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WEAK CONSISTENCY OF EXTREME VALUE
ESTIMATORS IN ([0, 1]

BY LAURENS DE HAAN AND TAO LIN
Erasmus University Rotterdam and EURANDOM

We prove that when the distribution of a stochastic process in C[0, 1] is
in the domain of attraction of a max-stable process, then natural estimators
for the extreme-value index (which is now a continuous function) and for
the mean measure of the limiting Poisson process are consistent in the
appropriate topologies. The ultimate goal, estimating probabilities of small
(failure) sets, will be considered later.

1. Introduction. Multivariate extreme value theory and its statistical impli-
cations are by now well understood [Resnick (1987), Smith (1990) and de Haan
and de Ronde (1998) just to mention a few references]. Giné, Hahn and Vatan
(1990) have characterized max-stable stochastic processes in C[0, 1]. This seems
to be the most sensible extension of extreme-value theory to infinite-dimensional
spaces. De Haan and Lin (2001) have characterized the domain of attraction of
max-stable processes in C[0, 1]. The aim of the present paper is to initiate mak-
ing these results useful for statistical application by proving consistency of natural
estimators for the main “parameters” of the max-stable process based on obser-
vations from a process which is in its domain of attraction. The result is stated in
Theorem 2.1.

Infinite-dimensional extreme-value theory seems to be useful in a problem of
coast protection [cf. de Haan and Lin (2001)].

Next we explain the framework of our results. Consider a sequence of i.i.d.
random processes &1, &>, ... in C[0, 1]. Suppose the sequence of processes

maxi<j<, & () — by (n)

1.1
() a;(n) }ze[o,l]

converges in C[0, 1] to a stochastic process n with nondegenerate marginals. Here
a;(n) > 0 and b;(n) are nonrandom normalizing constants chosen in such a way
that the marginal limit distributions are standard extreme-value distributions of the
form exp{—(1 + yx)_l/V} for some y € R, 1 + yx > 0 and defined by continuity
for y =0.

We note the following structural property.

The probability distribution of the limit process 1 is determined by the
continuous function y (the extreme-value index) plus a measure v on the
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space C[0, 1] which is homogeneous; that is, for any Borel set A and a positive a,
(1.2) v(aA) =a"v(A).
For each function f € CI[0, 1], f > 0, we have

—log P{(1+y@On®)""" < f () forall 1}

(1.3)
=v{g e C[0,1]; g(t) > f(t) for some ¢}

[Giné, Hahn and Vatan (1990), Proposition 3.2, part (iv), where the measure v is
given in its “polar” representation].

We need the following result from de Haan and Lin (2001), Theorems
2.4 and 2.10.

PROPOSITION 1.1. The sequence of stochastic processes (1.1) converges
in C[0, 1] to a stochastic process n with nondegenerate marginals if and only if
the following hold:

(1)
1." _
(1.4) -\ i&—i
izt

in C[0, 1 with & (1) := =g gy and 1) := (1 +y On@)'7® fort € [0.1].

An equivalent statement is: there is a measure v on CT[0,1] := {f €
C[0,1]; f = 0, f £ 0} such that for each ¢ > 0 the restriction of the measure v
defined by

1
by () :=sP{;c1<-> c }

10 Se:={f e CT[0,1]; || flloo = ¢} converges weakly (s — o0) to the restriction
of v to S¢. The relation between n and v is as in (1.3).

(ii)
— » _
(1.5) o Ui = Ui(s) _ w7 —1
§—>00 a[(s) y([)
and
(1.6) fim Y _ o
S—>00 a[(s)

locally uniformly for x € (0,00) and uniformly for t € [0, 1], where a;(s) :=
a;([s]) [from (1.1)].
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Now we proceed as in the finite-dimensional case: we fit the appropriate limit
distribution to the tail part of the distribution of the original process [cf. (1.9)].
Next this limit distribution enables us to extend the original probability distribution
beyond the range of the available data as follows:

A failure region F defined, for example, by F = {£(t) > f(¢) for some
0 <t <1} with f a continuous function which is extreme with respect to the
sample in the sense that §,~ (t) < f@) fori=1,2,...,nand 0 <t <1, where
51, éz, e én are the observed realizations. Since this feature is essential to the
problem, we want to keep it in our asymptotic approximation. This implies that
f must depend on n, the sample size, that is, f = f,, and in fact we assume that

ney
(1.7) ﬂn=U(k Mn)

n

with & a fixed positive continuous function, ¢, a sequence of positive constants
and

1 <
(1.8) U= (15 ) @

with F;(x) := P{&(¢t) < x} [cf. de Haan and Sinha (1999), relation (1.5)].
We shall now attempt to explain the intuitive reasoning that leads to a way to
estimate P(F): forn — 00,k =k(n) — oo, k(n)/n — 0,

P{&(t) = f,(¢t) for some ¢t € [0, 1]}

=P{ ! > ! for some ¢ € [0, 1]}
1 =FE@®) ~ 1= F(fu®)
(LD P{; > @h(t) for some ¢ € [0, 1]}
1 —F(@&@) — &
k 1
~ o) n/k
19) o = Ry <o oro << 1]

[—1log P{(1+ynn@)""" < c,h(t) for0 <t <1}}
n

k
(L3 —v{g e CH[0, 1]; g(t) > c,h(t) for some 0 <t < 1}
n

k
2 " vlgeCt0,11; g(1) = h(r) for some 0 <7 < 1}.
nc,

The approximate equation (x) follows from the convergence of (1.1) (see
Proposition 1.1).
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Since n P{&(t) > f,(¢) for some ¢ € [0, 1]} is the mean number of realizations
that fall in the failure set and since we want this to go to zero (this is the “essential
feature” mentioned above), we need to assume ¢, — oo and k(n) = o(cy),
n — oQ.

Now to turn this into a useful statistics tool we need to estimate the measure v.
Moreover, we need to estimate the unknown function 2 which can be evaluated
approximately as follows:

k k fu(t) — bt(n/k)>”””
~—I| 1 el Tl i
neall — F(fu()}  ncy ( +r®) ar(n/k)

Hence we also need to estimate the functions y (¢), a;(n/k) and b;(n/k). The
estimation of these four objects is the purpose of this paper. The actual estimation
of P(F) is the subject of future research.

Finally we remark that all our results still hold if the time parameter runs
through an arbitrary compact set in R, not just [0, 1].

(1.10) h@) =

2. Result. Suppose that {§;,i > 1} are i.i.d. random elements of CI[0, 1]
and that F;(x), the marginal distribution function of &;(¢), is a continuous and
increasing function of x for each .

Assume that

@.1) P{illlfél(t) > o} >0

(this can be achieved by applying a shift).
Define, for x > 1,

Up(x) = F,“(l - 1)
X

and the function a;(-) by a;(s) := a;([s]) for s > 0 [cf. (1.1)].
From (2.1) we can suppose

inf U,(2) > 0.

0=<r<1
We assume weak convergence of the maxima in C-space:
150 — U(n)
-
a;(n)

where a.(n) is positive and in C[0, 1] and 5 is a random element of C[0, 1]
satisfying

2.2)

n(),

P(n(t) <x) =exp{—(1 +y@0)x) /")

foreacht € [0, 1], y € C][0, 1]; the extreme-value index of & (¢) is y (¢) for each 7.
Let & ,(t) <& ,(t) <--- <&, ,(t) be the order statistics of §;(¢),i =1,2,...,n.
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We define the sample functions

k—1

. 1 .
(2.3) M,E”(r)=%Z(logsn_,-,n<r>—logsn_k,nm)f, Jj=12.
i=0

Now we define estimators for y (¢), a;(n/k) and b,(n/k) as in Dekkers, Einmahl
and de Haan (1989):

(2.4) Py =MD @)

(Hill estimator);

L 1 (M(l))Z
25) ro=1-3{1- "o } ,
(2.6) Pu(t) =P, () + P (1)
(moment estimator);
@.7) U(%) Py
2.8) a(%) Ertn (PO = 77 (1)

(location and shift estimators).
For fixed ¢ these are well-known one-dimensional estimators [cf., e.g., de Haan

and Rootzén (1993)].
Next we denote, fori =1,2,...,n,
AN § 1/Pn (1)
(1) ._n{ " [Sz(t) Ui(n/k) ( 1 )“
)= 1+ ———— V| —=
g (@) r Yn (£) k) 0

and

() = —————
1= F 1 (8 (1))

with 1 — £, (x) = 230 T )=
Define the estimators

o0 15 kA(l) }
(2.9) ) T E: { ,

5 _ 15k }
(2.10) o= X {nc,- e

The latter estimator has been inspired by Huang (1992), the former by de Haan
and Resnick (1993).
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THEOREM 2.1. Ask — oo, k/n — 0, we have

(2.11) sup |y,"(t) —y Tl 50 withyt @) =y@) VO
0<r<l
2.12) sup [y, () —y~ OIS0 withy~ (1) =y (&) AO,
0<r<l
N P
(2.13) sup |y, (1) —y (@) — 0,
0<t<l1
U, (n/k) —
(2.14) 1(n/k) 2o,
0<r<l1 ar(n/k)
a,(n/k
(2.15) a/B) (12,
0<t<l1 a,(n/k)
(2.16) 5. S vls,.,
2.17) ym-»ws

in the space of finite measures on C*[0, 1], with ¢ > 0 and
={f €CTI0,1]; | flloo = c}.
REMARK 2.2. Relations (2.16) and (2.17) mean that
PO(E) > v(E), i=1,2,
in probability, where E C S, is a Borel v-continuous set (cf. proof of Lemma 3.1).

3. Proof. We first prove some auxiliary results.

LEMMA 3.1. Define the random measures
1 & k
V )= - I{—¢ e-
Vn,k( ) k ; {n gi }
with (1) = =gy
Ask — o0, k/n— 0andc >0,
_ d
(3.1) Un kls. = Vs,
in the space of finite measures on C[0, 1].

PROOF. According to Daley and Vere-Jones [(1988), Theorem 9.1.VI],
for (3.1) we only need to prove, for any Borel v-continuous sets Eq, Ea, ...,

Eyn C Se, Upk(ED), Vpi(E2), ..., 0k (Em)) — (V(E1), v(E2),...,v(Ep)) in
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probability. Since the limit is not random, this is equivalent to the following: for
any Borel v-continuous set £ C S,

(3.2) Vp k(E) = v(E) in probability.
Using characteristic functions we know that this is equivalent to
n (k
(3.3) —P(—;‘i eE)—>v(E),

k \n
which is the same as
(3.4) Vn/kls. = Vls,-

This has been proved in Proposition 1.1(1).
Next we show the convergence of the tail empirical distribution functions.

LEMMA 3.2. For each t, let {1,(t) < p(t) < -+ < Eu.n(t) be the order
statistics of ¢ (t),i = 1,2, ..., n, and define

1 n
=G0 =1 Y I>(/kx)-
i=1

Then, for any positive c,

1
(3.5) sup |1 — G (x) — —‘ Lo
0<t<l,x>c X
and v |
(3.6) SUp |~ Can(t) — =| 5 0.
0<t<l,x>c X

Also, suppose u and A are continuous functions defined on [0, 1] with u© < 1,
A<l,u+Ar<1.Then

(3.7) sup lk_l (é‘n—i,n(l‘)/gn_k’n(l‘))l/«(l) 1 ~ 1 f) .

. 0<t<1 k i=0 M(t) 1= M([)
and

1 (é‘n—i,n(l)/é‘n_k’n([))ﬂ(l) 1
sup |-
o=r=1|k i3 wu(r)
(3.8) % (é‘n—i,n(t)/gn—k,n(l‘)))‘([) —1
A(D)
2 —p(t) — Alt) »

— —0
(I = p(®) =2@)(A = n(@)(A = 1))
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PROOF. Fix ¢ > 0. From Lemma 3.1 and use of Skorohod construction we
can suppose

Vnkls, = Vls. a.s.,

where S. = {f € CT[0, 1], || flloo > c}. Note that this is convergence of finite
random measures. For any finite measures v, i, define the metric [cf. Daley and
Vere-Jones (1988), (A2.5.1)]

d(v, u) = inf{a > 0: for all closed sets F € C1[0, 1],
V(F) < u(F®) + ¢ and u(F) < v(F®) + ¢},

where F¢:={f e CT[0, 1], || f — glloo < ¢ for some g € F}.
Now for any positive ¢ eventually

d(Vnkls,,vls,) <e a.s.
Next define the closed set
E.,={feCT[0,1]; f(t) > x}.

Note that in our situation the set E;t isthe same as Ex_¢ ;. Alsov(E, ;) =1/x
[Giné, Hahn and Vatan (1990), pages 150 and 151]. It follows that for x > c,
0<t=<I,

1— Gy (x) =Dui(f €CTI0,1]; £(2) > x)

= 1
= Vn,k(Ex,t) = V(Ex—g,z) +e=—+c¢

and
1
—&.
x +2¢
This proves (3.5). Statement (3.6) follows because the uniform convergence of the
function 1 — G, ;(x) to 1/x is equivalent to the uniform convergence of its inverse

(k/n)&p—kx.n(t) to the same function.
For (3.7), observe that

1— Gn,t(x) = ‘_)n,k(Ex+8,t) = V(Ex+28,t) — &=

1 "i Gnion () /Gt )0 — 1
k= u(r)

(ﬁ . )W)lk_l Cnin () (k/)O — (&g (0) (k1)) O)
kCoin)) k& (1)

w(t) poo X
e A N (SR T
k &n—kn(t) K/ M)t 1.0 (0) N K/ 1)y 1.0 (1)



2004 L. DE HAAN AND T. LIN

n 1 u(t) 00
= <—7) / (1 — Gn,;(x))xﬂ(l)_l d.x
k Cn—k,n(t) (k/1)&n—kg1,2 (1)

n 1 ) poo
= < 7> / (1 = G (x))x* O~ gy
1

% é-n—k,n(t)
n 1 w1 ( ) (-1
+<—7> / 1 —Gp(x))x™ " dx.
k é‘n—k,n(t) (k/")fn—k-H,n(t) "
From (3.5) and (3.6) the second part converge to 0. So we only need to prove
00 . 1 p

(3.9) sup / (1 =G (x)x"O gy — —— | 50

0<r<11J1 1 — ()

Let Y; :=sup, ¢;i(¢),i =1,2,...,n. These are i.i.d. r.v.’s. From Proposition 1.1
we have

"1 "1 _
Y =\/—sup&i(t) =sup\/ ~&;(1) — supij(r) =¥
1 ot Lo !

S| =

<

1

in distribution, where we know

x\ !
P(fo):exp{—(—) }
c
for some ¢ > 1.

LetY,—;,.i=1,2,...,n, be the order statistics of ¥;,i =1,2,...,n, and

1 —Fy( )-—1Xn:1<y~ ”)
nx.—k ,’n>xk_

1
We have

1 =Gpi(x) =1 = F(x).

Hence for any y > 0 by one-dimensional results,

/00(1 — G (0))x* 0 gy < /oo(l — F(x))x* O~ gy
Y y
— /oo SO gy = L}M([)_l )
y X 1 — ()
Moreover,
/;y(l - Gn,t(x))x“(t)_l dx 5 '/1y xHO=2 gy = 71 l—_y:(;;l uniformly in ¢.

By letting y — oo we get (3.9). Hence we have proved (3.7). The proof of (3.8)
is similar. [
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LEMMA 3.3. Suppose a;(s) > 0, at_l(s), g:(s) are locally bounded in
tel0,1],0<s <oo,y() e C[0,1] and

&1 (sx) — g (s) x7 W —1
%

3.10

(3.10) a (s) y(@)

(.11) asx) o
a(s)

locally uniformly for x > 0,0 <t <1.
Then for any positive ¢, there exists so such that for s > so, sx > so we have

ar(sx)

as(s)

—x’®

(3.12) < ex”® exple|log x|}

or, alternatively,

(3.13) (1 —e)x”Dexp{—e|logx|} < a,((sx)) < (14 &)x7® exple|log x|}
ag (s
and
- v _1
Glay |BED -8 _x < e(1+ 27D exple|logx|}).

ar(s) v (1)

PROOF. The proof is not much more complicated than, and has the same
structure as, the proof of the same result with ¢ fixed. We refer to de Haan and
Pereira [(1999), Appendix], which contains a simplification, applicable in this
case, of a result of Drees [(1998), Lemma 2.1]. [

LEMMA 3.4. With the same conditions as in Lemma 3.3 and g;(s) > 0, we
have, for s — oo,

a(s)

3.15 —
( ) & (s)

— yT() uniformly in t.

For any positive ¢, there exists an sq > 0 such that if s, sx > sg, we have

G.16) |gs ) —loggi(s) W0

‘ <e(1+x7 Dexple|logxl}).

a(s)/&:(s) Yy~ (@)
PROOF. For (3.15), we need to prove, for any #, — o and s,, — 00,
3.17) 81, (Sn) N { y (to)~ !, for y(t9) > 0,
a, (sn) 00, for y (1) <0.
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(1) For y(t) > 0, from Lemma 3.3 for any ¢ € (0, y(#9)), we can find sg > 0
such that for s, > sp we have
80, (sn) — 81, (s0) 1 — (s0/sn)7 ™ ( <SO>V(ln)—8>
- <ell+ | — ,
Sn
(3.18) iy S () — 8 (s0) _ 1

ag, (Sn) Y (tn)
n=>00  a (sp) ()

From Lemma 3.3 we get

which implies

a;(s) — oo,
s — 00, uniformly for ¢ € {r: y (t) > %y(to)}, which implies
m 81, (50) —0.
n=>00 ay, (8n)

From (3.18) and (3.19) we get the first part of (3.17).
(i) For y (tg) <0, first define

(3.19)

00 d 00 d
(3.20) x/f,<s>:=/1 gt<sx>—gl<s>x—’2‘=s/ §@ S -g)  fors =0

forte E.:={0<t<1,y() <c}withanyc < 1.

Then we get
dg() + i) [ dx  g(s) ()
p = 8 (x) — — = .
s s X s S
This implies, for any positive sg,
Vi (x) 81

(;C) dx for s > s¢.

X X

G2 g(s) =/ dx—wf<s)+so/
S0 S0

Next we will prove

(3.22) im V&), 1
$=>00 a(s) 1 —y(@)

Note that

uniformly with ¢ € E..

Yi(s) [ 8i(sx) — & (s) d_x
a(s) N a(s) X2

From Lemma 3.3 we know for any € € (0, 1 — ¢) there exists a positive so such

that
xY® _1
x_2<

&(s) — g (SX)X_Z
y (@)

a(s)

‘ + ¢(1 +x7’(’)+8)>

for s > 50, x €[1, 00).
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Since the right-hand side is integrable on x € [1, 00), we get
_ % g,(sx) — g(s) dx _ oo x¥® _ 1 dx 1
lim ——:llm/ _— =
s=00 J a,(s) x2 o os=ooJi oy xr 1-y(@)
This leads to (3.22).
Now back to the proof of (3.17) for y (#p) < 0. From (3.22) we get
8t, (Sn) N 8t, (sn) 1
ag, (Sn) 1//l,, (s2) 1 =y (tn) ‘
Since g;(s) > 0, from (3.22), (3.21) and Lemma 3.3, we get, for any ¢ > 0,

liminf $2.67)

n—oo atn (sn

1 1 d
zliminf7< M_”ﬂ)
n—=>00 1 —y(ty) \Jso/s, V1,(sn) u
1 1
> liminf —— (T TRl [ —
n—=00 1 —y(ty) Jso/su 1 —y(t)
1 1
> liminf ——— a-2ew tdy — ——
n—=>00 1 —y(ty) Jso/sn 1 —y(t)
. 1=2e 1—(s0/sn)° 1
= liminf —
n—>00 1 —y(ty) € 1 —y ()
1—2¢ 1

T U—yt)e 11—y

2007

Letting ¢ — 0 we get the second part of (3.17). The proof of the first part of the

lemma is complete.
For (3.16), according to (3.15) and Lemma 3.3 we only need to prove

log g;(sx) —log g;(s) N X701
ar(s)/g:(s) y— (@)

locally uniformly in ¢ and x. That is, for any #, — f9, x, = xo > 0, s, = 00,

o log g;, (snxn) — log g, (sn) _ xgi(t") -1
n—>o0 a, (Sn)/ 81, (Sn) Y~ (1)
For y (#9) > 0, from (3.10)—(3.15), we get
o 1088 (snXn) —log g, (sn)
n—00 ar, (sn)/ 81, (sn)
_ i 088, (SnXn) — 81, (Sn)) /a1, (sn)1(@s, (5n)/ 81, (5n)) + 1)
n—0o0 a, (sn)/ 81, (Sn)
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_ logr ()™ —D/y ) + 1) _

log x
7@ 5
for y (t9) < 0 since ay, (sn)/ g1, (50) = 0,
log g1, (snxn) —log g, (sn)
n—00 ay, (sn)/g;n (sn)

— lim log([(gs, (Snxn) — &1, (Sn))/ar(sn)1(as, (sn)/ &1, (sn)) + 1)
n— 00 a, (Sn)/ 81, (sn)
1- gln (si’lxﬂ) - gtn (Sn) x())/(to) — 1

= lim =
n—0o0 a, (Sn) y (t0)

This completes the proof of this lemma. [J

PROOF OF THEOREM 2.1. We first prove (2.14). Note {U;(¢i()),i =
1,2,...}={&@),i=1,2,...}. Then

Uin/k) = Ui/ k) _ Entn®) = Ur(n/ k) a UsGu—tan(0) = Uy (n/ k)
a(n/k) a(n/k) a(n/k) '

From (1.5) and Lemma 3.2 we get (2.14).
Next we consider (2.11), (2.12) and (2.13). For any € > 0,

M (@) 1S logénin (1) — logéu_ia(t)
at(é‘n—k,n(t))/Ut(é-n—k,n(t)) ok i=0 at(gn—k,n(t))/Ut(é‘n—k,n(t))

4 15 108 Ur(Gumin (1)) = 108 Ur (Gt (1))

k i—0 al(gn—k,n(t))/Ul(é‘n—k,n(t))

From Lemma 3.4,

M (0) TR G /G )0 — 1 ’
a1 (Gn—kn )/ Ut Gntn (1)) k= y ()
1 = ;‘n—i n(t) vo(ne
. ,
<8( +k§,<cn_k,n<r>) )

1 Cn—in(@)/Cn— ’n(l‘))yi(f)‘h‘? 1
3 " )

— 2 - —
s( +(y~ () +e¢) 2 e

Using Lemma 3.2 we get

P

M (1) L |z,

3.23 -
(3:23) N ar Cotn O Ur Crin @) 1—y—(1)

0<tr<l
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Similarly we get

M (1)
sup 5
(3.24) 0<t<11 @t (Cn—in () Ut (Cn—i n(1)))
2 P
— —0
(I —y=@)(A =2y=@))
From Lemma 3.4 we get
. a,(s) R ’ _
A 0551:21 Ui (s) yro=0.
Hence
at(é‘n—k,n(t)) + P
3.25 —_— t 0.
422 AT A
From (3.23) and (3.25) we get (2.11).
From (3.23)—(3.25) we get
M2 1 re—
(326) M0@? 1= 1,
0<r<1 M,(, )(t) 1=y~
which implies (2.12). Hence (2.13) is obtained.
Now we prove (2.15). Note
A (1)
ar(n/k)  ar(Gp—i,n(1)) My (1) (1= 9~():

ar(n/k) a;(n/k)  a;(Cn—k,n(1))/ Ut (Gn—k,n (1))
from (3.12), (3.6), (3.23) and (2.12) we get (2.15).
Finally we shall prove (2.16) and (2.17). A similar argument as in the proof of
Lemma 3.1 shows we only need to prove that, for any v-continuous set E € S,
with any a > 0,

(3.27) 2 (E) L v(E)
and
(3.28) dA(E) 5 v(E).
For (3.28), we only need to prove that, for any ¢ > 0,
. A2
(3.29) Tim P{d(D37 s, vakls,) <e}=1

with d, a metric of finite measures, defined in the proof of Lemma 3.2.
Note

é‘. = =
SN CVIOD I INY (EHO S0 B C VRO D IR (TN SO

. 1 <k (l‘)
=1-G,, ;Cz ) )

k
n

(3.30)
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From (3.5) we get, forany 0 < ¢ < b,

£o.

(3.31) sup

0<t<l,c=<x<b

=G,

Since #(x) > () is a monotone function of x we get
n,

(3.32) sup | ———(x) —x| 0.
0<t<1,0<x<b 1 - Gn,z
Note v(Sp) = w1th a positive constant C := v(S1). We can find b > ¢ such
that v(Sp_p;) < 8
Suppose given the conditions
1
(3.33) sup —(x)—x|<e
0<r<l,c<x<b 1 - Gn,z
and
(3.34) d(Vpkls. vls,) <e

we have the following:
(i) For any closed set E € Sj¢c ) :=1{f € ctlo, 1], supg<;<1 J (?) € [c, b]} we
have

D (E) =y k( G (E)) [from (3.30)]

< Upk(E®) [from (3.34)]
and similarly
Dnk(E) < DL (E®).

These imply

= ~(2)
d(vn,k|S[C’h]’ vn,kls[c,b]) <e.

Hence

A s 2 VIS p)
(335) n,k19]c,b] [e,b]

_ ~(2 _
< d(Vn,k|Se.p)» U,(l,;)cls[l,,b]) 4 d (Vn k| S0 VIspeny) < 26

(ii) For any closed set E € Sp, note from (3.33) we get
1

g Bn= {%Of‘f(t)eﬁ[o 1], sup f(t)>b}ch e

0<t<1

and from (3.34) we get
Uk (Sp—e) <V ((Sp—e)®) +& < v(Sp_2e + &) < 2¢;
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then

B0 <9730 = () < e (Spe) 2.

1 -Gy
Note v(E) < v(Sp) <e. We get
(3.36) d(5 s, vls,) < 2e.
Hence
d(ﬁr(l?l)cmc’ vls.) < d(i)r(fl)cls[v,b]’ V|S[c.b]) + d(i)r(fl)clsb’ vls,) < de.
Finally we have

liminf P{d (5,315, vls.) < 5¢)

Zliln_l)gfp{d(ﬁn,ﬂsc,vm) <e, sup (x) —x

0<t<l,c<x<b

<er=1.
I_Gn,t _8}

For the latter equality we use Lemma 3.1 and (3.38).
This completes the proof of (3.29).
For (3.27) note

. ‘ 7 1/9a(2)
kii“)(t) _ [HM)(UI@,@)) Ut<n/k>v( 1 >>] =H,,,t(5;,~<z>)
n n

ar(n/k) @)
with
. [Ui((n/k)x) — U, (n/k 1 1/7a(®)
Hyi (%) ::{1+yn(z>[ ((n/ &),)Ei/k) o/ )v<_m0)“
~ az(”/k)
=11 n ~
{ Y (”[(a,m/k)
5 (Ul((n/k)x> — U;(n/k)
a;(n/k)

U,(n/k)—f],(n/k))) (_ 1 )“wn(z)
" ar(n/k) v k(@) ‘

From (2.13)—(2.15) and Proposition 1.1(ii) we get, for any 0 < ¢ < b,

(3.37) sup  |Hpi(x) — x| 5 0.

0<t<l,c<x<b

Since H, ((x) > 0 is a monotone function of x we get
(3.38) sup  |Hy (x) — x| 5 0.
0<r<1,0<x<b

The rest of the proof is similar to the proof of (3.28). The theorem has been proved.
O
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