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UNIVERSALLY OPTIMAL DESIGNS WITH BLOCKSIZE
p ===== 2 AND CORRELATED OBSERVATIONS

BY NIZAM UDDIN1 AND JOHN P. MORGAN2

Tennessee Technological University and Old Dominion University

This paper addresses the problems of determination and construction
of universally optimal designs in two-dimensional blocks of size p = 2,
assuming within-block observations are correlated. Generalized least-
squares estimation of treatment contrasts is considered in four fixed

Ž . Ž .block-effects models: I with fixed row and column effects, II with the
Ž . Ž .row effects only, III with the column effects only, and IV with neither

row nor column effects. For a general dependence structure and p s 2,
optimal designs for Model I are found to coincide with the least-squares
optimal designs. For general p, Models I]IV, and the within-block correla-
tion pattern described by the doubly geometric process, interesting nonbi-
nary block patterns are found for the universally optimal designs. Only for
Model IV for small, positive correlations do binary blocks turn out to be
best, though binarity with respect to rows or columns is often required.
Regardless of the model, the conditions frequently coincide with those for
optimal nested row-column designs with uncorrelated errors: one class of
these designs is found to be optimal for at least some values of the
correlation parameters under all four models, and others are found to be
optimal for particular models. The exact form of the blocks for a univer-
sally optimum design is found to be quite sensitive to the blocksize and to
the magnitude of the correlations under both Models III and IV.

1. Introduction. Let there be b separate blocks of pq experimental
units each, the units in each block being further arranged into p rows and q
columns. A design d is an assignment of v treatments to the bpq units in
this blocked row-column set-up. The problem of optimally choosing the design
for estimation of treatment contrasts will be investigated under special cases
of the model

1 Y s 1 m q Z z q Z r q Z g q X t q « , cov « s I m S s V .Ž . Ž .b p q 1 2 3 d b

Here t is the v = 1 vector of treatment effects; X is the bpq = v plot-treat-d
ment design matrix that defines an allocation of treatments to the experimen-
tal units; and z , r, and g , some of which may be zero, are vectors of
parameters for fixed block effects, fixed row effects within blocks, and fixed
column effects within blocks, respectively. Inclusion of r andror g in the
model depends on the desirability of eliminating systematic heterogeneity in
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the experimental material in the standard directions, and is necessarily
application dependent. The matrices Z , Z and Z are, respectively, the1 2 3
plot-block, plot-row, and plot-column incidence matrices. With plots in row-
major order by block, S is the within-block covariance matrix of order pq.
S and hence V are positive definite.

The generalized least-squares information matrix C for the estimation ofd
Ž .treatment contrasts under 1 and the submodels just mentioned can be

written
yX Xy1 y1 y1 y12 C s X V X y X V Z Z9V Z Z9V X .Ž . Ž .d d d d d

Ž .In 2 the matrix Z contains as columnwise submatrices the Z ’s for whichi
the corresponding nuisance effects are included in the model. For instance, if

Ž .z , r and g are all included, then Z s Z , Z , Z , while if r, say, is omitted,1 2 3
Ž .then Z s Z , Z .1 3

The matrix C , for any connected design d, is nonnegative definite withd
rank v y 1. Only connected designs are of interest here, as only they provide

Ž .estimability of all treatment contrasts. D v, b, p, q will denote the class of
all designs for v treatments in b blocks of size p = q. While some members of
Ž .D v, b, p, q will, depending on the model, be disconnected, these will not be

considered as competitors in the design optimality problems to be explored.
Sundry aspects of the problems of optimality and construction of designs

Ž .under 1 and its submodels have of late been tackled by several authors; see
Ž . Ž . Ž .Martin 1982, 1986 , Gill and Shukla 1985 , Kunert 1987, 1988 , Morgan

Ž . Ž . Ž .1990 , Morgan and Uddin 1991 , Uddin and Morgan 1991 , and Martin and
Ž . Ž .Eccleston 1993 . A recent overview is provided by Martin 1996 . This paper

systematically attacks a collection of problems not previously addressed,
examining the possibilities according to different choices of Z and a specified
S, employing generalized least-squares estimation of treatment contrasts.

Ž . Ž .The method used is that of Kiefer 1975 : a design d* g D v, b, p, q is
Ž . Ž . Ž . Ž . Ž .universally optimal if i tr C G tr C for all d g D v, b, p, q , and ii Cd* d d*

is completely symmetric.
It is apparent from a reading of the papers cited above that among the

conditions for optimal design under a multiplicity of covariance structures,
Ž .regardless of which nuisance parameters are included in 1 , are require-

ments for neighbor balancing pairs of treatments in rows, in columns and in
diagonals, and for balancing of replication and concurrence counts of treat-
ments on corner plots, on edge plots and on interior plots. It is the complexity
of these positional conditions that can make for an unusually messy design
problem. However, for p s q s 2 all plots are corner plots, and for blocks of
size p = 2 with p G 3, the interior versus edge plot distinction disappears.
These simplifications will be taken advantage of to obtain universally optimal

Ž .designs in p = 2 blocks. The 2 = 2 case for the full model 1 is considered in
Section 2. Blocks of size p = 2 for the doubly geometric family of S matrices
are considered in Section 3. Even with the simplifications afforded by q s 2,
the situation is at times quite intricate, as evidenced by the lengthy notation

Ž .list in Section 3.1 of which the reader is duly forewarned! .
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Let t , t , . . . , t be a set of y nonnegative integers constrained to sum to1 2 y
x. Two special functions will be needed in Sections 3.4 and 3.5. They are
Ž . y 2 Ž . y w 2Ž . 2ŽŽ . .xh x, y s minÝ t , and g x, y s minÝ int t r2 q int t q 1 r2 .js1 j js1 j j

The values of these functions are
x x

2h x , y s x q 2 x y y int y y intŽ . Ž . ž / ž /y y
and

x x¡
h x , y q x y y int , if int is evenŽ . ž / ž /y y~2 g x , y sŽ . x x
h x , y q y y x q y int , if int is odd.Ž .¢ ž / ž /y y

Ž .The first of these may be found, for example, in Kiefer 1975 . The proof
Ž .for the second is similar. The value h x, y is achieved by t ’s for whichj

< < Ž .t y t F 1 for every j / j9. If x is even, the value g x, y can be achievedj j9
< <by all t ’s being even with every t y t no greater than 2. If x is odd,j j j9

< <it can be achieved by all t ’s save one being even, with every t y t noj j j9
greater than 2.

Three lemmas for bounds on functions involving h and g are used in
Section 3. The proofs of these are available from the authors.

2. Optimal designs with blocksize 2 = 2. For blocks of size 2 = 2 and
Ž .the full model 1 , a very strong optimality result will be established. Indeed,

Ž .even more generality for the dependence structure than allowed by 1 can be
incorporated. To this end, denote the covariance matrix for observations in
block j by S .j

1 Ž .LEMMA 2.1. Let l s 1, y1, y1, 1 9 and let S , . . . , S be any set of1 b2

positive definite matrices for which u s l9S l does not depend on j. Then thej
information matrix for estimation of t in the row and column effects model is

Ž . 0 0 Ž .C s 1ru C , where C is the information matrix 2 when S ' I. Hence d isd d d
optimal for generalized least-squares estimation of t iff it is optimal for the
ordinary least-squares analysis.

PROOF. Let P and P be the matrices projecting onto the column spaces0 Z
Ž .of l and Z, respectively. Then I y P s I m P . The projected data vectorZ b 0

Ž . Ž . Ž . Ž .Ž .Y * s I y P Y has covariance cov Y * s I y P diag S I y P sZ Z j Z
Ž . Ž . Ž .diag P S P s u diag P s u I y P , and so the information matrix is0 j 0 0 Z

wŽ . x w Ž .xywŽ . x Ž . X Ž .C s I y P X 9 var Y * I y P X s 1ru X I y P X . Id Z d Z d d Z d

Hence for a very general setup for the covariance structure, all one need
solve is the ordinary least-squares problem.

Ž .DEFINITION. A design in D v, b, p, q is said to be a bottom-stratum
Ž .universally optimum nested row and column design, or BNRC, if i the bq
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w Ž .xcolumns give a balanced block design Kiefer 1975 with block size p, and
Ž .ii within any given block, the treatment assignment in any row is a permu-
tation of the treatment assignment in any other row.

One of the interesting features of BNRC’s is that the treatment assign-
ment to blocks is always nonbinary. BNRC’s have been studied by Bagchi,

Ž .Mukhopadhyay, and Sinha 1990 , who establish their universal optimality
Ž . Ž . 2over the class D v, b, p, q for the model 1 with S s s I , and by Morganp q

Ž . Ž .and Uddin 1993 and Chang and Notz 1994 .

THEOREM 2.2. For the row and column effects model with blockwise
covariance matrices S satisfying the condition of Lemma 2.1, a BNRC inj
Ž .D v, b, 2, 2 is universally optimum.

Ž .More generally than Theorem 2.2 for any criterion F, if d* g D v, b, 2, 2
is F-optimal when S s s 2I , then it is F-optimal when the S are as4 j
specified in Lemma 2.1.

3. Optimal designs with blocksize p = 2
and doubly geometric errors.

3.1. Models and information matrices. Although optimality conditions for
a general dependence structure such as considered for blocks of size 2 = 2
would certainly be desirable, that approach does not allow for compact and
comprehensive mathematical results when the block size increases. The

y1 Ž y1 .initial problems of finding S and a generalized inverse of Z9V Z , needed
to determine C , are not even tractable. So the remainder of this paper willd
deal with a manageable and frequently studied parametric family of covari-
ance matrices. With plots in row-major order, the covariance pattern of the

w Ž .xdoubly geometric error process Martin 1979 is

1 a a 2 ??? a py1

2 py2s 1 ba 1 a ??? a3 S s mŽ . . . . . .2 2 ž /b 11ya 1ybŽ . Ž . . . . . .. . . . .� 0
py1 py2 py3a a a ??? 1

Ž < < < < .where a and b are the immediate column and row correlations a , b - 1 .
For the doubly geometric S, four models will be considered in turn for the

Ž .expected value portion of 1 :
Model I: E Y s 1 m q Z z q Z r q Z g q X t ,Ž . b p q 1 2 3 d

Model II: E Y s 1 m q Z z q Z r q X t ,Ž . b p q 1 2 d

Model III: E Y s 1 m q Z z q Z g q X t ,Ž . b p q 1 3 d

Model IV: E Y s 1 m q Z z q X t .Ž . b p q 1 d

Model I will be the topic of Section 3.3, Model II of Section 3.2, Model III of
ŽSection 3.5 and Model IV of Section 3.4 the reasons for this ordering will



OPTIMAL DESIGNS WITH BLOCKSIZE p = 2 1193

.soon become apparent . Before proceeding to those sections, the information
matrices for each model will be given. Their specification will require the

Ž . Ž .following notation. For each p = 2 block, the plots in positions 1, 1 , 1, 2 ,
Ž . Ž .p, 1 and p, 2 are referred to as end plots and the remaining plots as
interior plots. First defined are the various neighbor count matrices:

C Ž C . CN s v = v matrix N where N is the number of plots containing treat-i i9 i i9

ment i for which it is immediately neighbored by i9 in columns;
D Ž D . DN s v = v matrix N where N is the number of plots containing treat-i i9 i i9

ment i for which it is immediately neighbored by i9 in diagonals;
R Ž R . RN s v = v matrix N where N is the number of end plots containingE Eii9 Eii9

treatment i for which its row neighbor is i9;
R Ž R . RN s v = v matrix N where N is the number of interior plots contain-I I i i9 I i i9

ing treatment i for which its row neighbor is i9;
R R R Ž R . RN s N q N s v = v matrix N where N is the number of plotsE I ii9 i i9

containing treatment i for which its row neighbor is i9.

The diagonal entries of each of the neighbor count matrices must be even,
since for each plot containing i with itself as a neighbor, that neighboring
plot is another such plot:

C 0 s least-squares information matrix of the incomplete block design withE
2b blocks of size 2 given by the 2b end rows of the b blocks;

C 0 s least-squares information matrix of the incomplete block design withI
Ž . Ž .p y 2 b blocks of size 2 given by the p y 2 b interior rows of the b
blocks;

Ž .r s v = 1 column vector r where r is the replication of treatment iE jh E jhi E jhi
in the two end plots of column h of the jth block;

Ž .r s v = 1 column vector r where r is the replication of treatment iI jh I jhi I jhi
in the p y 2 interior plots of column h of the jth block;

Rd s v = v diagonal matrix for which the ith diagonal element is theE
replication total of treatment i in the 4b end plots of the b blocks;

Ž .Ž .T s r y r q 1 y a r y r , r s r q r and r s r q r .j E j1 E j2 I j1 I j2 I j I j1 I j2 E j E j1 E j2

Although all of the just-defined matrices and vectors certainly depend on
the design d, to ease the notation, the explicit expression of that dependence
has been suppressed.

Ž . Ž1. Ž2. Ž3. Ž4.Now for d g D v, b, p, 2 , let C , C , C and C be the informationd d d d
matrices for generalized least-squares estimation of treatment contrasts

Ž . Ž .under Models I to IV, respectively. Let f a , p s 2a q p 1 y a . With the
above notation,

a
Ž2. 2 0 0 C DC s 1 q b 1 q a C q C y N y N ,Ž . Ž . Ž .d I E 2

b1 y a 1 q bŽ . Ž .
XŽ1. Ž2.C s C y T T ,Ýd d j j2 f a , pŽ . js1
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C Ž4. s 1 q a 2 X X X y a 2Rd q abN D y aN C y bN R y a 2bN RŽ .d d d E I

b1 y a 1 y bŽ . Ž . 9y r q 1 y a r r q 1 y a r ,Ž . Ž .Ý E j I j E j I j2 f a , pŽ . js1

b1 y a 1 q bŽ . Ž .
XŽ3. Ž4.C s C y T T .Ýd d j j2 f a , pŽ . js1

The task is to find conditions for maximal trace and complete symmetry of
these C-matrices. Using F in the sense of the nnd ordering, since Ýb T T X

js1 j j
is nonnegative definite, they satisfy C Ž1. F C Ž2. and C Ž3. F C Ž4., with equalityd d d d
in both cases if and only if the design d satisfies T s 0 for all j. A sufficientj
condition for this is

4 r s r and r s r for all j;Ž . I j1 I j2 E j1 E j2

Ž .that is, the treatment in the end interior plots of the first column of any
Ž .block are a permutation of the treatments in the end interior plots of the

second column of the same block.
Ž .Thus a design d which is optimal under Model II and satisfies 4 is also

Ž .optimal under Model I, and a design optimal under Model IV satisfying 4 is
also optimal under Model III. To take advantage of these relationships, the
maximal trace and complete symmetry problems will be addressed in this
order: C Ž2., C Ž1., C Ž4., C Ž3.. In each case, the expressions involving interiord d d d
plots and interior rows should be ignored when p s 2.

3.2. Universal optimality under Model II. Of the four, Model II gives the
Ž 0. Ž 0 .simplest universal optimality conditions. Obviously tr C and tr C areI E

Ž C D.maximized if the rows are binary. Also, tr N y N is minimized if no like
neighbors occur in columns and only like neighbors occur in diagonals, and
Ž C D.tr N y N is maximized if only like neighbors occur in columns while no

Ž Ž2..like neighbors occur in diagonals. So regardless of b, tr C is maximized ford
a ) 0 if and only if each block of d is of the form

9a b a b ???5 ,Ž . ž /b a b a ???

and for a - 0 if and only if each block of d is of the form

9a a ??? a6 .Ž . ž /b b ??? b

In each case, complete symmetry of C Ž2. is achieved if one such block isd
constructed for each unordered pair of treatments.

U Ž .THEOREM 3.1. Let d have a block of the form 5 for each unordered pair1
U Ž .of treatments. Let d have a block of the form 6 for each unordered pair of2
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U Ž .treatments. Then for Model II, d is universally optimal over D v, b, p, 21
when a ) 0, and dU is universally optimal when a - 0.2

3.3. Universal optimality under Model I. This section investigates univer-
sal optimality under Model I for p G 3; the case p s 2 is covered by Theorem

U Ž .2.2. If p is even, the design d of Theorem 3.1 satisfies 4 , settling this case.1

THEOREM 3.2. The design dU of Theorem 3.1 is universally optimal over1
Ž .D v, b, p, 2 under Model I for all even p G 4 when a ) 0, and for all a when

p s 2.

U U Ž .The designs d for odd p and d do not satisfy 4 . This makes it more1 2
Ž Ž1..difficult to identify designs d which maximize tr C . In particular, deriva-d

tion of conditions for maximum trace requires paying close attention to the
diagonal neighbor counts N D . The following concepts will be useful in thisi i9

regard, both here and again in Sections 3.4 and 3.5.
For each block, define two sets of p plots, called diagonals, identified by

�Ž . Ž . Ž .4 �Ž . Ž .row-column positions 1, a , 2, a , . . . , p, a and 1, a , 2, a , . . . ,1 2 p 2 3
Ž .4p, a , where a s 1 if j is odd and a s 2 if j is even. Take these to bepq1 j j
ordered sets, so that they are the two lists of consecutive, diagonally neigh-
boring plots in any block.

The treatment assignment to a diagonal defines a collection of diagonal
strings, each string being a set of consecutive plots containing the same
treatment. For instance, in the 9 = 2 block

91 4 2 4 2 4 3 5 27Ž . ž /3 1 4 2 4 2 5 2 5

� 4the diagonal treatment assignments are 1, 1, 2, 2, 2, 2, 3, 2, 2 and
� 43, 4, 4, 4, 4, 4, 5, 5, 5 , containing four and three strings, respectively. Define
the string pattern to be the list of the lengths of the strings in the diagonal;

Ž . Ž . Ž .for 7 the string patterns are 2, 4, 1, 2 and 1, 5, 3 .
Next defined are the designs which will be the subject of Theorem 3.3. As

in Theorem 3.2, dU is a design which has, for each unordered pair a and b of1
Ž . U Ž .treatments, a block of the form 5 . Let d be a design having a block 8 for3

Ž .each of the ordered triplets a, b, c 9 given by the columns of a three-rowed
semibalanced array of strength 2:

9n columns n columnsn columns1 32! # " ! # "! # "
8Ž . a b ??? a b c ??? bc a ??? c� 0a c ??? ab a ??? b c b ??? c

Here the n ’s are odd and n q n q n s p.i 1 2 3
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THEOREM 3.3. For Model I with a ) 0, let p be odd. Then the design dU is1
Ž . wŽ .Ž .x w Ž .xuniversally optimal over D v, b, p, 2 if p G 1 y 2a 1 q 3a r 2a 1 y a .

Otherwise dU is universally optimal.3

PROOF. Complete symmetry of C Ž1.
U and C Ž1.

U is easily checked, so thed d1 3

result is proved by comparing the trace of one block of the proposed designs
with that of one block of an arbitrary design. The contribution of the first

Ž . Ž .block of a design d to tr C , after removal of the common factor 1 q b , willd
Ž .be denoted tr C . For the proposed designs,1 d

21 q a 1 y aŽ . Ž .
Ž1. 2

Utr C s p q p y 2 a q 2 p y 1 a y ,Ž . Ž .Ž .1 d1 f a , pŽ .
a 2 1 y aŽ .

Ž1. 2
Utr C s p q p y 2 a q 2 p y 2 a y ,Ž . Ž .Ž .1 d3 f a , pŽ .

10 RŽ . Ž .while for any design d, using tr C s 2 y tr N ,1 E 1 E2

1 a 1yaŽ .
XŽ1. 2 R D Ctr C F pq py2 a y tr N q tr N y N y T T .Ž . Ž .Ž . Ž .1 d 1 E 1 1 12 2 2 f a , pŽ .

Ž D C . Ž .Let d be a design such that tr N y N G 4 p y 1 y 2. If1
Ž D C . Ž . Ž .tr N y N ) 4 p y 1 y 2, then the block is of the form 5 . Otherwise,1

Ž . Ž .a block of d must have two disjoint diagonal string patterns p and n , n ,1 2
where, since p is odd, exactly one of n and n is odd. It follows that T XT s1 2 1 1
Ž 2 . Ž Ž1.. Ž Ž1..U2 1 q a q a and thus tr C G tr C .1 d 1 d1

Ž D C . Ž . Ž Ž1.. ŽIf d satisfies tr N yN F 4 p y1 y 6, then tr C F p q p y1 1 d
. 2 Ž . Ž Ž1..U2 a q 2 p y 5 a F tr C , which rules out this competitor.1 d3

Ž D C . Ž .So consider any design d with tr N y N s 4 p y 1 y 4. Ruling out1
Ž C .tr N s 4 as combinatorially impossible leaves two ways in which this can1

happen, each of which will be shown to be no better than dU, which has this1
Ž D C .same value of tr N y N .1

Ž D. Ž . Ž C .First, suppose that tr N s 4 p y 1 y 2 with tr N s 2. In this case,1 1
Ž .the block of a competing design must have diagonal string patterns of p and

Ž .p y 1, 1 , where the strings of length 1 and p contain the same treatment.
X 2 Ž R. X Ž .2For this pattern, T T s 2a and tr N s 2, while T T s 2 1 q a for1 1 1 E 1 1

U Ž Ž1.. Ž Ž1..Ud , so tr C G tr C .1 1 d 1 d1
Ž D. Ž . Ž C .So suppose that tr N s 4 p y 1 y 4 with tr N s 0. Writing1 1

Ž D. Ž D. Ž D.tr N and tr N for the contribution of diagonals 1 and 2 to tr N ,11 12 1
Ž . Ž D. Ž . Ž D. Ž .there are two possibilities: i tr N s 2 p y 1 , tr N s 2 p y 1 y 4,11 12

Ž C . Ž . Ž D. Ž . Ž D. Ž .tr N s 0; and ii tr N s 2 p y 1 y 2, tr N s 2 p y 1 y 2,1 11 12
Ž C . Ž .tr N s 0. First consider i . In this case, the two diagonals must have1

Ž . Ž .disjoint treatments with two diagonal string patterns p and n , n , n1 2 3
Ž .where the treatments in the second diagonal may be taken as i9 : n a’s, n1 2

Ž .b’s and n c’s or as i0 : n a’s, n b’s and n a’s. Note that n ’s need not be3 1 2 3 i
Ž . Ž . Xthe same in i9 and i0 . The values of T T according to the parities of the1 1

n ’s, subject to n q n q n s p, are given here.i 1 2 3
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X Ž . X Ž .n n n T T for case i9 T T for case i01 2 3 1 1 1 1

2 2Ž . Ž .even even odd 2 1 q a 2 1 q a q a
2 2even odd even 2 q 6a 2 q 2a q 3a

2 2Ž . Ž .odd even even 2 1 q a 2 1 q a q a
2 2Ž .odd odd odd 6 q 2a 3 q 1 q a .

Ž Ž1.. Ž Ž1.. Ž .UIn each case, tr C G tr C . A similar enumeration disposes of case ii .1 d 1 d1 1

I

The construction used for dU of Theorem 3.3 should be compared to the3
Ž .technique used by Martin and Eccleston 1993 , page 81. Theirs is a map of

the columns of a 2 p-rowed semibalanced array to a p = 2 binary block. The
important change here is to start with a maximum trace block, from which
the development according to the semibalanced array gains complete symme-
try and hence universal optimality. The number of rows required of the array

Žequals the number of distinct treatments in the maximum trace block being
U .three for d . A definition and references for semibalanced arrays may be3

Ž .found in Martin and Eccleston 1991 , pages 71]72.
For a - 0, only a result for even p will be stated, which will require two

U U U Ž .designs, d and d . The design d is found by forming the block 9 on each4 5 4
Ž . Uof the v v y 1 r2 unordered pairs of treatments, and d is found by forming5
Ž . Ž .the block 10 on each of the ordered triples a, b, c 9 given by the columns of

wa three-rowed semibalanced array of strength 2 these arrays always exist
Ž . xwith minimal index; see Morgan and Chakravarti 1988 , page 1214 . Again,

complete symmetry is immediate. The proof of the next theorem thus amounts
Ž . Ž .to showing that the blocks 9 and 10 are of maximal trace under the stated

conditions:

9pr2 columns pr2 columns! # " ! # "
a a ??? a9 ,Ž . b b ??? b� 0a a ??? ab b ??? b

9pr2 columns pr2 columns! # " ! # "
a a ??? a a10 .Ž . b b ??? b b� 0c a a ??? ab b ??? b c

THEOREM 3.4. For Model I with a - 0, let p be even. Then the design
U Ž . w 2 Ž .3 xd is universally optimal over D v, b, p, 2 if p F y 2a q 3 1 y a r4

w Ž .x Ua 1 y a . Otherwise, d is universally optimal.5

The condition implies that p must be at least 13 for dU to be better for any5
a . Theorem 3.4 is offered as an example of how different is the design
situation when a is negative. Its proof involves a fairly painstaking examina-
tion of a longer list of cases than in the proof of Theorem 3.3, so is omitted
here. For odd p and negative a , we mention only that the form of the
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maximal trace block depends in a more complex way on p, and involves more
than a choice between two competitors as in Theorem 3.4.

3.4. Universal optimality under Model IV. The simplest of the models to
specify, Model IV with block effects only, induces more complicated conditions
than either of the models thus far treated. To ease the situation somewhat,
only a ) 0, b ) 0 and 2 p F v will be considered. The key to identifying a
maximal trace block lies in a close examination of the diagonal strings as
defined in Section 3.3.

Ž .First write V s r q 1 y a r , so thatj E j I j

tr C Ž4. s 2 pb 1 q a 2 y 4ba 2 y a tr N CŽ . Ž .Ž .d

y b tr N R y a 2b tr N R q H ,Ž . Ž .I d

Ž D. ŽŽ .Ž . Ž .. b Xwhere H s ab tr N y 1 y a 1 y b r2 f a , p Ý V V . Note that if ad js1 j j
Ž D. Ž .given diagonal contains s strings, then its contribution to tr N is 2 p y s .

Ž D.Given any block and its contribution to tr N , since 2 p F v, it is always
possible to make its two diagonals contain disjoint sets of treatments, and to
make strings within each diagonal be composed of separate sets of treat-
ments, without changing that contribution. Doing this minimizes the sum of

Ž .its like row and column neighbor counts by making them both zero , and
minimizes V XV subject to the given string patterns of the two diagonals. Soj j
Ž Ž4.. Ž 2 . 2tr C F 2 pb 1 q a y 4ba q H , with equality achieved by disjoint di-d d

Ž Ž4..agonals of disjoint strings in each block, and tr C is thus maximizedd
by appropriate choice of string patterns for the diagonals. Given that
the two diagonals of each block are disjoint, H can be written H sd d

v b 2 D ŽŽ .Ž . Ž .. b 2 XabÝ Ý Ý N y 1 y a 1 y b r2 f a , p Ý Ý V V , whereis1 js1 ls1 i i jl js1 ls1 jl jl
N D is the diagonal like-neighbor count for treatment i in diagonal l of blocki i jl

Ž .j, and V s r q 1 y a r . Here r and r are the end and interiorjl E jl I jl E jl I jl
Žreplication vectors for treatments in diagonal l of block j as distinguished

.from the r and r , which are for column l . So to maximize H , it isE jl I jl d
v D ŽŽ .Žsufficient for each j and l to maximize H s abÝ N y 1 y a 1 yd jl is1 i i jl

. Ž .. Xb r2 f a , p V V . An optimum string pattern is a pattern of disjoint stringsjl jl
that maximizes H . The goal is to find an optimum string pattern. Maxi-d jl
mization of trace has been reduced to the investigation of treatment assign-
ment to a single diagonal.

Ž .A pattern of disjoint strings is said to be of type s, l , l if it consists of s1 2
strings and if the strings containing the two end plots are of lengths l and1

Ž .l , respectively. Take l G l . If there is only one string, the type is 1, p, 0 .2 1 2
Ž .In 7 , one of the diagonals is composed of disjoint strings, and its pattern is
Ž .type 3, 3, 1 .

Ž .Given a diagonal of disjoint strings of type s, l , l , with pattern1 2
Ž . X Ž .2wŽ .2l , t , t , . . . , t , l and l G 1, its value of V V is 1 y a l y 1 q1 1 2 sy2 2 2 jl jl 1
Ž .2 sy2 2 x Ž .Ž .l y 1 q Ý t q 2 1 y a l q l y 2 q 2. This quantity is mini-2 hs1 h 1 2

Ž . sy2 2mized over all patterns of type s, l , l by minimizing Ý t subject to1 2 hs1 h
Ýsy2 t spyl yl . Using the function h defined at the end of Section 1, thehs1 h 1 2
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X Ž .minimum value of V V over all string patterns of type s, l , l and l G 1,jl jl 1 2 2
Ž .denoted w s, l , l , is1 2

2 2 2w s, l , l s 1 y a l y 1 q l y 1 q h p y l y l , s y 2Ž . Ž . Ž . Ž . Ž .1 2 1 2 1 2

q 2 1 y a l q l y 2 q 2.Ž . Ž .1 2

Ž . w Ž .x2For l s p, l s 0, the value is w 1, p, 0 s f a , p .1 2

LEMMA 3.5.
22 p y s 1 y a , if p G 4,Ž . Ž .

w s, l , l y w p , 1, 1 GŽ . Ž .1 2 ½ 2 p y s 1 y a , if p s 3,Ž . Ž .
for 1 F s F p y 1, with equality for s s p y 1 and l s l s 1.1 2

LEMMA 3.6.
2¡ s y 1 f a , pŽ . Ž .

, if p is even,
2~ 2 2w 1, p , 0 y w s, l , l FŽ . Ž .1 2 s y 1 f a , p s y 1 1 y aŽ . Ž . Ž . Ž .

y ,
2 2¢ if p is odd,

wŽ . .xfor 2 F s F p, with equality for s s 2 and l s int p q 1 r2 .1

THEOREM 3.7. Under Model IV with a ) 0 and b ) 0, a binary-block
Ž .design d* in D v, b, p, 2 , 2 p F v, has maximal trace if and only if

1 y a 1 y bŽ . Ž .
G 1 for p s 2,

4ab

21 y a 1 q bŽ . Ž .
G 1 for p s 3,

2 1 q a bŽ .
3 21 y a 1 y b y 4a bŽ . Ž .

G p for p G 4.
2a 1 y a bŽ .

Under these conditions, forming a p = 2 block on each column of a 2 p-rowed
semibalanced array gives a universally optimal design.

PROOF. Suppose p G 4. A binary block design d* has

1 y a 1 y bŽ . Ž .
H s y w p , 1, 1 ,Ž .d*jl 2 f a , pŽ .

while a superior competitor d would have

1 y a 1 y bŽ . Ž .
H F 2ab p y s y w s, l , lŽ . Ž .d jl 1 22 f a , pŽ .
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for some 1 F s F p y 1. So by Lemma 3.5,

tr C y tr CŽ . Ž .d* d

G H y H s H y HŽ .ÝÝd* d d*jl d jl
j l

1 y a 1 y b w s, l , l y w p , 1, 1Ž . Ž . Ž . Ž .1 2G 2b y2ab p y s qŽ .½ 52 f a , pŽ .
2b p y sŽ . 3 2G 1 y a 1 y b y 4a b y 2a 1 y a b p G 0.Ž . Ž . Ž .

f a , pŽ .
The same argument using the latter inequality of Lemma 3.5, and again
using the Lemma 3.6 inequality, proves the result for p s 3 and p s 2. I

Also, if either a or b is 0, a binary block will be best. The result for p s 2
Ž .with a s b in Theorem 3.7 appears in Martin and Eccleston 1993 , page 86.

THEOREM 3.8. Under Model IV with a ) 0 and b ) 0, the design dU in1
Ž .D v, b, p, 2 , 2 p F v, is universally optimum if

8ab
G f a , p for even p ,Ž .

1 y a 1 y bŽ . Ž .
28ab 1 y aŽ .

q G f a , p for odd p.Ž .
1 y a 1 y b f a , pŽ . Ž . Ž .

U Ž . ŽŽ .UPROOF. The proposed design d has H s 2ab p y 1 y 1 y a =1 d jl1
Ž . Ž .. Ž .1 y b r2 f a , p w 1, p, 0 , while a superior competitor d would have Hd jl
as in the proof of Theorem 3.7 for some s G 2. The result follows by com-
paring H U and H , arguing as in that proof and using Lemma 3.6 Id jl d jl1

Theorems 3.7 and 3.8 cover small and large combinations of the correla-
tions. For other values, a maximum trace design has all blocks composed of

Ž .two disjoint diagonals with string patterns of type s, l , l , where the values1 2
s, l and l maximize1 2

1 y a 1 y bŽ . Ž .
11 2ab p y s y w s, l , l .Ž . Ž . Ž .1 22 f a , pŽ .

This is an integer programming problem which, as demonstrated by the two
preceding theorems, is quite sensitive to p, a and b. But for given values of
these parameters the maximum is easily calculated by computer. Optimum

Ž .types s, l , l are displayed for a selected range of the symmetric process1 2
Ž .put a s b in Table 1. Given the type which maximizes trace, universally
optimum designs are simply constructed using the semibalanced array tech-

Ž .nique. For all p covered in Table 1, type 1, p, 0 is optimal for a of 0.6 and
greater.
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TABLE 1
Optimal string types for Model IV with a s b

a

p 0.1 0.2 0.3 0.4 0.5

Ž . Ž . Ž . Ž . Ž .3 3, 1, 1 3, 1, 1 2, 2, 1 1, 3, 0 1, 3, 0
Ž . Ž . Ž . Ž . Ž .4 4, 1, 1 4, 1, 1 2, 2, 2 1, 4, 0 1, 4, 0
Ž . Ž . Ž . Ž . Ž .5 5, 1, 1 5, 1, 1 2, 3, 2 2, 3, 2 1, 5, 0
Ž . Ž . Ž . Ž . Ž .6 6, 1, 1 4, 1, 1 3, 2, 2 2, 3, 3 1, 6, 0
Ž . Ž . Ž . Ž . Ž .7 7, 1, 1 5, 1, 1 3, 2, 2 2, 4, 3 1, 7, 0
Ž . Ž . Ž . Ž . Ž .8 8, 1, 1 5, 1, 1 3, 2, 2 2, 4, 4 1, 8, 0
Ž . Ž . Ž . Ž . Ž .9 9, 1, 1 6, 1, 1 3, 3, 3 2, 5, 4 1, 9, 0

Ž . Ž . Ž . Ž . Ž .10 10, 1, 1 5, 2, 2 3, 3, 3 2, 5, 5 1, 10, 0
Ž . Ž . Ž . Ž . Ž .15 15, 1, 1 7, 2, 2 4, 3, 3 2, 8, 7 2, 8, 7
Ž . Ž . Ž . Ž . Ž .20 20, 1, 1 8, 2, 2 4, 5, 5 3, 6, 6 2, 10, 10

Ž .Starting with s, l , l from Table 1, a diagonal is constructed with end1 2
strings of lengths l and l and s y 2 other strings with lengths as equal as1 2
possible. This ‘‘equal as possible’’ condition comes from minimizing Ýt 2 asj
explained just before Lemma 3.5. To illustrate, take p of 7 and a of 0.2. Each
diagonal should contain five strings, the two end strings being of length 1
each, and the other three dividing the remaining five plots as equally as
possible. So one maximum track block is

91 7 2 8 3 9 5 .ž /6 2 8 3 9 4 10

3.5. Universal optimality under Model III. As was done for Model IV, now
take a ) 0 and b ) 0 in Model III. Results roughly paralleling Theorems 3.7
and 3.8 will be derived for even p. As will be seen, the proofs, aside from a
small modification, follow nicely along the lines of the work in Section 3.4.
Corresponding work for odd p is explained after Theorem 3.11.

Ž .First, 4 holds for Theorem 3.8 designs when p is even, and so partially
settles the issue.

THEOREM 3.9. Let p be even with 2 p F v. Then the design dU is univer-1
Ž .sally optimal in D v, b, p, 2 under Model III with a ) 0 and b ) 0 if

wŽ .Ž .x Ž .8abr 1 y a 1 y b G f a , p .

For p s 2 it can be shown that the Theorem 3.9 result holds for all a ) 0
and b ) 0.

Ž .When 4 cannot be satisfied by a design of Section 3.4, which, save for the
designs appearing in Theorem 3.8, is always the case, the current expres-
sion for C Ž3. given in Section 3.1 is not particularly useful. Write U s r qd j1 E j1
Ž . Ž .1 y a r and U s r q 1 y a r . Starting with that expression fromI j1 j2 E j2 I j2
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Section 3.1, a simple calculation gives

C Ž3. s 1 q a 2 X X X y a 2Rd q abN D y aN C y bN R y a 2bN RŽ .d d d E I

b b1 y a 1 y b 1 y a bŽ . Ž . Ž .
X X Xy U U q U U y T TŽ .Ý Ýj1 j1 j2 j2 j jf a , p f a , pŽ . Ž .js1 js1

from which

tr C Ž3. F 2 pb 1 q a 2 y 4ba 2 y a tr N CŽ . Ž .Ž .d
12Ž .

y b tr N R y a 2b tr N R q GŽ . Ž .I d

Ž D. ŽŽ .Ž . Ž .. b Ž X X .where G s ab tr N y 1 y a 1 y b rf a , p Ý U U q U U , andd js1 j1 j1 j2 j2
Ýb T XT has been set to zero.js1 j j

Ž .Just as for Model IV compare G to H of Section 3.4 , given any blockd d
Ž D.and its contribution to tr N , it is always possible to make its two diagonals

contain disjoint sets of treatments, and to make strings within each diagonal
be composed of separate sets of treatments, without changing that contribu-
tion. Doing this minimizes the sum of its like row and column neighbor
counts, and minimizes U X U q U X U subject to the given string patterns ofj1 j1 j2 j2

Ž Ž3.. Ž 2 . 2the two diagonals. So tr C F 2 pb 1 q a y 4ba q G , with equalityd d
Ž Ž3..achieved by disjoint diagonals of disjoint strings in each block, and tr C isd

thus maximized by appropriate choice of string patterns for the diagonals,
Ž . Ž .provided that choice makes 4 hold. Unfortunately, 4 will usually not hold

simultaneously with the requirement of disjoint diagonals of disjoint strings,
a problem which will temporarily be put on hold. For now, the term involving
T XT will be ignored and conditions for maximization of G will be found.j j d
Then the required adjustment to account for nonzero T XT will be made.j j

Ž .Given a diagonal of disjoint strings of type s, l , l , with pattern1 2
Ž . Ž .l , t , t , . . . , t , l and l G 1 and hence s ) 1 , its contribution to1 1 2 sy2 2 2
U X U q U X U isj1 j1 j2 j2

l q 1 l q 11 222a q 2a 1 y a int q intŽ . ž / ž /2 2
sy2 t t q 1j j2 2 2q 1 y a int q intŽ . Ý ž / ž /2 2js1

l l l q 1 l q 11 2 1 22 2 2 2 2q 1 y a int q int q int q intŽ . ž / ž / ž / ž /2 2 2 2

l q 1 l q 11 22G2a q 2a 1 y a int q intŽ . ž / ž /2 2
2q 1 y a g p y l y l , s y 2Ž . Ž .1 2

l l l q 1 l q 11 2 1 22 2 2 2 2q 1 y a int q int q int q intŽ . ž / ž / ž / ž /2 2 2 2

s w* s, l , l .Ž .1 2

Ž . w Ž .x2For s s 1, this lower bound value is w* 1, p, 0 s f a , p r2.
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LEMMA 3.10. Let p G 4 be even and, if s ) 1, let l G l G 2. Then for1 2
Ž .1 F s F pr2 y 1,

p
w* s, l , l y w* , 2, 2Ž .1 2 ž /2

2¡2 p y 2 s 1 y a , if p G 8,Ž . Ž .
a 1 y aŽ .2~G 2 p y 2 s 1 y a q , if p s 6,Ž . Ž .

2¢2 p y 2 s 1 y a , if p s 4,Ž . Ž .

Ž . Ž . Ž . Ž . Ž .with equality at s s pr2 y 1 and l , l given by 4, 0 , 4, 2 or 2, 2 , as1 2
p s 4, p s 6 or p G 8.

Now a result paralleling Theorem 3.8 can be stated. The required block, to
which the semibalanced array construction can be applied, is

9a b c d ???13Ž . ž /b a d c ???

Ž .with both diagonal strings of type pr2, 2, 2 .

THEOREM 3.11. Under Model III with a ) 0 and b ) 0, even p G 4, and
Ž .2 p F v, a design d* maximizing G in D v, b, p, 2 , has only blocks of thed

Ž .form 13 if and only if

2 22 1 y a 1 y b y 2a bŽ . Ž .
) p for p s 4,

a 1 y a bŽ .
2 21 y a 1 y b 2 y a y 2a bŽ . Ž . Ž .

) p for p s 6,
a 1 y a bŽ .

3 22 1 y a 1 y b y 2a bŽ . Ž .
) p for p G 8.

a 1 y a bŽ .

Ž .Under these conditions, forming a p = 2 block 13 on each column of a
p-rowed semibalanced array gives a design with efficiency at least

2a 2 1 y a bŽ .
1 y .U2 2p 1 q a y 2a q ab p f a , p y 1 y a 1 y b w pr2, 2, 2Ž . Ž . Ž . Ž . Ž .

PROOF. Let G be the contribution of diagonal l in block j of design dd jl
ŽŽ .Uto G . A design d* with all blocks as specified has G sab py 1ya =d d jl

Ž . Ž .. Ž .1 y b rf a , p w* pr2, 2, 2 , while a superior competitor d would have
Ž . ŽŽ .Ž . Ž .. Ž .G F 2ab p y s y 1 y a 1 y b rf a , p w* s, l , l for some 1 F s F p.d jl 1 2

Ž . Ž .It is easy to check that w* s, l , l G w* pr2, 2, 2 for s ) pr2, which1 2
Ž . Ž .rules out these competitors. Also easy is w* s, l , l ) w* s, 2, 2 if l s 1,1 2 2
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so for s G 2, assume 2 F l F l . Then by Lemma 3.10 for p G 8,2 1

G y G s G y GŽ .ÝÝd* d d*jl d jl
j l

G 2b yab p y 2 sŽ .½
U1 y a 1 y b w* s, l , l y w pr2, 2, 2Ž . Ž . Ž . Ž .1 2q 5f a , pŽ .

2b p y 2 sŽ . 32G y2a b q 2 1 y a 1 y b y a 1 y a b p ) 0.Ž . Ž . Ž .
f a , pŽ .

Similar calculations give the maximization result for p s 4 and p s 6.
Ž . XThe efficiency bound comes from 12 , which ignores T T , the value ofj j

2 Ž .which is 4a for d*. Simply compare 12 for d*, to the same value minus
ŽŽ . Ž .. X Ž 2Ž . Ž ..1 y a brf a , p Ý T T s 4ba 1 y a brf a , p . Ij j j

Ž .Similar to 11 for Model IV, highly efficient designs for Model III and even
Ž .p can be found by using diagonal string patterns of type s, l , l which1 2

maximize
1 y a 1 y bŽ . Ž .

14 2ab p y s y w* s, l , l .Ž . Ž . Ž .1 2f a , pŽ .
Ž . ŽWhenever the maximizing values s, l , l have l and l and hence p y1 2 1 2

. Ž .l y l all even this is always the case , the maximum can be achieved by a1 2
Žpattern of disjoint strings all of even length see the comment regarding the

. X 2function g at the end of Section 1 , so that T* s T T takes the value 4a . Aj j
lower bound for the efficiency is thus 1 minus

1ya bT*r2Ž .
Ž .15 2 2p 1qa y2a q2ab pys f a , p y 1ya 1yb w* s, l , lŽ . Ž . Ž . Ž . Ž . Ž .1 2

Ž . Ž .cf. the bound of Theorem 3.11 , where again s, l , l are the maximizing1 2
Ž . Ž . Ž .values of 14 . As for 11 , maximization of 14 as a general problem is

computationally simple although analytically difficult. Maximizing pattern
types, and corresponding efficiency lower bounds truncated to three decimal
places, are displayed for the symmetric process in Table 2. It is evident that
the potential efficiency loss incurred by T XT being nonzero is very small. Forj j

Ž .the range of p covered in Table 2, string patterns of type 1, p, 0 are fully
efficient for a of 0.6 and above.

Ž .Given the type maximizing 14 , a diagonal is constructed by making the
s y 2 interior string lengths as equal as possible, subject to their all being

Ž .even; this is the condition for attaining the value g p y l y l , s y 2 in1 2
Ž .w* s, l , l . For example, with p of 18 and a and b of 0.3, a maximizing1 2

Ž . Ž .string pattern is 4, 4, 6, 4 . The pattern 4, 5, 5, 4 gives the same value to w*,
but inflates T XT .j j
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TABLE 2
Ž .String pattern types maximizing 14 for a s b, and Model III efficiencies

a

p 0.1 0.2 0.3 0.4 0.5

Ž . Ž . Ž . Ž . Ž .4 2, 2, 2, 0.999 2, 2, 2, 0.999 2, 2, 2, 0.997 1, 4, 0, 1.000 1, 4, 0, 1.000
Ž . Ž . Ž . Ž . Ž .6 3, 2, 2, 0.999 3, 2, 2, 0.999 3, 2, 2, 0.998 2, 4, 2, 0.997 1, 6, 0, 1.000
Ž . Ž . Ž . Ž . Ž .8 4, 2, 2, 0.999 4, 2, 2, 0.999 3, 2, 2, 0.999 2, 4, 4, 0.998 1, 8, 0, 1.000
Ž . Ž . Ž . Ž . Ž .10 5, 2, 2, 0.999 5, 2, 2, 0.999 3, 4, 2, 0.999 2, 6, 4, 0.999 1, 10, 0, 1.000
Ž . Ž . Ž . Ž . Ž .12 6, 2, 2, 0.999 6, 2, 2, 0.999 3, 4, 4, 0.999 2, 6, 6, 0.999 1, 12, 0, 1.000
Ž . Ž . Ž . Ž . Ž .14 7, 2, 2, 0.999 7, 2, 2, 0.999 4, 4, 2, 0.999 2, 8, 6, 0.999 1, 14, 0, 1.000
Ž . Ž . Ž . Ž . Ž .16 8, 2, 2, 0.999 8, 2, 2, 0.999 4, 4, 4, 0.999 2, 8, 8, 0.999 2, 8, 8, 0.999
Ž . Ž . Ž . Ž . Ž .18 9, 2, 2, 0.999 9, 2, 2, 0.999 4, 4, 4, 0.999 3, 6, 6, 0.999 2, 10, 8, 0.999

Ž . Ž . Ž . Ž . Ž .20 10, 2, 2, 0.999 10, 2, 2, 0.999 5, 4, 4, 0.999 3, 6, 6, 0.999 2, 10, 10, 0.999

For odd p under Model III, this bounding approach works just the same,
though it is not quite as sharp. The difficulty lies in the interplay of the

Ž . Xquantities w* s, l , l and T T . Unlike for even p, string patterns maximiz-1 2 j j
Ž .ing 14 must have one string of odd length, which makes for a larger

departure of T XT from zero and a correspondingly lower efficiency bound.j j
Ž .Table 3 demonstrates by computation that maximizing 14 for disjoint

Ž .strings is still satisfactory. The efficiencies are from 15 with the value of T*
depending on the type. The values tend to be slightly smaller when a is small
and b is large.

4. Summary discussion. Several interesting observations can be made
Ž .concerning the blocks that have been found. The block 5 has played a major

role in these investigations, appearing as a maximal trace block for at least
some positive a and b for all four models. Under Model II it is best for all
a ) 0, and likewise under Model I, except for small a combined with small,

Ž .odd p. Under Models III and IV, 5 is best for moderate to large a and b

TABLE 3
Ž .String pattern types maximizing 14 for a s b, and Model III efficiencies

a

p 0.1 0.3 0.5 0.7 0.9

Ž . Ž . Ž . Ž . Ž .3 2, 2, 1, 0.986 2, 2, 1, 0.969 1, 3, 0, 0.942 1, 3, 0, 0.950 1, 3, 0, 0.978
Ž . Ž . Ž . Ž . Ž .5 3, 2, 2, 0.996 2, 3, 2, 0.989 1, 5, 0, 0.978 1, 5, 0, 0.979 1, 5, 0, 0.989
Ž . Ž . Ž . Ž . Ž .7 4, 2, 2, 0.998 3, 2, 2, 0.996 1, 7, 0, 0.988 1, 7, 0, 0.988 1, 7, 0, 0.993
Ž . Ž . Ž . Ž . Ž .9 5, 2, 2, 0.998 3, 4, 2, 0.997 1, 9, 0, 0.992 1, 9, 0, 0.992 1, 9, 0, 0.995
Ž . Ž . Ž . Ž . Ž .11 6, 2, 2, 0.999 3, 4, 4, 0.998 1, 11, 0, 0.995 1, 11, 0, 0.994 1, 11, 0, 0.996
Ž . Ž . Ž . Ž . Ž .13 7, 2, 2, 0.999 3, 4, 4, 0.999 1, 13, 0, 0.996 1, 13, 0, 0.996 1, 13, 0, 0.997
Ž . Ž . Ž . Ž . Ž .15 8, 2, 2, 0.999 4, 4, 4, 0.999 2, 8, 7, 0.998 1, 15, 0, 0.997 1, 15, 0, 0.997
Ž . Ž . Ž . Ž . Ž .17 9, 2, 2, 0.999 4, 4, 4, 0.999 2, 9, 8, 0.998 1, 17, 0, 0.997 1, 17, 0, 0.998

Ž . Ž . Ž . Ž . Ž .19 10, 2, 2, 0.999 4, 4, 4, 0.999 2, 10, 9, 0.999 1, 19, 0, 0.998 1, 19, 0, 0.998
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combined with small p growing with the correlations. Since the correspond-
ing design is a BNRC, this says that regardless of inclusion of row or column
effects in the model, the two-way correlation pattern, in respecting the
row-column layout, has induced requirements akin to those that row and
column effects jointly impose. Other BNRC’s occur under Models III and IV
whenever the string lengths are all even, which is always the case for even p
with Model III. These observations are consistent with what one expects from
an examination of the limiting behavior of the information matrices: C Ž1. ªd
C Ž2. and C Ž3. ª C Ž4. as a ª 1; C Ž4. ª C Ž2. and C Ž3. ª C Ž1. as b ª 1.d d d d d d d

Only under Model IV are binary blocks best, and then only for small a or b
Žin conjunction with small p which decreases as a or b increases Theorem

.3.7 . This is because only for Model IV is the factor ‘‘blocks’’ the relevant
factor for the bottom stratum analysis. In the other models, rows andror
columns are the finer groupings within which the analysis takes place, so it is
with respect to those blocking factors that one might expect binarity, at least
for small correlations. Thus do Models I and II require binary rows, within
the stricture of which they demand the largest possible diagonal neighbor
counts. Similarly, for small correlations, Model III demands binary columns
Ž .Theorem 3.11 with largest possible diagonal neighbor counts.

As in several of the papers cited in Section 1, all of the designs in this
Ž .paper have at least v v y 1 r2 blocks, a serious hindrance to their applicabil-

w Ž . xity cf. the comments of Martin and Eccleston 1991 , Section 7 . Regardless of
this concern with b, the technical value of the approach is significant, for
knowledge of maximal trace blocks will certainly be required at the logical
next step: determination of optimal designs which, due to smaller numbers of
blocks, cannot enjoy complete symmetry. For positive correlations, the trace
maximization problem has been completely solved for Models I and II and
has been greatly simplified for Models III and IV by a reduction to the
manipulation of pattern types for a single diagonal treatment assignment.
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