Ritov (1992), Eubank and Hart (1992), Eubank and
LaRiccia (1992) and Eubank, Hart and LaRiccia (1993).

In this paper new simulation results show that the test Ng works very
well for a wide range of alternatives. In most of the considered cases in the
extensive simulation study, the data driven version of Neyman’s test is
competitive with the new tests of Bickel and Ritov (1992) and Eubank and
LaRiccia (1992).

Theoretical support of the new test is obtained by proving its consistency.
The results on N, given in Ledwina (1994), are extended in several ways.
First of all, the fixed upper bound of the dimension in applying Schwarz’s
selection rule is replaced by the more realistic upper bound d(n), which may
tend to infinity as n — . Second, consistency at essentially all alternatives is
proved. Finally, general orthonormal systems are considered.

The new results on Schwarz’s selection rule in this paper may be of
independent interest. They include an analysis for sequences of exponential
family models with dimension d(n) tending to infinity as n — .

As noted by Eubank and LaRiccia [(1992), page 2072], there are numerous
empirical studies, where smooth tests have been shown to be more powerful
than common omnibus test statistics over a wide range of realistic alterna-
tives.

In view of the (simulation) results here and the earlier (simulation) results
presented in Ledwina (1994), where a comparison was made with widely
recommended tests proposed by Anderson and Darling (1952), Watson (1961)
and Neuhaus (1988), the conclusion of Rayner and Best [(1990), page 9],
“don’t use those other methods—use a smooth test!,” may be slightly sharp-
ened to “use a data driven smooth test.”

Extension of the method to goodness-of-fit problems with nuisance parame-
ters will be discussed elsewhere.

2. Definition of the test statistics. In this section the test statistic
introduced in Ledwina (1994) is extended in two ways. The upper bound of
the dimension of the exponential families in applying Schwarz’s selection rule
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is not fixed, but may tend to infinity as n — «. Second, general orthonormal
systems are allowed. While the second generalization is rather obvious, the
first one leads to essential new problems and results.

To define the test statistic, consider exponential families generated by the
uniform distribution and an orthonormal system

¢0’ ¢1, ¢2"”
with bounded functions ¢, ¢,,... and ¢y(x) = 1. The functions ¢, ¢,,...
are not necessarily uniformly bounded. For 2 = 1,2,..., the exponential

families are defined by their densities p,(x) with respect to Lebesgue mea-
sure on [0, 1] of the form

(2.1) Po(x) = exp{0° d(x) — ¥, (6)},

where

0=(01,...,0,), ¢=(d1,..., ),
w(0) = log | "exp{0° () dx

and o stands for the inner product in R*. Since the functions ¢, are bounded,
D, is defined for every § € R*. When there is no confusion, the dimension % is
sometimes suppressed in the notation.

Let M0) = E,¢(X). It is well known that

(2.2)

(2.3) A(0) = ¢'(6)

with the prime denoting derivative. Moreover, by orthonormality
(2.4) A0) =0, Y"(0) =1, theidentity matrix.
Writing

. n
Yn=(¢1,”-’¢k)7 ¢j=n_1 Z¢’j(Xi)’
(2.5) i=1

L,=nsup {Y,°0— ¢,(0)} — 3k log n,
o R*
Schwarz’s (1978) Bayesian information criterion (BIC) for choosing submod-
els corresponding to successive dimensions yields

(2.6) S=min{k:1 <k <d(n),L,>L;,j=1,...,d(n)}.

Although it is not mentioned in the notation, S depends of course on the
upper bound d(n) of the exponential families under consideration. The data
driven smooth test statistic is defined by

S

(2.7) Tg= ) {n_1/2 i ¢j(Xi)}
i=1

Jj=1

with S given by (2.6). The null hypothesis is rejected for large values of 7.
As is seen from (2.6) and (2.7), first an exponential family model is fitted to
the data and then the asymptotic local (8 close to 0) optimal solution of the
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testing problem H;: 6 = 0 (corresponding to uniformity) against 6 # 0 is
applied. More information on Schwarz’s BIC is found in Schwarz (1978),
Haughton (1988), Rissanen (1983, 1987), Barron and Cover (1991), Ledwina
(1994) and in the following sections of this paper.

While some authors [cf. Eubank, Hart and LaRiccia (1993) and references
mentioned there] include dimension 0 (the null hypothesis) as a candidate
dimension, others [e.g., Bickel and Ritov (1992)] start from dimension 1. We
prefer in our case the latter approach, because of the following reasons.

First of all, we like to select £ in the class given by (1.1) and % simply
starts with 1. From this point of view, S is only a (suitable) way to do the
selection and consequently it should start with 1.

Second, the idea behind (2.7) is that Schwarz’s rule gives a first indication
about the true density of the observations while the finishing touch comes
from the smooth test in the selected exponential family. The lowest dimen-
sion, where for the second step a testing problem can be formulated, equals 1.

Numerical results in, for example, Inglot, Kallenberg and Ledwina (1994)
show that Neyman’s test performs very well, provided a good choice of £ has
been made. Therefore, the data driven version of Neyman’s smooth test
(denoted by Ny) is especially considered here. Examples in Table 2 of Inglot,
Kallenberg and Ledwina (1994) and the examples in Tables 3-5 in this paper
show that a considerable loss of power may occur when a wrong choice of & is
made. This illustrates that a good procedure for choosing & based on the data
is very welcome.

3. Asymptotic behavior of S and Ty under H,. To prove consistency
of Ty, we need information on the behavior of Ty both under H, and the
(fixed) alternative. Here we consider the null case and start with the asymp-
totic behavior of S, which may be of independent interest.
In view of (2.6) we have (P, denotes that X, is uniformly distributed on
[0,1D)
d(n)

(3.1) Py(S=1)=1- ) Py(S=kFk)
k=2

and, using ¢,(0) = 0,

Py(S =k) <Py(Ly = Ly)

(32) < Po(n sup {Y, o9 — ¢,(9)} = 5(k — 1)log n)
JeR*

Next define

(3.3) V, = max sup |¢;(x)l.

1<j<k xefo,1]

For the orthonormal Legendre polynomials on [0, 1], we get
(3.4) V, = (2k + 1)V2,

while V,, is bounded in the trigonometric case.



1598 W. C. M. KALLENBERG AND T. LEDWINA
The proof of the following lemma is given in Inglot and Ledwina (1994).

LEMMA 3.1. For every k> 1, 0 < & < min(1, (2/3)kV,?) and a <
(2 — £)e?(16kV,2) "1, we have

(3.5) {x €R*: sup [0ox — ¢,(0)] = a} c {x:llxl*> > (2 — &)a}.
s R*

The asymptotic behavior of S is given in the following theorem.

THEOREM 3.2. Assume

(3.6) lim d(n)Vy,,(n" " log n)l/2 =0.
n—oow

Then

(3.7) lim Py(S = 1) = 1.

Proor. Let 0 < £ <2/3. By (3.5) and (3.6) we have for all sufficiently
large n, uniformly for & € {1,..., d(n)},

Po(n sup (%, 29 = 4(9)} = 4(k — Dlog n)
JeR*
< Po(I%, 17 > (2 = 5)4n " (k - D)log n).

Application of formula (2) of Prohorov (1973) [with, in the notation of

that paper, p = {2 — &)i(k — Dlogn}’?,, m = k, A = 1, a =
kY2V,n" 1722 — £)3(k — Dlog n}*/?] yields

(3.8)

1
Po(”Yn”2 > (2 - 8)§n_1(k — 1)log n)

ce 2] {r(4)) e 20 - ncan)

with ¢, an absolute constant, n(a) - 0 as a — 0, provided that p2/2 > &
and a <1 [n(a) is explicitly given on page 188 of Prohorov (1973) and
satisfies n(a) < al. By (8.6), a = 0 as n — », uniformly for £ € {1,..., d(n)}.
Moreover, p%/2 > k for n sufficiently large, independent of k.

By taking & small enough, combination of (3.2), (3.8) and (3.9) gives, for
any { > 0and k2 € {1,...,d(n)},

Py(S = k) < n Q-OXk-1/2,

for n = n(¢) large enough, uniformly for &k € {1,..., d(n)}. Taking, for in-
stance, { = 0.2 we get by (3.1), for n sufficiently large,

(3.9)

d(n) o
P(S=1)=1- Y n04-D5q1_ ¥ p-04k-D
k=2 k=2

and the result follows. O



DATA DRIVEN SMOOTH TESTS 1599

COROLLARY 3.3. If {¢;} are the orthonormal Legendre polynomials and if
lim, . d*n)n"tlogn =0, then lim, ., Py(S = 1) = 1. If {¢;} is the cosine
system and if lim, . d*(n)n"'logn = 0, then lim, ,, Py(S =1) = 1.

The asymptotic null distribution of T is given in the next theorem. Let x;
denote a r.v. with a chi-square distribution with 1 degree of freedom.

THEOREM 3.4. If (3.6) holds, then under H,
Ts 4 xi-

ProOF. By Theorem 3.2 we have P,(S = 1) —» 1 as n — «. Since under
H,, T, >, xi, the result follows. O

COROLLARY 3.5. If lim, _,, d*(n)n"!log n = 0, then Ng =, x{ under H,.
If (¢} is the cosine system and if lim, ., d?(n)n~'logn = 0, then Tg >, xi
under H,,.

Proor. Combine Corollary 3.3 and Theorem 3.4. O

In Ledwina (1994), simulation results are presented on the null distribu-
tion of S and 5% critical points of Ng. The finite sample results in Table 1 of
Ledwina (1994) show that indeed S is concentrating its probability mass on 1
as n becomes large. Nevertheless, the implied chi-square distribution with 1
degree of freedom for Ng does not work very well as approximation to
establish accurate critical values [cf. Table 2 in Ledwina (1994) and Table 2
herein]. The first obvious remark is that T, < T}, and hence T} < T with
probability 1. Moreover, although the cases where S > 1 are relatively rare,
they have special influence, since n sup{Y, o9 — ¢,(8): & € R*} and T, are
strongly related. Therefore, if S = 2, say, then as a rule T, is much larger
than T, (due to the penalty for higher dimension in Schwarz’s rule). This
explains why the simulated critical values of Ny are substantially larger than
the asymptotic critical values based on the chi-square-one approximation.
Results on a more accurate approximation of the null distribution of Ng will
be reported elsewhere.

As far as consistency is concerned, the lack of accuracy in the critical
values is no problem at all, since for consistency only opo(n) of Tg under H is
required (cf. the remark after Theorem 4.3) and this is certainly true, not only
in the formal sense (Theorem 3.4), but also in the approximation sense as is
seen from Table 2 in Ledwina (1994) and Table 2 herein.

4. Asymptotic behavior of S under alternatives and consistency of
Tg. Let X;,X,,...,X, be iid. rv’s each with distribution P on [0,1].
Suppose that

(4.1) Epp(X) = =Eppg (X)) =0, Ep¢x(X) # 0,
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for some K = K(P). Consistency of T will be proved for any alternative of
the form (4.1), thus including essentially any alternative of interest. It will be
assumed in this section that

(4.2) liminfd(n) > K,

n—ow

which is certainly the case if lim,, _, , d(n) = », since K is fixed. The asymp-
totic behavior of S is described in the following theorem.

THEOREM 4.1. If (4.1) holds, then
(4.3) lim P(S > K) = 1.

n— o

Proor. Since K is fixed, it suffices to prove
(4.4) limP(S=%k)=0 fork=1,..., K- 1.
n—o

Consider a fixed & € {1,..., K — 1}. In view of (2.6) we have

(4.5) P(S=Fk) <P(L, = Lg).

Since (d/dt)yg(0,...,0,t)|;—o = Ey¢x(X) = 0, it holds that, for every a # 0,
(4.6) sup {at — Y (0,...,0,¢)} > 0.

teR

Further we have

(47)  sup (¥, xo0— Ug(0)) = sup (it — Y (0, .., 0, 1))
ocRX teR

and, by the law of large numbers,

(4.8) bk —=p Epdp(X)#0 asn — o.

In view of (4.6), (4.7) and (4.8) we obtain

(4.9) Ly —p .

On the other hand, since 2 €{1,..., K — 1} and hence E,¢(X) = - =
Ep ¢ (X) = 0, it is easily seen [cf. (3.8)] that

(4.10) L,—>p —® asn— o,

Combination of (4.5), (4.9) and (4.10) yiélds (4.4) and this completes the proof
of the theorem. O

Theorem 4.1 is now applied to prove the following proposition, which in
turn is the key for proving consistency of T.

PrROPOSITION 4.2. If (4.1) holds, then

Tg »>p® asn — o,



DATA DRIVEN SMOOTH TESTS 1601
ProoF. Let x € R*. By Theorem 4.1 we get
P(Tg <x)=P(Tg <x,S>=K) +0(1)

<P {n—l/z i‘lld,K(Xi)} Sx) +0(1)

as n — ». Since Ep ¢px(X) # 0, the result follows by the law of large numbers.
O

THEOREM 4.3. If Ty is bounded in probability under H, as n — «, then
for each (fixed) alternative of the form (4.1), the power of the test based on Tg
tendstol asn — o,

PrOOF. The result follows immediately from Proposition 4.2. O

In view of the proof of Proposition 4.2, it is seen that Theorem 4.3
continues to hold if T = op (n) under H,. Combination of Theorems 3.4 and
4.3 now yields the consistency.

THEOREM 4.4. If (3.6) holds, the test based on T is consistent against any
alternative of the form (4.1).

In particular, we get by Corollary 3.5 and Theorem 4.3 for the data driven
version of Neyman’s test and for the data driven version of the test based on
the cosine system the following result.

COROLLARY 4.5. If lim, ,, d*(n)n"'log n = 0, then the test based on Ng
is consistent against any alternative of the form (4.1).

If {¢;} is the cosine system and if lim, ., d 2(n)n"'log n = 0, then the test
based on Ty is consistent against any alternative of the form (4.1).

To prove consistency it was sufficient to show that lim, ,, P(S > K) =1
as far as the asymptotic behavior of S was concerned. By inspection of the
proof of Theorem 4.1, we can get more information about the behavior of S
under alternatives. Denote by

(4.11) gk = (EP¢1(X)"--’EP¢I¢(X))
fork=1,2,....

PROPOSITION 4.6. If for some m > k the distribution of (¢(X),..., ¢,,(X))
under H, is absolutely continuous w.r.t. Lebesgue measure on R™ and

(4.12) sup {&, o9 — P, (9)} < sup {&,,°0 — ¢,(0)} <,
deR” fcR™
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then
lim P(S =k) = 0.

n—o

For the proof, see Kallenberg and Ledwina (1993).
For each ¥ = (3,..., 9;,) € R* we may take 6 = (9,,...,%,,0,...,0) € R™,
yielding &, 20 — ¢,(0) = &, ) — ¢,(3) and, therefore,

(4.13) sup {&, o — Y, (9)} < sup {&,°0— y,(6)}.
de Rk ocR™

In fact, the quantity

(4.14) sup {&; o9 — ¥, (9)}
de Rk

is the Kullback—Leibler information number of the probability measures
P,-1s,, and P,. The quantity (4.14) may be seen as a kind of distance between
P and P, when considered in the k-parameter exponential family (2.1):
Pr-1(z,) is called the information projection [cf. Csiszéar (1975) and Barron and
Sheu (1991)].

Since the k-parameter exponential family is embedded in the m-parameter
exponential family, P can be described at least as informative in the m-
parameter exponential family as in the k-parameter exponential family
[inequality (4.13)]. If really more information becomes available [i.e., if (4.12)
holds], then it is picked up for large n by S, in the sense that dimension m is
preferred to dimension k. If P is close to the uniform distribution in the
sense that &, is close to 0, (4.14) behaves like the Euclidean distance between
&, and 0, since A(0) = 0 and ¢"(0) = I. In that case we may expect that if
Ep ¢, (X) differs sufficiently from 0 for some i > 1, (4.12) holds with m =
k+i.

On the other hand, if P = P, for some & = (9,,...,8,) with 9, # 0, then
for each | <k,

sup {9 *(Esdy,..., Es¢;) — ‘/’1(0)}

e R’
= sup {(0,0)° /\k('ﬂ) - '/’k((o’o))}
(6,0)eR*
< sup {t° A, (9) = (1)},
te R*

where (6,0) = (6,,...,0,,0,...,0). (The last inequality follows from the fact
that the last supremum is uniquely attained at ¢ = ¢ and ¢, # 0.) Hence it
easily follows by the law of large numbers that Py(S < k) > 0 as n — .
Similar arguments as in the proof of Theorem 3.2 lead to Py(S > k) — 0 as
n — ©. We omit the details. So in this case, we get lim, ., P,(S = %) = 1,
that is, S selects the right dimension. [Note that in this case, for all m > k,
equality holds in (4.13).]
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5. General information on the simulation study and simulated
distribution of S under alternatives. All programs used in this paper
were written by Krzysztof Bogdan under MEN Grant 341 046 and KBN
Grant 665/2/91. For a detailed description of the simulations see Ledwina
(1994). Finite sample results on the null distribution of S are presented in
Ledwina (1994) and Kallenberg and Ledwina (1995). Here we consider the
distribution of S under alternatives.

A broad range of alternatives is investigated with different patterns of the
density (pushed toward one or two ends of [0, 1], clustered near the center or
a few points, multimodal etc.). Parameters are chosen to yield moderate
powers (not too close to the significance level or to 1) for the tests under
consideration. Also heavy-tailed alternatives are included. Such a wide class
is provided by (contamination of the uniform distribution with) beta distribu-
tions. Moreover, cosine alternatives are investigated, since the test of Eubank
and LaRiccia and the considered version of Bickel and Ritov’s test are based
on the cosine system. As a counterpart also similar Legendre-type alterna-
tives are involved. Finally, alternatives from the exponential family (2.1) are
discussed.

To be specific, the list of alternatives is as follows:

g1(x) =1- e+ &B, (),

with the Beta density 8, ,(x) = {B(p, g)} 'x? (1 —x)?7!
go(x) =1 + pcos(jmx),
g3(x) =1 + pmi(x),

with {m;} the orthonormal Legendre polynomials on [0, 1],

k
g4(x) = exp{ Y O;mi(x) — ¢, (0) .
j=1

In view of Theorem 4.1 and the discussion at the end of Section 4, especially
alternatives of the form g, are of interest when considering the distribution
of S under alternatives. Some simulation results are given in Table 1.

Theory states that P(S = k) - 1 as n — . Indeed, it is seen that for
n = 100 the event {S = k} has high probability and as a rule much higher
than for n =50, thus showing the convergence. [The case k =4, 6=
(0, —0.5,0, —0.2), is an exception; even for n = 100 the polynomial of second
degree is still dominating.]

6. Simulated powers. Recently Eubank and LaRiccia (1992) proposed
the data driven test statistic 7),, for testing uniformity, where

m
(6.1) T,=nY d;‘-’n,
j=1
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TasBLE 1
Estimated P(S =s) (%) based on 10,000 samples in each case; d(50) = 10, d(100) = 12;
alternative g,
Parameters s
k 0 n 1 2 3 4 5 6 7 8 9 10 11 12
1 03 50 94 5 1
100 96 3 1
2 (0,-0.4) 50 23 71 4 1
100 5 91 3 1
2 (0.25, —-0.35) 50 34 60 4 1
100 12 84 3 1
3 (0,0,0.9) 50 41 1 53 4 1
100 13 83 3 1
4 (0,-0.5,0,-0.2) 50 19 70 2 8 1
100 3 83 1 12 1
4 (0.1,0.15, —0.25, —0.35) 50 47 3 6 40 3 1
100 17 1 4 74 3 1
5 (0,0,0,0,0.5) 50 49 2 1 45 3 1
100 15 81 3 1
8 (0,0,0,0,0,0,0, —0.7) 50 52 4 1 40 2 1
100 11 84 3 1
with
n
(6.2) @, =n~' ¥ V2 cos(jmX,)
i=1
and where m is the minimizer of
m 1 m 1
(6.3) —(n+1) YXn'@, +mn-1)"+ ¥ (n—-1)""a,,.
j=1 j=1

Another goodness-of-fit statistic is proposed by Bickel and Ritov [(1992), page
55], which with a;, = ay2j, j, = d(n) and based on the cosine system reads

as
T, —j

1<j=d(n) | V2)

with T, ; given by (6.1). Uniformity is rejected for large values of Tpy. [Here
a = a(n, a) in a;, is the critical value,of Tgg.]

Before presenting power results, in Table 2 we give for illustration the
estimated critical values of the test statistics under n = 100 based on 10,000
samples. Also the null distribution of S and 7 are shown.

As already noted in Ledwina (1994), the difference between the asymptotic
0.05 critical value being equal to 3.841 and the simulated ones for d(100) > 2
is substantial. A deeper study, which will be reported elsewhere, is needed to
get a better null approximation (cf. also the discussion at the end of Section
3). It turns out that a second-order approximation is very accurate in numeri-




DATA DRIVEN SMOOTH TESTS 1605

TABLE 2
Empirical critical values of Tgp, Ng and T,,,;, a = 0.05, and empirical distributions of S and
under uniformity and d(n) = 12, n = 100, based on 10,000 samples in each case

Critical d(n)
valuesof 1 2 8 4 5 6 7 8 9 10 11 12

Tgr 1.989 2.535 2.720 2.830 2.903 2.989 3.023 3.060 3.081 3.108 3.117 3.141
Ng 3.836 5.269 5.499 5557 5.571 5.581 5.581 5.586 5.586 5.586 5.586 5.586
T 3.946 5.895 7.749 9.348 10.810 12.243 13.712 14.940 16.244 17.770 19.150 20.479
Estimated
probab. s
(%) 1 2 3 4 5 6 7 8 9 10 11 12

S =s) 96 3 1
(m =s) 26 9 7 6 6 6 6 5 6 7 7 10

cal examples. Further, it is seen that / is much less concentrated in 1 than
S and that the critical values of T, are much different from each other.

Power comparison of Ny, Tgyp and T,, is now made in Tables 3-5.
Throughout, the significance level a equals 0.05. (All Monte Carlo experi-
ments are based on 10,000 samples and hence the estimation error is smaller
than 0.01 with confidence 0.95.)

For convenience, also the maximal available power B ; and the minimal
power B/ of Neyman’s tests based on subsequent N,, Ny,...,N; is pre-

TABLE 3
Estimated powers (%) of Ng, Tggr and T, ,;, for beta alternatives (g,) based on 10,000 samples in
each case; a = 0.05

Parameters d(n) =10 dn) =6 d(n) =12 dn) =8

p q & Bf,lo k* Bi’m Ng Tgg T,s T, BT,IZ k* Bi’m Ng Tgg Tu Toi
3 3 05 52 2 18 53 40 22 31 86 2 46 88 76 42 56
2 2 08 62 2 19 63 44 24 37 94 2 51 95 82 50 67
151510 37 2 10 38 23 15 .21 7 2 24 76 52 29 40
050506 69 10 53 57 40 41 42 91 12 80 85 70 69 71
2 3 07 176 2 37 75 66 38 53 99 2 79 98 96 T4 87
152 09 68 2 22 65 52 28 39 96 2 61 95 89 56 73
081505 46 1 24 32 36 17 23 75 1 42 63 64 30 39
1 0505 64 9 60 52 52 42 47 89 4 87 82 82 71 76
080505 54 10 45 40 36 32 34 78 12 71 65 62 55 59
020203 93 10 63 74 51 59 53 100 12 89 95 86 90 87
2 4 05 60 3 32 55 58 31 44 92 3 68 88 90 60 74
2 10 025 54 1 34 41 49 28 35 82 1 60 74 80 50 60
10 20 025 40 6 23 36 41 32 43 74 5 46 62 75 57 70
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TABLE 4
Estimated powers (%) of Ng, Tgg, and T, for cosine alternatives (g,) and Legendre alternatives
(g3), based on 10,000 samples in each case; a = 0.05

n =50 n =100
= 50 =100
Parameters d(n) = 10 d':n) -6 d(n) =12 :(n) -8
Y J B’f,lo k* Bi’lo Ng Tgg T, Ton "1{,12 k* Bi’lz Ng Tggr T,n T,
g, 04 1 51 1 21 34 41 17 22 81 1 39 69 72 30 39
0.5 2 57 2 41 56 48 27 39 88 2 70 87 84 50 65
0.7 4 79 6 14 50 71 60 78 99 6 20 83 98 91 97
0.7 5 71 7 5 33 63 60 78 98 7 6 65 97 92 98
0.7 6 71 10 8 23 60 65 81 97 10 9 46 95 93 98
g3 035 1 71 1 31 54 60 25 35 95 1 60 90 90 47 61
0.40 2 72 2 53 70 59 36 49 95 2 81 95 90 64 77
0.37 3 57 3 5 53 37 30 41 90 3 5 83 74 57 71
0.33 4 45 4 7 25 24 26 33 76 4 7 45 51 48 60
0.30 5 32 5 5 13 14 20 18 63 5 5 23 33 38 43

sented as well as the index 2* for which the maximal power is attained. (In
determining the minimal power, N; is excluded, since otherwise in many
cases the minimum is attained for £ = 1 and the minimal power is close to
a.)

It is seen from the great difference between B;; and B2/ that one may
lose much power by making an unfortunate choice of the index k.

The power of T, is given for different values of d(n), since it is very
sensitive for the choice of d(n), in contrast to Ng and Tgy. For instance,
taking alternative g, with p =2, ¢ = 3 and ¢ = 0.7, we get for n = 50 and
d(50) = 6 estimated power 0.53, while for d(50) = 10 the estimated power

TABLE 5
Estimated powers (%) of Ng, Tgp and T, for the exponential family (g,), based on 10,000
samples in each case; a = 0.05

(n)=50 n =50 '(l=)100 n =100
Parameters d(n) =10 dn) =6 d(n) =12 dn) =8

8 0=100,,...,0,) B} 10k* BY'' NsTpr T Tni Bz B* B2 NsTrT,s Tham

103 56 1 24 38 44 19 * 25 84 1 44 74 75 33 44
2(0, -0.4) 58 2 20 59 44 23 34 91 2 50 93 82 46 62
2(0.25, —0.35) 59 2 21 57 46 24 34 92 2 51 90 83 46 61
3(0,0,0.4) 65 3 7 60 44 37 47 93 3 8 87 80 67 78
4(0,-0.5,0,-02) 60 2 19 63 40 25 38 94 2 54 96 81 53 73
4(0.1,0.15, 73 4 22 55 56 51 64 97 4 42 86 90 83 91
—-0.25, —0.35)
5(0,0,0,0,0.5) 79 5 9 51 45 56 47 98 5 12 85 86 89 91
8(0,0,0,0,0, 9 8 7 48 55 67 76 100 8 10 89 95 97 97

0,0, -0.7)
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equals 0.38. Taking g, with s = 8 and 6 = (0,0,0,0,0,0,0, —0.7), we get for
n =50 and d(50) = 6 estimated power 0.76, while for d(50) = 5 the esti-
mated power equals 0.08. The unstability makes T, less attractive as a
general testing procedure.

The simulations show that Ny adapts well to the alternative at hand. For
the beta alternatives (g,), Ny has high power, also compared to the maximal
available power B{ ;. In many cases it beats Ty and, far more, T}, ;. Schwarz’s
rule is oriented to avoid overparametrizing the model. Therefore, one might
think that the penalty for higher dimension causes a lower power of Ny in
cases where k* is large (heavy-tailed alternatives). It turns out that in such
cases (see Table 3) nevertheless Ny has reasonable power and as a rule
substantially higher than Ty and T, ;.

Since Tyg and T,, are based on the cosine system, they perform, as
expected, better for cosine alternatives (g,), while for Legendre alternatives
(g5) the situation is reversed. Finally, also for the alternatives from the
exponential family (g,), Ng again performs very well.

Therefore, the conclusion in Ledwina (1994) that the data driven version of
Neyman’s test performs well in comparison to the tests of Anderson and
Darling and Watson and Neuhaus can be extended to Eubank and LaRiccia’s
test and to Bickel and Ritov’s test, unless the alternative is highly oscillating.

Acknowledgment. The authors are grateful to K. Bogdan for program-
ming assistance.

REFERENCES

ANDERSON, T. W. and DaARLING, D. A. (1952). Asymptotic theory of certain “goodness of fit”
criteria based on stochastic processes. Ann. Math. Statist. 23 193-212.

BARRON, A. R. and CoveR, T. M. (1991). Minimum complexity density estimation. IEEE Trans.
Inform. Theory 37 1034-1054.

BARRON, A. R. and SHEU, C. (1991). Approximation of density functions by sequences of exponen-
tial families. Ann. Statist. 19 1347-1369.

BICKEL, P. J. and RiTov, Y. (1992). Testing for goodness of fit: a new approach. In Nonparametric
Statistics and Related Topics (A. K. Md. E. Saleh, ed.) 51-57. North-Holland, Amster-
dam.

CsiszAR, 1. (1975). I-divergence geometry of probability distributions and minimization prob-
lems. Ann. Probab. 3 146-158.

EuBANK, R. L. and HART, J. D. (1992). Testing goodness-of-fit in regression via order selection
criteria. Ann. Statist. 20 1412-1425.

EUBANK, R. L., HART, J. D. and LaRIcCCIA, V. N. (1993). Testing goodness of fit via nonparametric
function estimation techniques. Comm. Statist. Theory Methods 22 3327-3354.

EuBANK, R. L. and LARIccia, V. N. (1992). Asymptotic comparison of Cramér-von Mises and
nonparametric function estimation techniques for testing goodness-of-fit. Ann. Statist.
20 2071-2086.

HAUGHTON, D. M. A. (1988). On the choice of a model to fit data from an exponential family. Ann
Statist. 16 342-355.

INcLoT, T., KALLENBERG, W. C. M. and LEDWINA, T. (1994). Power approximations to and power
comparison of certain goodness-of-fit tests. Scand. J. Statist. 21 131-145.

INGLoT, T. and LEDWINA, T. (1994). Asymptotic optimality of data driven Neyman’s tests.
Preprint 43, Institute of Mathematics, Technical Univ. Wroctaw.



1608 W. C. M. KALLENBERG AND T. LEDWINA

KALLENBERG, W. C. M. and LEDWINA, T. (1993). Consistency and Monte Carlo simulation of a
data driven version of smooth goodness-of-fit tests. Memorandum 1158, Univ. Twente.

KALLENBERG, W. C. M and LEDWINA, T. (1995). On data driven Neyman’s tests. Probab. Math.
Statist. To appear.

LEDWINA, T. (1994). Data driven version of Neyman’s smooth test of fit. J. Amer. Statist. Assoc.
89 1000-1005.

NEUHAUS, G. (1988). Addendum to “Local asymptotics for linear rank statistics with estimated
score functions.” Ann. Statist. 16 1342-1343.

NEYMAN, J. (1937). “Smooth” test for goodness of fit. Skand. Aktuarietidskr. 20 150-199.

PrOHOROV, A. V. (1973). On sums of random vectors. Theory Probab. Appl. 18 186-188.

RAYNER, J. C. W. and BEST, D. J. (1989). Smooth Tests of Goodness of Fit. Oxford Univ. Press.

RAYNER, J. C. W. and BEsT, D. J. (1990). Smooth tests of goodness of fit: an overview. Internat.
Statist. Rev. 58 9-17.

RISSANEN, J. (1983). A universal prior for integers and estimation by minimum description
length. Ann. Statist. 11 416-431.

RISSANEN, J. (1987). Stochastic complexity. J. Roy. Statist. Soc. Ser. B 49 223—239.

ScHWARZ, G. (1978). Estimating the dimension of a model. Ann. Statist. 6 461-464.

WATsSON, G. S. (1961). Goodness-of-fit tests on a circle. Biometrika 48 109-114.

FAcULTY OF APPLIED MATHEMATICS INSTITUTE OF MATHEMATICS
UNIVERSITY OF TWENTE TECHNICAL UNIVERSITY OF WROCLAW
P.0. Box 217 50-370 WROCLAW

7500 AE ENSCHEDE WYBRZEZE WYSPIANSKIEGO 27

THE NETHERLANDS PoLaND



