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CART AND BEST-ORTHO-BASIS: A CONNECTION!

By Davip L. DONOHO

Stanford University and University of California, Berkeley

We study what we call “dyadic CART”—a method of nonparametric
regression which constructs a recursive partition by optimizing a complex-
ity penalized sum of squares, where the optimization is over all recursive
partitions arising from midpoint splits. We show that the method is
adaptive to unknown degrees of anisotropic smoothness. Specifically, con-
sider the anisotropic smoothness classes of Nikol’skii, consisting of bivari-
ate functions f(x,, x,) whose finite difference of distance A in direction i
is bounded in L? norm by Ch%, i = 1,2. We show that dyadic CART, with
an appropriate complexity penalty parameter A ~ o2 - Const - log(n), is
within logarithmic terms of minimax over every anisotropic smoothness
class 0 < C <, 0 < 8, 8, < 1.

The proof shows that dyadic CART is identical to a certain adaptive
best-ortho-basis algorithm based on the library of all anisotropic Haar
bases. Then it applies empirical basis selection ideas of Donoho and
Johnstone. The basis empirically selected by dyadic CART is shown to be
nearly as good as a basis ideally adapted to the underlying f. The risk of
estimation in an ideally adapted anisotropic Haar basis is shown to be
comparable to the minimax risk over anisotropic smoothness classes.

Underlying the success of this argument is harmonic analysis of
anisotropic smoothness classes. We show that, for each anisotropic
smoothness class, there is an anisotropic Haar basis which is a best
orthogonal basis for representing that smoothness class; the basis is
optimal not just within the library of anisotropic Haar bases, but among
all orthogonal bases of L2[0, 1]2.

1. Introduction. The CART methodology of tree-structured adaptive
nonparametric regression [Breiman, Friedman, Olshen and Stone (1983)] has
been widely used in statistical data analysis since its inception more than a
decade ago. Built around ideas of recursive partitioning, it develops, based on
an analysis of noisy data, a piecewise constant reconstruction, where the
pieces are terminal nodes of a data-driven recursive partition.

The best-ortho-basis methodology of adaptive time-frequency analysis
[Coifman, Meyer, Quake and Wickerhauser] has, more recently, caught the
interest of a wide community of applied mathematicians and signal process-
ing engineers. Based on ideas of recursive partitioning of the time-frequency
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plane, it develops, from an analysis of a given signal, a segmented basis,
where the segments are terminal nodes in a data-driven recursive segmenta-
tion of the time axis.

Both methods are concerned with recursive dyadic segmentation; therefore
trees and tree pruning are key data structures and underlying algorithms in
both areas. In addition, there is a mathematical connection between the
areas.

Sudeshna Adak, while a graduate student at Stanford University, pointed
out that central algorithms in the two subjects are really the same: namely,
the optimal pruning algorithm in Theorem 10.7, page 285, in the CART book
[Breiman, Friedman, Olshen and Stone (1983)] and in the proposition on
page 717, in the best-basis paper [Coifman and Wickerhauser (1992)]. Both
theorems assert that, given a function &(T'), which assigns numerical values
to a binary tree and its subtrees, and supposing that the function obeys a
certain additivity property, the optimal subtree is obtained by breadth-first,
bottom-up pruning of the complete tree.

On the other hand, the subjects are different, since in the CART case, one
is searching for an optimal function on a multidimensional Cartesian product
domain, and in the BOB case, one is searching for an optimal orthogonal
basis for the vector space of 1 — d signals of length n.

This paper will exhibit a precise connection between CART and BOB in a
specific setting—where one is seeking an optimal function—-basis built from
rectangular blocks on a product domain. In this setting we show that certain
specific variants of the two apparently different methodologies lead to identi-
cal fast algorithms and identical solutions.

1.1. An implication. The connection between CART and best basis af-
fords new insights about recursive partitioning methods. Donoho and John-
stone (1994b) have investigated the use of adaptively chosen bases for noise
removal. They have developed so-called oracle inequalities which show that
certain schemes for basis selection in the presence of noisy data will work
well. By adapting such ideas from the best-basis setting to the CART setting,
we are able to establish new results on the performance of optimal dyadic
recursive partitioning. In particular, we are able to show that such methods
can be nearly minimax simultaneously over a wide range of anisotropic
smoothness spaces.

We assume observations of the form

(1.1) y(iy,iy) = fliy,iy) + 02(iy,iy), 0<i,,iy,<n,

where n is dyadic (an integral power of 2), z(i,, i,) is a white Gaussian noise,
and o > 0 is a noise level. We assume the observations are related to the
underlying f by cell averaging;

(1.2)  f(iy,iy) = ave{f| [iy/n, (i, + 1)/n) X [iy/n, (i + 1) /n)}.
Our goal is to recover the denoised cell averages with small mean-squared
error MSE(f, f) = EX,; ; (f(iy, i) — f(i},i5))*/n®. About f we will assume
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that it belongs to a certain class .#, and we will compare performance of
estimates with the best mean-squared error available uniformly over the
class 7, that is, the minimax risk

(1.3) M*(o,n;5) = inf sup MSE(£(y), f).
) feg

For our & we consider anisotropic smoothness classes Zfl’ %2(C) consisting
of functions on [0,1]* obeying |ID; fll, < Ch®, |D; fll, < Ch®, for all h €
(0, 1), where D) denotes the finite difference of distance 4 in direction i. Such
spaces were introduced and systematically studied by Nikol’skii (1969) for
structure and imbedding theorems; see Temlyakov (1993) for approximation
theorems. We let &4 denote the scale of all such classes, where 0 < 6, 6, < 1
and 0 <C < and where p obeys the constraint +<p+ 3, with p =
5,8,/(8; + 8,).

Our main result is the following theorem.

THEOREM 1.1. Dyadic CART (defined in Section 2), with the specific
complexity penalty A = Mao,log,(n)) defined in Section 7 (A < a? log(n)),
comes within logarithmic factors of minimax over each functional class
F20%(C), where 0 < 8,, 8, <1,C>0and 1/p < p + 1/2. Iff* denotes the
dyadic CART estimator, then

(1.4) sup MSE(f"*, f) < Const(8,, 8,, p)log(n) M*(o,n;) asn — =
g
for each F € 4.

In short, the estimator behaves nearly as well over any class in the scale
A% as one could achieve knowing precisely which smoothness class were
true. However, the construction of the optimal recursive partitioning estima-
tor requires no knowledge of which smoothness class might actually be the
case. (Indeed, we are unaware of any previous literature suggesting a connec-
tion between such smoothness classes and CART).

This type of near minimaxity is not possible by isotropic approaches, such
as thresholding in standard isotropic wavelets bases or isotropic Fourier
series. Those orthogonal bases do not provide sufficiently sparse decomposi-
tions of anisotropic smoothness classes; dyadic CART, in contrast, is associ-
ated with harmonic analysis in a specially adapted basis which provides
optimal sparsity decompositions; see Section 8.4.

This type of near minimaxity is also not possible by using linear methods,
such as anisotropic kernel methods. Even allowing a choice of global band-
width which is different in each of the two directions and choosing those two
directional bandwidths optimally for the class in question will not lead to
near-minimax estimates for those classes with p < 2; see Section 11.3.

It is possible to get results of comparable near minimaxity by using
anisotropic wavelet schemes; our aim here is not really to delineate all
near-minimax approaches, but instead to demonstrate the near minimaxity
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of a form of adaptive recursive partitioning. In particular we show that there
is a theoretical motivation for using recursive partitioning in a setting where
objects may possess different degrees of smoothness in different directions.

1.2. Plan of the paper. In Sections 2 through 6 we develop the connection
between CART methods and best-basis methods. Section 2 defines dyadic
CART and describes its fast algorithm. Section 3 defines a library of
anisotropic Haar bases and describes a fast algorithm for finding a best
anisotropic Haar basis from given data, where “best” is defined in the
Coifman—Wickerhauser sense. In Sections 4 and 5, building on an insight of
Engel (1994), we point out that, with traditional choices of entropy, best-
ortho-basis is different from CART, but that, with a special hereditary
entropy, the two methods are the same.

In Sections 7 and 8 we discuss ideas first developed in the best-basis
setting. Section 7 develops oracle inequalities, which show how to select a
basis empirically from noisy data to yield a basis that is nearly as good as the
ideal basis which could be designed based on noiseless data. Section 8
describes the best-basis problem for anisotropic smoothness classes and
shows that a certain kind of anisotropic Haar basis is, in one sense, a best
basis.

In Section 9, building on Sections 7 and 8, we show that a certain
best-basis denoising technique [introduced by Donoho and Johnstone (1994b)]
—which is different from CART is nearly minimax over the scale of anisotropic
smoothness classes. Section 10 establishes our main result for CART by
comparing the CART estimator with this best-basis denoising method and
showing that the two estimates have comparable performance over anisotropic
smoothness spaces. Section 11 mentions comparisons and generalizations.

2. Dyadic CART. We change the notation slightly from (1.1). We ob-
serve noisy two-dimensional data on a regular square n X n array of “pixels”

(2.1) y(i, i) =f(iy,i9) + 02(iy,iy), 0<iy,iy<mn,

where (in a change from the last section) f is the object of interest—an n X n
array—and z is a standard Gaussian white noise [i.i.d. N(0,1)]. We also
introduce a fruitful abuse of notation: we write [0, n) for the discrete interval
{0,...,n — 1}. Thus [0, n)? is a discrete square, and so on. Here and below we
also write i = (i, i,), so y(i) = f(i) + oz(), for i €[0,n)? is an equivalent
form of (2.1). Finally, we use the variable N = n? to stand for the cardinality
of the n X n array y.

In this setting, the CART methodology constructs a piecewise constant
estimator f of f; data adaptively, it builds a partition % of [0, n)? and finds f
by the rule

(2.2) f(i12) = ave{y | R(i; #)},

where R(i; #?) denotes the rectangle of the partition % containing i.
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2.1. Optimal dyadic CART. There are several variants of CART, depend-
ing on the procedure used to construct the partition 2. In this paper, we are
only interested in optimal (nongreedy) dyadic recursive partitioning. With an
acknowledged risk of misunderstanding, we call this dyadic CART. We define
terms.

Dyadic partitioning. Starting from the trivial partition %, = {[0, n)?} we
may generate new partitions by splitting [0, n)? into two pieces either verti-
cally or horizontally, yielding either the partition {[0, n/2) X [0, n),[n/2,n)
x [0, n)} or {[0,n) X [0,n/2),[0,n) X [n/2,n)}. We can apply this splitting
recursively, generating other partitions. Thus, let P ={R,,..., R,} be a
partition and let R stand for one of the rectangles in the partition. We can
create a new partition by splitting R in half horizontally or vertically. If
R =[a,b) X[c,d) then let R"? and R'' denote the results of horizontal
splitting, that is,

R"’ =[a,(a +b)/2) X[c,d),
R'!'=[(a+b)/2,b) X [c,d);

while we let R>° and R*! denote the results of vertical splitting,
R?*% =1a,b) X [c,(c +d)/2),
R?'=[a,b) X [(c +d)/2,d).

Note that if 6 = a + 1 or d = ¢ + 1 then horizontal-vertical splitting is not
possible; only nonempty rectangles are allowed.

As an example, if we split vertically the rectangle R = R,, say, we produce
the k + 1-element partition {R,,...,R,_,, R*°, R*\, R,,,,..., R,}.

A recursive dyadic partition is any partition reachable by successive
application of these rules.

Optimal partitions. CART is often used to refer to “greedy growing”
followed by “optimal pruning,” where the partition £ is constructed in a
heuristic, myopic fashion. For the purposes of this paper, we consider instead
the use of optimizing partitions, where the dyadic partition & is constructed
as the optimum of the complexity penalized residual sum of squares. Thus,
with

(2.3) CPRSS(#, \) = lly — f(-|2)lify + (),

what we will call (again in perhaps a slight abuse of nomenclature) dyadic
CART seeks the partition

A

(2.4) &#, = argmin CPRSS(.#, A).
P

The idea of using globally optimal partitions is covered in passing in
Breiman, Friedman, Olshen and Stone (1983), Chapter 10. For the moment
we let A be a free parameter; in Section 7 we will propose a specific choice.

Dyadic CART differs from what is usually called CART, in that dyadic
CART can split rectangles only in half, while general CART can split rectan-
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gles in all proportions. While the extra flexibility of general CART may be
useful, this flexibility is sufficient to make the finding of an exactly optimal
partition unwieldy. Dyadic CART allows a more limited range of possible
partitions, which makes it possible to find an optimal partition in O(N) time.

2.2. Fast optimal partitioning. To describe the algorithm, we introduce
some notation.

Rectangles. We use I generically to denote dyadic intervals, that is,
intervals I = [a, b) with @ = nk/2/ and b = n(k + 1)/2/ with n > 2/ and
0 < k < 2/. We use R to denote dyadic rectangles, that is, rectangles I, X I,,.

Parents and siblings. Two dyadic rectangles are siblings if their union is
a dyadic rectangle. This is equivalent to saying that we can write either

(2.5) R, =IxI,, i=1,2,
or
(2.6) R, =I,xI, i=1,2,

where I, I, I, are dyadic intervals and

I, = [n X 2k/27,n X (2k + 1) /27),
2.7
(2.7) I, =[nx (2k + 1) /27, n X (2k + 2) /27),

with 0 <k <2771 0 <j <log,(n) — 1. A pair satisfying (2.5) is a pair of
horiz-sibs; a pair satisfying (2.6) is a pair of vert-sibs.

The union of two siblings is the parent rectangle. Each rectangle generally
has two siblings—a vert-sib and a horiz-sib—and two parents—a vert-parent
and a horiz-parent. Parents generally have two sets of children: a pair of
horiz-kids and a pair of vert-kids. In extreme cases a rectangle may have only
a vert-sib [if it is very wide, such as [0, n) X [0, n/2)], or only a horiz-sib [if it
is very tall, such as [0, n/2) X [0, n)]. In some cases a rectangle may have
only vert-kids [if it is very narrow, such as [0, 1) X [0, n /2)] or only horiz-kids
[if it is very short, such as [0, n /2) X [0, 1D)].

Inheritance. CPRSS has an “inheritance property” which we see more
easily by taking a general point of view. Let CART(R) denote the problem
of finding the optimal partition for just the data falling in the dyadic rec-
tangle R:

[CART(R)] £(R) = argmin |ly — f(:|2(R))lixr) + \#(2(R)).

Here (R) denotes a recursive dyadic partition of R, and |- ”122(1-1’) refers to
the sum-of-squares only of data falling in the rectangle R.

Here is the inheritance property of optimal partitions. Let R be a dyadic
rectangle and suppose it has both vert-children and horiz-children. Then the
optimal partition of R is either (1) the trivial partition { R}, or (2) the union of
optimal partitions of the horiz-kids #(R>?) UZ(R"1), or (3) the union of
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optimal partitions of the vert-kids %#(R2°) U2(R2'). Which of these three
cases holds can be determined by holding a “tournament,” selecting the
winner as the smallest of the three numbers

lly — ave{y | R}z, CART(R') + CART(R"?),
CART(R%°) + CART(R>1).

The exception to this rule is of course at the finest scale: a 1 X 1 rectangle
has no children, and so the optimal partition of such an R is just the trivial
partition {R}.

By starting from the next-to-finest scale and applying the inheritance
property, we can get the optimal partitions of all 2 X 1 rectangles, and of all
1 X 2 rectangles. By going to the next coarser level and applying inheritance,
we can get the optimal partitions of all 4 X 1, of all 2 X 2 and of all 1 X 4
rectangles and so on. Continuing in a fine-to-coarse or bottom-up fashion, we
eventually get to the coarsest level and obtain an optimal partition for [0, n)2.

There are approximately 2n dyadic intervals and hence approximately
4n? = 4N dyadic rectangles. Each dyadic rectangle is visited once in the
main loop of the algorithm and there are at most a certain constant number
C of additions and multiplications per visit. The total work is < C4N flops
and < 16N storage locations. See the appendix in Donoho (1995) for a formal
description of the algorithm.

3. Best-ortho-basis. We now turn attention away from CART. We recall
the standard notation for Haar functions in dimension 1. Let I be a dyadic
subinterval of [0, n) and let x;(i) = |I|71/21,(i). If I contains at least two
points, set h;(i) = (1;0(i) — 1;0()I|"*/?, where IV is the right half of I
and 19 is the left half of I.

Using these, we can build anisotropic Haar functions in two dimensions.
Let R be a dyadic rectangle I, X I,; we can form three atoms

¢1%(i1’i2) = Xll(il)Xz(iZ)’
¢1%(i1:i2) = hzl(i1)X12(i2)’
¢1Ze(i1’ iy) = Xll(il)hlz(iQ)'

These are naturally associated with the rectangle R; ¢p is, up to scaling, the
indicator of R, while ¢4 and ¢2 are associated with horizontal and vertical
midpoint splits of R.

Adapting terminology proposed by Mallat and Zhang (1993) in a different
setting, we call the ¢} atoms, and the collection of all such atoms ¢;, indexed
by (R, s) makes up a dictionary of atoms. This dictionary is overcomplete; it
contains less than or equal to 3n2 = 3N atoms, while the span of these
elements is of dimension only N.

3.1. Anisotropic Haar bases. Certain structured subcollections of the ele-
ments of 2 make up orthogonal bases. These subcollections are in correspon-
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dence with complete recursive partitions, that is to say, recursive dyadic
partitions in which all terminal nodes are 1 X 1 rectangles [i;,i; + 1) X
[iy,15 + 1) containing a single point i = (i1, i,).

Given a complete recursive partition #*, the corresponding orthobasis %
is constructed as follows. Let NT'(%*) be the collection of all rectangles
encountered at nonterminal stages of the recursive partitioning leading to
P*. Let R € NT(#*). As R is nonterminal it will be further subdivided in
forming £*; that is, it will be split either horizontally or vertically; let
s(R) = 1 or 2 according to the splitting variable chosen. Then define % as the
collection of all such ¢ and x;, ,:

(3.1) B(P*) ={ Xp, 0y} Y {d)}s%(R)}ReNT(‘@)'

THEOREM 3.1. Let &* be a complete recursive dyadic partition of [0, n)?
and let B(P*) be constructed as in (3.1). This is an orthobasis for the
N-dimensional vector space of n X n arrays.

ProOF. Indeed, % has cardinality N, and the elements of .% are normal-
ized and pairwise orthogonal. The pairwise orthogonality comes from two
simple facts. Take any two distinct elements in %; then either they have
disjoint support, or the support of one is included in the support of the other.
In the first instance, orthogonality is immediate; in the second instance,
orthogonality follows from two observations: (i) one element of the pair, call it
¢, is supported in a rectangle on which the other element, ¢ say, is constant;
and (ii) the element ¢ has zero mean, and so is orthogonal to any function
which is constant on its support, that is, to ¢. O

Each such basis % has a fast transform, produced in a fashion similar to
the Haar transform in dimension 1. Indeed, the coefficients in such a basis
can be computed in terms of block averages and differences of block averages.
If S(R) =X,.r y(i) denotes the sum of values in a rectangle R, then of
course

(3.2) (¥, xz> = S(R)IRI"'/?,

while, if (R>?, R1) are horizontal kids of R,

(3.3) (y, k> = (S(R) = S(R"))IRI""*,
and, if (R%°, R%1') are vertical kids of R,

(3-4) (¥, 3> = (S(R*') — S(R*°))IRI""/2.

These relations are useful because there is a simple “pyramid-of-adders” for
calculating all (S(R): R € NT(2*)) in order N time. See the appendix in
Donoho (1995b) for a formal description of the algorithm.

3.2. Best basis algorithm. The collection of all anisotropic Haar bases and
fast transforms makes for a potentially very useful library. It contains bases
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associated with partitions which subdivide much more finely in i; than in i,
in some subsets of [0, n)* and more finely in i, than in i, in other subsets.
There is therefore the possibility of finding bases very well adapted to certain
anisotropic problems.

How to choose a “best-adapted” basis? In the general framework set up in
the context of cosine packet—wavelet packet bases by Coifman and Wicker-
hauser (1992), one specifies an additive “entropy” functional of the vector
R,

N
(35) £(0) = X e(6),

i=1
where e(t) is a scalar function. Coifman and Wickerhauser’s original proposal
was ey () = —¢*log(¢?), but e, (¢) = [¢|”, where 0 < p < 2 also makes sense,
as well as other choices—see below. One uses such a functional to evaluate
the quality of a basis; if 6(f, %) denotes the vector of coefficients of the object
[ in basis %, then &(0(f, %)) is a measure of the usefulness of a basis for
representing f, and the best basis % in a library .# of ortho bases solves the
problem

(3.6) min F(0(f, 2)).

In the specific case of interest, there are as many bases in the library as there
are complete recursive partitions. Elementary arguments show that the
number of bases is exponential in N.

While such exponential behavior makes brute force calculation of the
optimum in (3.6) practically impossible, judicious application of dynamic
programming gives a practical algorithm.

In order to express the key analytic feature of the objective functional, we
take a more general point of view, and consider the problem of finding an
optimal basis for just the data falling in the dyadic rectangle R. Each
complete recursive dyadic partition of R, #*(R) say, leads to an anisotropic
Haar basis, #(R) say, for the collection of n X n arrays supported only in R.
Hence we can define the optimization problem

[BOB(R)] %#(R) = argmin&(6(y, Z(R))).

B(R)
Here 6(y, #(R)) refers to the coefficients in an anisotropic basis for /2(R),
and £() = Ldm® e(6,) refers to a relative entropy, which ignores the first
coordinate. We let #2*(R) denote the corresponding optimal complete recur-
sive dyadic partition of R.

Solutions to BOB(R) have a key inheritance property. Let R be a dyadic
rectangle and suppose it has both vert-children and horiz-children. Then the
optimal basis of R is generated by a complete recursive dyadic partition
2*(R) formed in one of two ways. This partition is either (1) the union of
optimal partitions of the horiz-children #*(R"°) U2*(R""), or (2) the union
of optimal partitions of the vert-children Z*(R?%*°) Uu2*(R?%!). Which of
these two cases holds can be determined by holding a “tournament,” selecting
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the winner as the smallest of the numbers
BOB(RLO) + BOB(RI’I) + el,BOB(RZ’O) + BOB(RZ’I) + ey,

where e; = e(a}).

The exception to this rule is of course at the finest scale:a 2 X 1 or1 X 2
rectangle has only one complete recursive partition, and no tournament is
necessary to select a “best” one.

By starting from the next-to-finest scale and applying the inheritance
property, we can get the optimal partitions of all 4 X 1, of all 2 X 2 and of all
1 X 4 rectangles (omitting again the tournament for 4 X 1 and 1 X 4 rectan-
gles) and so on. Continuing in a fine-to-coarse or ‘bottom-up’ fashion, we
eventually get to the coarsest level and obtain an optimal partition for [0, n)2.

Once again there are approximately 4n? = 4N dyadic rectangles. Each
dyadic rectangle is visited once in the main part of the algorithm, and there
are at most a certain constant number C of additions and multiplications per
visit. The total work is less than or equal to C4N flops and less than or equal
to 4N storage locations. See the appendix in Donoho (1995b) for a formal
description of the algorithm.

4. Best basis denoising. CART has to do with removing noise from the
data y to produce a reconstruction f approximating the noiseless data f. The
philosophy of BOB is much less specific: it may be used for many purposes,
for example, in data compression and for fast numerical analysis [Coifman,
Meyer, Quake and Wickerhauser (1994)]. The application determines the
choice of entropy, and the use of the expansion in the best basis.

To use best-basis ideas for noise removal, one could apply the proposals of
Donoho and Johnstone (1994b). Define

(4.1) &(0) = § min( 67, Ao ?)

and obtain an optimal basis
4.2 % = min&(0(y, B)).
(42) min £(6(y, %))
Then apply hard thresholding in the selected basis, at threshold level Ao:
(4.3) 0, = 0(y, %) iljocy, 2> 10} 1<i<N.

Reconstruct object f having coefficients 9 in basis . This is the denoised
object.

Donoho and Johnstone (1994b) developed results, to be discussed in Sec-
tion 7, showing that with an appropriate choice of A, the empirical basis
chosen by this scheme was near ideal.

In the current setting, where . is the library of anisotropic Haar bases,
(4.2) is amenable to treatment by the fast best-basis algorithm of the last
section, so it may be computed in order N time. This denoising estimate,
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while possessing certain nice characteristics, lacks one of the attractive
features of CART: an interpretation as a spatially adaptive averaging method.
Such a spatially adaptive method would have the form

fA) = X <, xeoxe@),

ReZ?

giving a piecewise constant reconstruction based on rectangular averages of
the noisy data y over rectangles R. Here the partition % =.2(y) would be
chosen data adaptively, and once the partition were chosen, the reconstruc-
tion would take a simple form of averaging. While we will mention this
procedure further and use its properties, we mention it now only to show that
threshold denoising in a best-ortho-basis is not identical to CART.

5. Tree constraints in the one-dimensional Haar system. In the
context of the ordinary one-dimensional Haar transform, Engel (1994) has
shown that a special type of reconstruction in the Haar system can be related
to recursive partitioning. Let, temporarily, y = (y,)’-; and suppose y; =
g(i) + v;, with v, noise. Consider reconstructions g of the form

(5.1) g(1) =y + Zw1<y, h1>h1(i),
I

where the sum is over dyadic subintervals of [0, n) and the w; are scalar
“weights.” Now impose on the weights (w;) two constraints.

1. [Tree-i]. Keep-or-kill. Each weight is 1 or 0.
2. [Tree-ii]. Heredity. w; can be 1 only if also w; = 1 whenever I cI’'. If
w; = 0, then w; = 0 for every I' C I.

Each set of weights satisfying these constraints selects the nodes of a
dyadic tree T. Engel has called such constraints tree constraints and shown
that reconstructions obeying these constraints may be put in the form of
spatial averages.

THEOREM 5.1 [Engel (1994)]. Suppose that g defined by (5.1) obeys the tree
constraints (Tree-i) and (Tree-ii). Say that I is terminal if w; = 1 but every
interval I' C I has w; = 0. The collection of terminal intervals forms a
partition 2, and

(5.2) g(i) = X v xpx(i).

=z

6. Hereditary constraints and CART. Tree constraints make sense
also in the setting of two-dimensional anisotropic Haar bases. We consider
reconstructions

(6.1) fA) =5+ ¥ wply, o ®(3{),

ReNT(Z*)
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where #* is a complete recursive dyadic partition, { xy ., (¢} the associ-
ated orthogonal basis, and the weights (wy) obey two hereditary constraints

1. [Hered-i]. Keep-or-kill. Each weight wy is 0 or 1.

2. [Hered-ii]. Heredity. wp = 1 implies wg. = 1 for all ancestors R’ of R in
P*; wp = 0 implies wp, = 0 for all descendants of R in #*. We state
without proof the analog of Engel’s theorem.

THEOREM 6.1. The reconstruction f obeying (6.1), [ Hered-i], and [ Hered-ii]
has precisely the form

fA(l) = Z <y:XR>XR(i)

Rex

for some possibly incomplete recursive dyadic partition 2.

Three questions arise naturally about reconstructions obeying hereditary
constraints.

Q1. How can the best hereditary reconstruction in a given basis be found?

Q2. How can the basis in which hereditary reconstruction works best be
found?

Q3. How can the hereditary best-basis be efficiently calculated?

All three questions have attractive answers.

6.1. Best hereditary reconstruction in given basis. Let T* denote the
complete binary tree of depth log,(N). Identifying subtrees T'c T* with
sequences of weights (wy) obeying [Hered-i]-[Hered-ii], we write f, , for
the reconstruction (6.1) in basis % having weights (w;) associated with the
tree T'.

We define the “best” hereditary reconstruction in terms of the hereditary
CPRSS

(6.2) CPRSS(T; A, Z) =y — £ 7l + A#(T).
The optimization problem is the one achieving the minimal CPRSS among all
such reconstructions:

(6.3) min CPRSS(T; A, #).
TcT*

By orthogonality of the basis %, we can reformulate this in terms of
coordinates. Let 6 = 0(y, %) denote the vector of coordinates and
(wr0x(y, &) denote the same vector after applying weights wy associated
with the subtree T'. Then we have the following equivalent form of (6.2):

CPRSS(T) = ¥ ((wg — 1)*63 + Awp).
R

This quantity has an inheritance property, which we express as follows. Let
T*(R) denote the complete tree of depth log,(#R) and define the optimization
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problem

[ Hered(R)] min Y ((wp — 1)*0% + hwg).
TcT*R) R’

The optimization problem implicitly defines an optimal subtree T(R). The
inheritance property: the optimal subtree T(R) is a function of the optimal
subtrees of the children problems 7'(R s(B).0) 'p = 0, 1. The tree T(R) is either
the empty subtree, or else it has T(R*%»?) as subtrees joined at root(7'(R)).

It follows by this inheritance property that the optimal subtree may be
computed by a bottom-up pruning exactly as in the optimal pruning algo-
rithm of CART, Algorithm 10.1, page 294 of the CART book. Hence, a
minimizing subtree may be found in order N time. A formal statement of the
algorithm is given in the appendix of Donoho (1995b).

6.2. Best basis for hereditary reconstruction. We can define the quality of
a basis for hereditary reconstruction by considering the optimum value of the
CPRSS functional over all hereditary reconstructions in that basis. Hence,
define the hereditary entropy

(6.4) H(RB) = TI}’IITI} CPRSS(T; A, &).
C *
A best basis for hereditary reconstruction is then the solution of
6.5 min Z( %
(6.5) min 7(F),

where .# is a library of orthogonal bases. This may be motivated in two ways.
First, the goal is intrinsically reasonable, as it seeks a best tradeoff, over all
bases and all subtrees, of complexity #(T') against fidelity to the data
ly — fﬂ,TH%. Second, we will prove below that the reconstruction obtained in
the optimum basis has a near-ideal mean-squared error.

6.3. Fast algorithm via CART. The entropy Z(%) is not an additive
functional YV ; e(0,(y, %)) of the coordinates of y in basis %. Therefore the
best-basis algorithm of Section 3, strictly speaking, does not apply. Luckily,
we can use the fast CART algorithm. By now this is obvious; we summarize
this fact formally, though without writing out the proof.

THEOREM 6.2. When A is the same in both, CART and BOB with heredi-
tary constraints have the same answers. More precisely,

6.6 H(B) = CPRSS( 2, A
(6.6) gg? (Z) = Hg,n ( )-

The solution of the best-basis problem (6.5) gives, explicitly, an anisotropic
basis % and, implicitly by (6.3), an optimal subtree T; the solution of the
CART problem (2.4) gives an optimizing partition 2, and we have

fo.7(:) =f(-12).
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REMARK 1. Although Z(%) is not additive, a fast algorithm for computing
it is available—the dyadic CART algorithm of Section 1. This shows that fast
best-basis algorithms may exist for certain nonadditive entropies.

REMARK 2. Although CART and best-ortho-basis are not the same in
general, in this case, with a specific set of definitions of best-ortho-basis and a
specific set of restrictions on the splits employed by CART, the two methods
are the same.

7. Oracle inequalities. CART and BOB define objects which are the
solutions of certain optimization problems and hence are in some sense
“optimal.” However, we should stress that they are optimal only in the very
artificial sense that they solve certain optimization problems we have defined.

We now turn to the question of performance according to externally
defined standards, which will lead ultimately to a proof of our main result.
This will entail a certain kind of near optimality with a more significant and
useful meaning.

In accordance with the philosophy laid out in Donoho (1995a), we approach
this in two stages. First, there is a statistical decision theory component of
the problem which we deal with in Section 7; second, there is a harmonic
analysis component of the problem, which we deal with in Section 8.

7.1. Oracle inequalities. Once more we are in the model (2.1), and we
wish to recover f with small mean-squared error. We evaluate an estimator

f = f(y) by its risk
R(f,f) = MSE(£(y), )

Suppose we have a collection of estimators ® = {£(:)}; we wish to use the
one best adapted to the problem at hand. The best performance we can hope
for is what Donoho and Johnstone (1994c) call the ideal risk:

24, f) = inf{R(f, f):fe ci>}.

We call this ideal because it can be attained only with an oracle, who in full
knowledge of the underlying f (but not revealing this to us) selects the best
estimator for this f from the collection ®.

We optimistically propose #Z*(®, f) as a target, and seek true estimators
which can approach this target. It turns out that in several examples, one can
find estimators which achieve this to within logarithmic terms. The inequali-
ties which establish this are of the form

R(f*,f) < Const-log(N)(c? +%*(®,f)) Vf,

which Donoho and Johnstone (1994a,b,c) call oracle inequalities, because
they compare the risk of valid procedures with the risk achievable by
idealized procedures which depend on oracles.
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7.2. Example: keep-or-kill de-noising. Suppose we are operating in a
fixed orthogonal basis % and consider the family ® of estimators defined by
keeping or killing empirical coefficients in the basis %. Such estimators
f(y;w) are given in the basis %# by

0.(f,2) = w6y, %), i=1..N,

where each weight w; is either 0 or 1. Such estimators have long been
considered in the context of Fourier series estimation, where the basis is the
Fourier basis, the coefficients are Fourier coefficients, and the w; are 1 only
for 1 <i < k for some frequency cutoff k. Estimators of this form have also
been considered by Donoho and Johnstone (1994c¢) in the context where % is
a wavelet basis; in that setting the unit weights are ideally chosen at sites of
important spatial variability.

Formally then ® = {f(-;w): w € {0, 1}"V} is the collection of all keep-or-kill
estimators in the fixed basis %. Donoho and Johnstone (1994c) studied the
nonlinear estimator f*, defined in the basis % by hard thresholding

0.(/*(9),2) = n/(0:(y, %)), i=1,...,N,

where 1,(y) =1,,,.,(y)sgn(y) is the hard thresholding nonlinearity and
Ay = 0%21og(N). They showed that £* obeys the oracle inequality

R(f*,f) < (2log(N) + 1)(o? +%2*(d,f)) Vf,

as soon as N > 4. In short, simple thresholding comes within log terms of
ideal keep-or-kill behavior.

The reader will find it instructive to note that the estimator f * can also be
defined as the solution of the optimization problem

min ||y — fA(y;w)II2 + Ay #{i: w; # 0}.
we{o, 1}V
This is, of course, a complexity penalized RSS, with penalty term A,. Thus
the near-ideal estimator is the solution of a minimum CPRSS principle.

7.3. Example: best-basis denoising. Suppose now we are operating in a
library % of orthogonal bases % and consider the family ® of estimators
defined by keepigg or killing empirical coefficients in some basis % € &.
Such estimators f(y;w, %) are of the form

0.(f,2) = w6y, %), i=1,..,N,

where each weight w; is either 0 or 1.

Formally & ={f(;w, B): we{0,1}V, 7 € #). For obvious reasons, we
call #%(d, f) also FZ*(IDEAL BASIS, f). Donoho and Johnstone (1994b) devel-
oped a nonlinear estimator f with near-ideal properties; it is precisely the
best-basis denoising estimator defined in Section 4; see (4.1)-(4.3). In detail
they supposed that among all bases in the library there are at most M
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distinct elements. They suppose that we pick & > 8, and set ¢ = y/2log, (M) ;
then with A = (£(1 + ¢))?, they prove a result almost as strong as the
following, which we prove in the Appendix.

THEOREM 7.1. For an appropriate constant A(¢), the BOB estimator obeys
the oracle inequality

(7.1) R(f*, f) <A(&)No? +&*(D,f)) Vf.

In short, empirical best basis (with an appropriate entropy) comes within
log terms of ideal keep-or-kill behavior in an ideal basis. In the specific case of
the library of anisotropic Haar bases, M = 4N, and so for a fixed choice of ¢,
(7.1) becomes

R(f*, f) < Const - log(N)(o* +%*(IDEAL BASIS, )) Vf.

7.4. Example: CART. Oracle inequalities for CART are now easy to state.
Suppose now we are operating in the library % of anisotropic Haar bases and
consider the family &, .. of hereditary linear estimators, that is, estimators
defined by keeping or killing the empirical coefficients in some basis Z € &,
where the coefficients that are kept fall in a tree pattern 7. Such estimators
f(y; T, %) are of the form

0.(f, %) = w6,(y,9), i=1,..,N,

where each weight w; is either 0 or 1, and the nonzero w form a tree.
Formally let @, = {(f(;T,%): T c T*# € &} be the collection of all
hereditary linear estimators in any anisotropic Haar basis. The ideal risk
F*( D pyees [) 1s just the risk of CART applied in an ideal partition selected by
an oracle 2. So call this #*(iDEAL CART, f).
Consider now the dyadic CART estimator f* defined with A exactly as
specified in the best-basis denoising setting of the Section 13. So for £ > 8, set

A= (&(1 + 4/2log (4N)))*. We prove the following in the Appendix.

THEOREM 7.2. For all N > 1, the dyadic CART estimator obeys the oracle
inequality

R(f**,f) < Const-log(N)(c? +%*(IDEAL CART, f)) Vf.

In short, empirical dyadic CART (with an appropriate penalization) comes
within log terms of ideal dyadic CART.

8. Anisotropic smoothness spaces. We now change gears slightly and
consider harmonic analysis questions. Specifically we are going to show that
anisotropic Haar bases are particularly well adapted to dealing with classes
of functions having anisotropic smoothness.

We denote now by f a function f(x,y) defined on [0, 1]?, rather than an
array of pixel values. We consider objects of possibly different smoothnesses
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in different directions. Define the finite difference operators (D} f)(x, y) =
flx +h,y) — fx,y) and (D fNx,y) = f(x,y + h) — f(x, y). For §,, 8, sat-
isfying 0 < §; < 1, define the anisotropic smoothness class

F2022(C) = {f: Ifll, < C, 1D} fllrq) < Ch™, h € (0,1),
D} fllLoqz) < Ch®2, h € (0,1)},

where @) =[0,1 — h) X [0,1] and @7 =[0,1] X [0,1 — A). This contains ob-
jects of genuinely anisotropic smoothness whenever 6, # §,. The usual
smoothness spaces (Holder, Sobolev, Triebel, etc.) involve equal degrees of
smoothness in different directions and are sometimes called “isotropic,” so
that classes like 371,‘51’ %2(C) would be called “anisotropic.” Spaces of this kind
were introduced by Nikol’skii; for information see Nikol’skii (1969) and
Temlyakov (1993).

8.1. Spatially uniform anisotropic bases.

DEFINITION 8.1. A sequential partitioning of j into two parts is a pair of
series of integers j (), jo(j), j = 0,1,2,... obeying

(1) Initialization: j(0) = j,(0) = 0;
(i1) Partition: j,(j) + jo(j) =J;
(iii) Sequential allocation;
Ji(J) =h(J — 1) + b:(J), b, €{0,1};
J2(J) =J2(J — 1) + b,(J), by, =1-0,.

We can think of two boxes and a sequential scheme where at each stage we
put a ball in one of the two boxes. The expression j,(j) represents the number
of balls in box i at stage j, and b, = 1 — b, represents the constraint that
only one ball is put into the boxes at each stage.

DEFINITION 8.2. Consider a sequential partition of j into two parts. The
spatially uniform alternating partition subordinate to this partition—
SUAP(j,, j,)—is a complete dyadic recursive partition formed in a homoge-
neous fashion: at stage 1, the square [0, 1]? is split horizontally if b,(1) = 1,
and vertically if b,(1) = 1; at stage 2, each of the two resulting rectangles is
split in two, horizontally if b,(2) = 1, vertically if 5,(2) = 1; and at stage j,
each of the 2/~ ! rectangles of volume 2/ *! formed at the previous stage is
split vertically if b,(j) = 1, horizontally if b,(;j) = 1.

The recursive partition SUAP(j;, j,) defines a series of collections of
rectangles: #(0) consists of the root rectangle, %#(1) consists of the two
children of the root, #(2) of the four children of the rectangles in R(1), and so
on. In general, %(j) consists of 2/ rectangles of area 27/ each.

This sequence of rectangles defines an orthogonal basis of L?([0,1]?) in a
fashion similar to the discrete case, with fairly obvious changes due to the
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change in setting. Let now I denote a dyadic subinterval of [0, 1] and ¥;(x) be
the “same function” as x;(i), under the correspondence x; < i/n and under
the different choice of normalizing measure y,(x) = 1,(x)I(I)~'/* where I(I)
denotes the length of I. Similarly, let 2;(x) = (1;:(x) — 1;0(x))I(I)~"/?. Then
set ¢p = hi ()% (), ep = X1 (x)h;(y). Then set

§o = Xjo,172> §0,0 = 90[%2,(11])2’
é,p = ep?® for R e2(1),
& p = 0p*® for R € %(2),

and in general
(8.1) & r=ep) for R €Z(j);

call this the spatially homogeneous anisotropic basis SHAB (j;, js)-
The coefficients of f in this basis are

(82) f: aVe[OJ]Z, ap = <§j,Ra f>’ R E‘%(-])

8.2. Best basis for a functional class. Donoho (1993, 1996) described a
notion of best-orthogonal-basis for a functional class .#, which describes the
kinds of bases in which certain kinds of de-noising and data compression can
best be conducted. For this notion, a best basis for a functional class .7 is any
basis in which the rearranged coefficients of members of .# decay fastest.
According to this definition, one-dimensional wavelet bases are best bases for
classes like bounded variation, Sobolev, Triebel and Besov classes; Wilson
bases are best bases for modulation spaces; Fourier bases are best bases for
L2-Sobolev spaces, and so on. More generally, spaces with an unconditional
basis have the unconditional basis as best basis. Certain spaces have best
bases which are not unconditional bases. Kashin (1985) showed, in our
language, that sinusoids give a best orthogonal basis for appropriate classes
of Holder continuous functions. Kashin and Temlyakov (1994), among other
things, discussed best bases for spaces with bounded mixed derivatives.

For a vector 0 in sequence space, let |6|;, denote the rearranged magni-
tudes of the coefficients, sorted in decreasing order [0]1) > [0]@2) > ---. The
weak [™ norm measures the decay of these by

101l yar = supk/70].
k>1

This measures decay of the coefficients since [0lly- < C implies [0 <
Ck Y k=12....

Now, with 6 = (0,(f, %)), the coefficients of f in an orthogonal basis %, a
given functional class .% maps to a coefficient body O(7, &) = {(0,(f, #));:
f € 7). For such a set ©, we say ©® c wl" if

sup{ll0lly: 0 € O} < oo,
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DEFINITION 8.3. We call the critical exponent of ® the number 7*(®)
obtained as the infimum of all 7 for which ® c wl".

Assuming that .7 is a subset of L?, 0 < 7%(0) < 2.
From this point of view a best basis for & is any basis %* which minimizes
the critical exponent

(8.3) (0(7, %)) = minT(O(7, 7).

In such a basis the rearranged coefficients will be the most rapidly decaying
among all ortho bases.

8.3. Best anisotropic bases. With this background, it is interesting to ask
about the decay properties of coefficients in different spatially homogeneous
anisotropic bases. We will identify a basis % within the class of anisotropic
Haar bases satisfying (8.3) among all bases. The key fact is this upper bound.

LEMMA 8.4. Let f€%.0°(C), where 1/p <p+ 1/2, where p= 586,/
(5, + 8,). Ifb,(J) = 1,

1/p
(84) ( Z IaR|P) < C27j1§1(27j)1/2—1/P’
ReZ(j)

while if by(j) = 1,

1/p
(8.5) ( )y |aR|P) < 2 7202(9-0)/2T VP
ReZ(j)

Now a choice of a spatially uniform anisotropic partition which would
make optimal use of these expressions as a function of j would arrange
things so that the decrease of the largest of the two expressions went fastest
in j. Thus optimal use of Lemma 8.4 leads to the problem of constructing a
sequential partition of j into parts that optimize the rate of decay of

(8.6) max(2 /2% 9 /a())dz)

as a function of j.

There is an obvious limit on how well this can be done. Consider optimiz-
ing (8.6) subject only to the constraints j,(j) + j,(j) =j and j;, > 0, that is,
without imposing the requirement that the j;, be integers, or be sequentially
chosen. The solution is j,(j) = 8,/(8; + 8,)j and j,(j) = 6,/(8; + 8,)J,
achieving an optimally small value of

6182
S8 8,

(8.7) 2770, p

in (8.6). We cannot hope to do better than this, once we reimpose the
constraints associated with a sequential partition. But we can come close.
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DEFINITION 8.5. For a given pair of “exponents” §,, 6, obeying 0 < §;, < 1,
we call an optimal sequential partition of j a sequential partition (jF, j&)
obtained as follows:

() Start from j5(0) = j5(0) = 0;

(i1) At stage j + 1, allocate b,(j) and b,(j) as follows:

(a) If j¥(j — D6, =j*(j — 1)§, allocate the ball to whichever box has
the smaller exponent: b,(j) = 1if §; < §,;

) If j¥(j — Do, #ji(j — 15, allocate the ball to whichever box has
the smaller product j#(j — 1)8,.

This so-called optimal sequential partitioning of j is a greedy stepwise
minimization of objective (8.6). It turns out that it is near optimal, even
among nonsequential partitions.

LEMMA 8.6. For 0 < 8, 8, <1 and p =(8,8,)/(8; + 8,),
(8.8) max(2 /1% 2775(N%) < 2. 2770,
Due to (8.7), this is essentially optimal within the class of sequential

partitions of j. Inspired by this, we propose the following definition.

DEeFINITION 8.7. We call the best anisotropic basis BAB(S;, §,) the
anisotropic basis of L?*[0, 1]%, defined using SHAB(j}, ji).

Combining Lemma 8.6 with Lemma 8.4 above, we have the following
corollary.

COROLLARY 8.8. If we use the BAB(8,, 8,) then for p =(68,8,)/(8; + 85)
and 1/p <p+1/2,

1/p
(8.9) ( Y |aR|P) <2C27/r+1/2-1/p),
Re%(j)

8.4. Optimality of BAB. Armed with Corollary 8.8, it is possible to justify
Definition 8.7 and prove that BAB(§;, §,) is an optimal basis in the sense of
Section 8.2.

THEOREM 8.9. Let % denote the collection of all orthogonal bases for

L?[0,1]%
A 8y, Oy = 1 81, 85
(8.10) *(0(F%(C), BAB(5,,8,))) = é;légﬂ’r*(@(% (C), #)).

The proof is a consequence of three lemmas, all of which are proved in the
Appendix. The first gives an evaluation of the critical exponent for
BAB(354, 8,).

LEmmaA 8.10. If 1/p < p+ 1/2, then
(8.11) (052 %2(C), BAB(8,, 8,))) = 2/(2p + 1).
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For comparison we briefly mention results obtainable in other bases.
Suppose we use the isotropic basis SHAB(j;,j;) defined by jf(j) =
(G + D/2], j(j) =1j/2]. This has an equal frequency of splitting in each
direction. By a side calculation,

T(O(F%(C),SHAB(jf ,j§))) = 2/(2p*+ 1),
where p*= min(§;, §,)/2. As
p max( 8y, 8, )

pt ave(d;,8,) ’

analysis in the isotropic basis yields coefficients with slower decay rate than
optimal whenever the smoothness class is genuinely anisotropic, that is,
whenever §; # 8,.

The optimality of the exponent in (8.11) among all bases follows from a
lower bound technique developed at greater length in Donoho (1996). First,
a definition: an orthogonal hypercube # of dimension m and side ¢ is a
collection of all sums g, + X" ; o;8; where the g, are orthonormal functions
and the |o;] < &.

LemMA 8.11. Suppose F contains a sequence #; of orthogonal hypercubes
of dimension m; and side &; where &; > 0, m; - ,

1/7
Let % denote any collection of orthogonal bases.
inf 7*(O(F, #)) = 7.
inf 7(6(%,9))

LEMMA 8.12. Each class %SI’SZ(C) contains a sequence %, of orthogonal

hypercubes of dimension m; = 27 and side g; where &; > 0, m; - =,

1/7
m;"s; > KC,

with K a fixed constant, and 7= 2/2p + 1).

A related result was developed by Kashin (1985), who showed, in our
language, that sinusoids make a best orthogonal basis for Holder-a spaces.
Kashin’s approach to that result uses something like Lemma 8.11, proved by
different means; he uses isoperimetric inequalities for Rademacher sums,
while our argument uses Khinchine’s inequality for such sums. Kashin and
Temlyakov (1994) develop results about what we would call best-ortho-bases
for spaces with bounded mixed derivatives; their approach also implies a
lemma like 8.11; their proof is based on volume estimates.

9. Near-minimaxity of BOB. As a result of the harmonic analysis in
Section 8 and the ideas in Donoho (1993) we know that BAB(§;, §,) is a kind
of best basis in which to apply ideal keep-or-kill estimates. This is the key
stepping-stone to our main result.
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In this section we show that the risk for ideal keep-or-kill in BAB(§;, §,) is
within constants of the minimax risk over each %51’52(0). From the oracle
inequality of Section 7.2, we know that empirical basis selection, as in
(4.1)—(4.3), which empirically selects a basis and applies thresholding within
it, will always be nearly as good as ideal keep-or-kill in BAB(§;, 8,)—even
though it makes no assumptions on 8§, or 8,. This means that empirical
best-basis denoising obeys a near-minimaxity result like Theorem 1.1.

THEOREM 9.1. Best-basis denoising, defined in Section 4, with A defined
as in Section 7.2, comes within logarithmic factors of minimax over each
functional class F,v°(C), 0<8,, 6,<1, C>0, 1/p <p+1/2. If f**
denotes the best-basis denoising estimator

(9.1) sup MSE(fA*’A, f) < Const(8,, 8;, p)log(n)M*(o,n;5) asn — =,
7
for each F € 4.

The key arguments to prove Theorem 9.1 are given in Sections 9.1 and 9.4.
Our main result—Theorem 1.1—will be proved in Section 10 by using some
of those results a second time.

9.1. Lower bound on the minimax risk. We first study the minimax risk
and show that it obeys the lower bound

(92) M*(o,n;70%2(C)) = K(3,, 8,)(C?)' "(&?) ase=0/VN -0,

where r = 2p/(2p + 1).

We use the method of cubical subproblems. In a modified definition in this
section, by orthogonal hypercube # of dimension m and side 8§, we mean a
collection of all sums g, + X" ; @, g, where the g, = g,(i;,i,) are n X n
arrays, orthonormal with respect to the specially normalized % norm

1
= 2 &1 (i1,09) &1 (i1,15) = Lypy
\/]v il’iZ
and all the |a,| < 6. The following lemma may be proved as in Donoho and

Johnstone (1994a).

LEMMA 9.2. Let ¢ =0/ VN . Suppose a class & contains an orthogonal
hypercube of sidelength ¢ < § < (11/10)e and dimension m(¢e). Then, for an
absolute constant A > 1/10,

(9.3) M*(o,n;5) = Am(e)e’.

To make effective use of this, we seek cubes of sufficiently high dimension
and prescribed sidelength. The following lemma is proved in the Appendix.
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LEMMA 9.3. Let &= o0/ VN. Each class Z,>°(C) contains orthogonal
hypercubes (orthogonal with respect to 1% norm) of sidelength § = £(1 + o(1))
and dimension m(e,C) where

9.4 m(e, > 64,06 e R 0<e<eg,
C K L 5 C/ 2/@2p+1) 0
and
0,0
(9.5) p= ———.
6, + 06,

Combining these two lemmas gives the lower bound (9.2).

9.2. Equivalent estimation problems. Sections 2—7 of this paper work in a
setting of n X n arrays. Section 8 works in a setting of functions on the
continuum unit square. Theorem 9.1 is based on a combination of both points
of view.

From the viewpoint of Sections 2—7, one would naturally consider applying
CART and BOB estimators to data y;, i € [0, n)?. Suppose instead that we
define the rescaled data

5 =N"12y..  ie[0,n)’

and also define ¢ =o0/n =0/ VN . The results we get in applying (ap-
propriately calibrated) CART or BOB to such data are (obviously) propor-
tional to the results we get in applying the same techniques to the unscaled
data.

There is a connection between these rescaled data and data about the
function f on the continuum square. Let R denote both a dyadic rectangle of
[0, n)? and the same rectangle on the continuum square [0, 1]2. Recall that
oz(x, y) denotes a function on the continuum square [0, 1]*> normalized to
L7[0,1]*norm 1, and ¢5(iy, iy) = h; (i) x;(iy) is the same function, only on
the grid [0, n)? and normalized to /2(N) norm 1. (Here “same” means that we
identify the discrete interval {0,1,2,...,n — 1} as being the “same” as the
continuous interval [0, 1), and {0,1,2,...,n/2 — 1} as being the “same” as
the continuous interval [0, 1/2), etc.) Then

(Fs, ¢113>12(N) =<7, (10113>L2[0,1]2 + 8211%,

where the z} are N(0, 1), and independent in rectangles which are disjoint.
Similar relationships hold between ¢2Z and ¢z.

Hence the discrete-basis analysis of rescaled data y; has the interpretation
of giving noisy measurements about the continuum coefficients of f and vice
versa. Moreover, suppose that #* is a complete dyadic recursive partition of
the discrete grid [0, n)? and we consider only the coefficients attached to
rectangles in the nonterminal nodes of this partition. The partial reconstruc-
tion of f from just those coefficients is simply the collection of f’s pixel level
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averages; formally, if we put

f(il’iz) = Z aR(»b;i(R)

ReNT(P*)

and

f.(xay): Z aR(ID}‘%(R)(x?y)’
ReNT(%*)

then f(x,y) takes the value f(i,,i,) throughout the rectangle [i,/n,
(i; + D/n) X [iy/n,(iy + 1)/n).

Consider the problem of estimating (ag(R)gc yr(»+ from noisy data
(fy @320 172 + £25®). By Parseval, the squared [? risk

(9.6) 2+E Y (&P - af®) =NEIf - fla,
ReNT(»*)

and so the mean-squared error in the coefficient domain gives us the mean-
squared error for recovery of pixel-level averages in the other domain.

9.3. Discrete and continuous partitionings. Consider now BAB(§,, §,) for
a given §;, 8, pair. This corresponds to an infinite sequence of families .%( ),
each family partitioning the continuum square [0, 1]®> by congruent rectan-
gles of area 27/,

Such a sequence of partitions of [0, 1]? usually cannot be interpreted as
providing also a sequence of partitions for the discrete square 0 < i;, i, < n.
A sequence of partitions for the discrete square also has the particular
constraint that out of the first log,(IN) splits, exactly half will be vertical and
half horizontal. Put another way, if we consider some BAB, those rectangles
which are not too narrow in any direction, that is, where each sidelength
exceeds 1/n, also correspond to rectangles in a complete dyadic recursive
partition of the discrete square [0, n)2. But there exist BAB [for example
those with min(§;, §,) close to zero and max(8;, §,) close to one] which, at
some level j between log,(n) and log,(NN), have already split in a certain
direction more than log,(n) times. Consequently, the continuum BAB is not
quite available in the analysis of finite data sets.

On the other hand, in the analysis of finite data sets, there are available
bases which achieve the same estimates of coefficient decay as in the contin-
uum case.

DEFINITION 9.4. For a given pair of exponents (§;, §,), and whole number
J, we call a balanced finite optimal sequential partition, an application of the
optimal sequential partitioning rule of Definition 8.5, with two extra rules:

(iii) The process stops at stage 2.J. There are at most 2/ “balls”;
(iv) The process must preserve j*(j) <J. Once a certain “box” has “J
balls,” all remaining allocations of “balls” are to the “other box.”
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LEemMmA 9.5. If 0 < &y, 8, < 1, let j¥(j) denote the result of a balanced
finite optimal sequential partitioning. Let %#*(j) denote the associated collec-
tion of rectangles. With p = (8,8,)/(8; + 8,) and 1/p < p + 1/2,

1/p
(9.7) ( Z IaRlp) < 2027 /r+1/2=1/p)
ReZ#*(j)

The proof is simply to inspect the proof of Corollary 8.7 and notice that the
constraint preventing allocation of “balls” to certain “boxes” means that in
certain expressions one can replace terms like

e et
max(2 J1 () 1,2 J2(J) 2)
by the even smaller

min(z—ji‘(j)ﬁl , 2—1’5(1’)32) .

9.4. Upper bound on ideal risk. We now study the ideal risk and show
that it obeys an upper bound similar in form to the lower bound of Section
9.1. Starting now, let BAB*(§;, 8,) denote the modified basis described in the
previous subsection.

LEMMA 9.6. Let H(KEEP-KILL, f; &) be the ideal risk for keep-kill estima-
tion in BAB*(8,, 8,). Then with r = 2p/(2p + 1),
sup #(KEEPKILL, f; &) < B(§,, 82,p)(C2)1_r(32)r,
(9.8) fEF1(C)
0<e<eg.

PRrROOF. As in Donoho, Johnstone, Kerkyacharian and Picard (1995), con-
sider the optimization problem
mi(e;y) = max| 60]|7 subject to [0, < &, loll;» <y, 6 € RY.

By Parseval (9.6) the best possible risk for a purely keep-kill estimate is
e + L min(ag, £*). Also, by Lemma 9.5, there are constants y;, = v,(C) so
that for f € 7% %(C),

1/p

F*(J)
The largest risk of ideal keep-kill is thus

max ), ) min(aj,s?)
feypélyﬁz(c) J RE'%*(])

1/p
<max ), ), min(ag,s?) subject to ( Y IaRlp) <,
J Z*j) FH(J)

= ij(e,yj).
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Now Donoho, Johnstone, Kerkyacharian and Picard (1995) give the explicit
expression

(9.9) mi(e;y) = min(27/e?, yPe? P, y?)
and applying this, we have
1-r r
(9.10) ij(e,yj) <(C?) (&%) K(8,,8,4,D)- a
J

This is the risk of an ideal denoising by a keep-or-kill estimator not
obeying hereditary constraints.

9.5. Near minimaxity of best-basis denoising. We have so far shown that
the ideal risk is within constant factors of the minimax risk. Invoking now
the oracle inequality of Theorem 7.1, the worst-case risk of the BOB estima-
tor f does not exceed the ideal risk—and hence the minimax risk—by more
than a logarithmic factor. This completes the proof of Theorem 9.1.

10. Near minimaxity of CART. We now are in a position to complete
the proof of Theorem 1.1. We do this by showing that ideal dyadic CART is
essentially as good as ideal best-basis denoising.

LEMMA 10.1. Let R(KEEP-KILL, f; &) be the ideal risk for keep-kill estima-
tion in BAB*(8,, 8,). Let Z(HERED, f; &) be the ideal risk for hereditary
estimation in BAB*(8,,8,). If 1/p <p+ 1/2,

sup Z(HERED, f;¢)

fe'gpﬁl,sz(c)
(10.1)
<B(6,,6,,p) sup Z(KEEP-KILL, f;¢).

fe(;‘7'p51"52(0)

Once this lemma is established, it follows from Sections 9.1 and 9.4 that
the risk of ideal dyadic CART is within constant factors of the minimax risk.
Now the oracle inequality for dyadic CART, Theorem 7.2, shows that the
performance of empirical dyadic CART comes within logarithmic factors of
the ideal risk for dyadic CART. Theorem 1.1 therefore follows as soon as
Lemma 10.1 is established.

To prove the lemma, note that the ideal keep-or-kill estimator for a
function f has nonzero coefficients at sites

(10.2) L(f) ={(J,R): la; z(f) = &}.
This can be modified to a hereditary linear estimator by expanding .¥
slightly.

DeFINITION 10.2. Let . be a collection of dyadic rectangles, for example
(10.2). Then the hereditary cover of ., denoted .#*, is the collection of all
such rectangles and their ancestors in the partitioning associated with the
basis BAB*(§,, 8,).
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The keep-kill estimator &[.%*] with nonzero coefficients at sites .#* is a
hereditary linear estimator. The ideal risk obeys

Ela[.7*] — ali3 Y alp+ ei(#(F) + 1)
(Jj, R)gF7*

Y alp+ e¥(#(FF) + 1) (as F ).
U, R

IA

Suppose we could bound #%* < A(#%) for some constant A > 1. Then we
would have

Ella[7*] —ali < X alp+ 2(A#() + 1) (as #57* < A#Y)
(j,R)¢S

<Al Y alp+i(#(X)+1)
G, Res
= AE||a[ ] - «all}.

It would then follow that risk bounds derived for keep-or-kill estimators
would give rise to proportional risk bounds for hereditary linear estimators
derived from their hereditary covers.

While the relation #%* < A(#%) does not hold for every f, a weaker
inequality of the same form holds, where one compares the largest possible
size of #(f) for an f €. °(C) with the largest possible size of #5°*.
Lemma 10.3 establishes this inequality; retracing the logic of the last few
displays shows that it immediately implies Lemma 10.1, with B = A.

LEMMA 10.3. Define
(10.3) N(8,,8,,p,C) = sup{#7(f): f€F%(C)}
the largest number of coefficients used by an ideal keep-kill estimator in
treating functions from 7, °:(CX8,, 8,). Similarly, let
(10.4) N*(8y, 8y, p,C) = sup{#5*(f): f € Fr%(C)}
be the size of the largest corresponding hereditary cover. If 1/p < p + 1/2,
then for a finite positive constant A = A(8,, 85, p),
N* <A(68,,8,,p)N.

Proor. If = (6,2, is a vector of dimension d satisfying [|6]l;» < v, then
#{i: 10,] = e}e? < y? so

(10.5) #{i: 16,1 > &} < (y/8)"
and of course
(10.6) #{i: 16| > s} <d.

Consider now the application of this to the vector 6, = («; z); which has
d =2/, with y= 'yj(Z,‘Sl"S?(C)). Then #{i: 16, > &} < min(2j,(yj/s)p)). The
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first term 2/ is sharp for 0 <j < j,, where j, = j)(, C; §,, 8,) is the real root
of 2/ = (C27/(r*1/271/P) /)P By a calculation, j, = log,(C/&)/(p + 1/2).
For notational convenience, stratify the set . as

F=Fy VAU FU -,
where .7, = {(j', R) €.%, j' = j} and
(10.7) #S =27, 0<j<jp-
Also we have
#5/; < zjozfﬁ(jfjo), Jj=Jo

B=pB(8:,8;,p) =p(p+1/2~-1/p)>0.
Now consider the cover .#** defined by:

F** ={(j,R), 0 <Jj <Jjo,

(J,R), j > Jj, and (J, R) has a descendant in .}

(10.8)

By construction, .#** contains the hereditary cover (it contains terms at
Jj <Jo, which the hereditary cover might not), and so bounds on the size of
F** apply to &* also. Now
(10.9) #7 < 20t + Y A(), R)#S,
J>Jo
where A(j, R) is the number of ancestors (j', R') of a term (j, R) at level
Jo<J =j=<d. As A(j,R) < (j —j,), (10.8) gives
#.7F < 20 4 Y (j _jo)zjozfﬁ(jfjo)
J>Jo
= 21‘0(2 + Y (j _jo)zfﬁ(jfjo) .

J>Jo

We conclude that
N*( 61’ 82’ p) = 2jOBl’

for some constant B,(8;, §,, p). On the other hand, by constructing a hyper-
cube at level | j,| using the approach of Lemmas 8.12 and 9.3, we obtain, for a
constant B,(8,, 85, p),

N(8,,8,,p) = By2%.

Hence we may take A = B, /B,. O
11. Discussion. We collect here some final remarks.

11.1. Clarifications. We would like to point out clearly that the way that
the term CART is generally construed—as greedy growing of an exhaustive
partition followed by optimal pruning in the implicit basis—is not what we
have studied in this paper. Also, the data structure we have assumed—regu-
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lar equispaced data on a two-dimensional rectangular lattice—is unlike the
irregularly scattered data often assumed in CART studies. It would be
interesting to know what properties can be established for the typical greedy
growing nondyadic CART algorithm in the irregularly scattered data case.

To minimize misunderstanding, let us be clear about the intersection
between CART and BOB. CART is a general methodology used for classifica-
tion and discrimination or for regression. It can be used on regular or
irregularly spaced data and it can construct optimal or greedy partitions
within the general framework. Best-ortho-basis is a general methodology for
adaptation of othogonal bases to specific problems in applied mathematics. It
can be used in constructing adaptive time frequency bases, and also (as we
have seen in this paper) in constructing adaptive bases for functions on
Cartesian product domains. We have shown that the methods have some-
thing in common, but, strictly speaking, only intersect under a very specific
choice of problem areas and entropy. Further discussion about patent law-
suits is unwarranted and pointless.

11.2. Extensions. Somewhat more general results are implicit in the
results established here.

First, one can consider classes .%,°2(C;,C,), 0 < §; <1 and p;, C, > 0,
consisting of functions obeying

ID;fll,, < C;h%,  h>0,i=1,2.

The classes we have considered here in this paper are the special cases
C,=0C,=C and p, = p, = p. Parallel results hold for these more general
classes, and by essentially the same arguments, with a bit more bookkeeping.
We avoided the study of these more general classes only to simplify expo-
sition.

Second, the log terms we have established in Theorems 1.1 and 9.1 can be
replaced by somewhat smaller log terms. More specifically, in cases where the
minimax risk scales like N™7, the method of proof given here actually shows
that the worst-case risk of dyadic CART is within a factor O(log(n)") of
minimax. As 0 < r < 1, this is an improvement in the size of the log term.

Third, one can obtain results for higher-order smoothness -classes
Zo0(Cy, Cy) with @; = m; + §;, with m; whole numbers and §; fractions,
consisting of functions f obeying

D, Fmoll,. < Ch%, h>0,i=1,2.

Such classes can be addressed using recursive partitioning methods with
piecewise polynomial fits. Instead of using a piecewise constant reconstruc-
tion, one uses a piecewise polynomial of some fixed degree D on each piece.
The analysis of such procedures is entirely parallel to the analysis in this
article; one simply replaces the library of all anisotropic Haar functions by
the library of all anisotropic Alpert functions. Alpert functions are piecewise
polynomials of degree D deriving from Legendre polynomials in the same
way that the Haar wavelets derive from the indicator function 1j ;;. Using
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such procedures, everything in this paper generalizes straightforwardly. We
avoided discussing the potentially more powerful procedures based on polyno-
mial fitting in order to focus attention on the relation between BOB and
CART. Useful background on Alpert bases can be had in Alpert, Beylkin,
Coifman and Rokhlin (1993) and Donoho, Dyn, Levin and Yu (1996).

Fourth, DeVore (1994) has informed the author that heuristic methods of
data compression and denoising based on the library of systematic tensor
products of smooth wavelets can be used to get results which in practice are
very effective.

11.3. Linear estimators. As mentioned in the introduction, dyadic CART
can outperform kernel estimators and related linear procedures in a minimax
sense. Let M} (o, n;%) denote the minimax linear risk, defined as in (1.3),
but where only linear estimators are allowed. For example, the class of linear
estimates includes anisotropic kernel smoothing procedures, where the band-
width is allowed to differ in each of the two directions. The following result
shows that such linear estimates, even when tuned optimally for a class
,971,31’ %2(C) where p < 2, can be outperformed by the dyadic CART estimator at
the level of rates.

THEOREM 11.1. Let 1<p <2 and p'=p+1/2—-1/p > 0. For M} the
minimax risk among all linear procedures, we have the lower bound

Mf(o-, n;Z,ﬁl"s?(C)) > Const - N~@r'/@p'+1)

For comparison, of course, dyadic CART achieves

sup MSE(f;, f) < Const - (log(N') /N )27/ @0+ D).
Z)B“SZ(C)

As p > p’ in the applicable range p < 2, dyadic CART achieves a faster rate
of convergence over 2,31’52(0) than any linear procedure. For example, set
p=3/2,6,=1,8,=2/3,s0 p=2/5.Then p' = 7/30, so linear estimates
converge no faster over this class than a rate N™"" where r' = 2p'/(2p’ +
1) = 7/22 < 1/3; while dyadic CART achieves a rate at most a logarithmic
factor worse than r = 2p/@2p + 1) = 4/9.

This phenomenon parallels results in other settings where linear estimates
have been shown not to achieve minimax rates. Examples of such settings
include, for squared L?-loss, classes of bounded variation, Sobolev spaces
with p < 2, and Besov and Triebel classes with p < 2. These settings have
been treated in work of Nemirovskii, Tsybakov and Polyak (1985), Ne-
mirovskii (1986), and Donoho and Johnstone (1994d); see Donoho, Johnstone,
Kerkyacharian and Picard (1995) for references.

The phenomenon derives from a geometric property of the classes 9;,51’ (),
the lack of 2-convexity, which means that the quadratic hull of %> %2(C) is
essentially larger than Zfl’ %2((C) itself; compare Donoho, Liu, and MacGibbon
(1990). In its simplest form, the phenomenon appears as follows [Donoho and
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Johnstone (1994d)]. Suppose we have the problem of estimating a d-vector
(¢:1 <i < d) from observations v, = ¢, + &z;, where the z; are i.i.d. N(0, 1).
The vector ¢ is known to lie in a d-dimensional [?-ball. Let 0 < p < 2. The
minimax linear risk (min over linear procedures only, max over the unit 1}
ball) for estimating ¢ with squared 1%-norm loss, is the same as the minimax
linear risk over the standard Euclidean ball (min over linear procedures only,
max over the unit [% ball).

This observation lies at the heart of Theorem 11.1. By combining (8.9) and
a construction similar to the one underlying Lemma 9.3, one can show
that the class 7’ °2(C) contains, for each j > 0, an [} ball of radius r; =
Const - 27/(»*1/271/P) and dimension d; = 2’. Each such ball furnishes a
finite-dimensional parametric subfamily of the original functional class, in
which the function to be estimated is isometrically identified with a parame-
ter vector in a d-dimensional space obeying a constraint on the /7 norm.
Estimation of a function in such a restricted subfamily, from data (1.1), can
be reduced, by a sufficiency argument, to estimating the parameter vector ¢
using observations v = { + ¢z of dimension d;, where the noise is a white
Gaussian noise and ¢ = ¢/ YN . Call this problem a finite-dimensional sub-
problem; its minimax linear risk is a lower bound on the minimax linear risk
of the full problem.

Applying the italicized observation about minimax linear risk in such a
finite-dimensional subproblem, the [? constraint can be relaxed to an /2
constraint without affecting the minimax linear risk in the subproblem. This
relaxation implies a geometrically larger subproblem. Of course, the minimax
linear risk of the enlarged subproblem is not smaller than the minimax risk
(all measurable procedures allowed). We may use Lemma 9.2 to obtain a
lower bound of the form Const - d jgz for the minimax risk of such enlarged
subproblems, for each j in a certain range.

Selecting, at each sample size N, the most difficult such subproblem in this
range of j, we get a lower bound of the form indicated in the theorem.

In short, the proof has two ideas. First, the minimax linear risk
over 5, °(C) behaves as if this class contained /3 balls of radius rj =
Const-27/7, and dimension d; = 2/, p’ =p+ 1/2 —1/p. Second, such a
class could not have a minimax risk better than Const - (g2)2#'/2¢'+1,

11.4. Important related work. We also mention some related work that
may be of interest to the reader.

Complexity bounds and oracle inequalities. Of course there is a heavy
reliance of this paper on Donoho and Johnstone (1994a,b). But let us also
clearly point out that the general idea of oracle inequalities is clearly present
in Foster and George (1994), who used a slightly different oracle less suited
for our purposes here. Our underlying proof technique—the complexity bound
underlying the proofs of Theorems 7.1 and 7.2—is very closely related to the
minimum complexity formalism of Barron and Cover (1991), and subsequent
work by Birgé and Massart (1997).
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Density estimation. This paper grew out of a discussion with Engel, who
wondered how to generalize the results of Engel (1994) to higher dimensions.
Engel (personal communication) has reported progress on obtaining results
on the behavior of a procedure like dyadic CART in the setting of density
estimation.

Anisotropic smoothness spaces. Neumann and von Sachs (1995) have also
recently studied anisotropic smoothness classes and have shown that wavelet
thresholding in a tensor wavelet basis is nearly minimax for higher-order
anisotropic smoothness classes. This shows that nonadaptive basis methods
could also be used for obtaining nearly minimax results; the full adaptivity of
CART is not really necessary for minimaxity alone.

Time-frequency analysis. Important related ideas are contained in two
recent manuscripts associated with Coifman’s group at Yale. The article of
Thiele and Villemoes (1996) independently uses fast dyadic recursive parti-
tioning of the kind discussed here, only in a setting where the two dimensions
are time and frequency. The thesis of Bennett (1997) independently uses fast
dyadic recursive partitioning of the kind discussed here, only in a setting
where the basis functions are anisotropic Walsh functions rather than
anisotropic Haar functions.

APPENDIX

A.1. Proof of Theorems 7.1 and 7.2. We prove a more general fact,
concerning estimation in overcomplete dictionaries. The proof we give is a
light modification of arguments in Donoho and Johnstone (1994a,b).

Al.1. Constrained Minimum Complexity Estimates. Suppose we have an
N X 1 vector y and a dictionary of N X 1 vectors ¢,. We wish to approximate
y as a superposition of dictionary elementsy = X7 | 8 ¢,.

We construct a matrix ® which is N by p, where p is the total number of

dictionary elements. Let each column of the ® matrix represent one dictio-
nary element. Note that in the case of most interest to us, p > N, as ®
contains more than just a single basis. For example, in the setting of this
paper, & is the dictionary of all anisotropic Haar functions, which has
approximately p = 4N elements.
_ For approximating the vector y, we consider the vector B € RP”, the vector
f = ®B denotes a corresponding linear combination of dictionary elements.
This places the approximation f in correspondence with the coefficient vector
B. Owing to the possible overcompleteness of ®, this correspondence is in
general one-to-many.

Define now the empirical complexity functional

K(f,y) =IIf = yl3 + Xc>N(f),
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where

N(f) = I~nin~#{j: Bj + O>
f=op

is the complexity of constructing f from the dictionary ®. Also, define the
theoretical complexity functional

K(f,f) =IF~flz + X¥o>N(f).

Let # be a collection of “allowable” coefficient vectors B € R”. We will be
interested in approximations to y obeying these constraints and having small
complexity. In a general setting, one can think of many interesting con-
straints to impose on allowable coefficients; for example, that coefficients
should be positive, that coefficients should generate a monotone function, that
nonzero coefficients are attached to pairwise orthogonal elements.

Define the #-constrained minimum empirical complexity estimate

f* = argmin K(f,y).
{f=0p: pc&)

In a moment we will prove the following.

COMPLEXITY BOUND. Suppose y = f + z, where z is i.i.d. N(0,1). Fix & c
R?, fix {> 8 and consider the #-constrained minimum complexity model

selection with A = {(1 + y/2log p).

(A1) EK(f* f) <A({)|A%%*+ min  K(Ff)|
(f=dB: pe®}

This shows that the empirical minimum complexity estimate is not far off
from minimizing the theoretical complexity.

(In the above bound, the limitation / > 8 is not intrinsic to the problem;
Johnstone has informed the author that by refinements of the arguments
below one can obtain results of the same general form for smaller values of A
corresponding roughly to any ¢ > 1.)

A.1.2. Relation to CART and BOB. We now explain why the complexity
bound implies Theorems 7.1 and 7.2.

We begin with the observation that the empirical complexity K(f, y) is just
what we earlier called a complexity penalized sum of squares.

Assume now that the dictionary & is the collection of all anisotropic Haar
functions. Two constraint sets are particularly interesting.

First, let &pop be the collection of all coefficient vectors B which arise
from combinations of atoms that all belong together in some orthobasis built
from the anisotropic Haar dictionary. Remember, the dictionary has p > N
atoms. So at most N elements of 8 can be nonzero at once under this
constraint. Also, we have seen in Section 3 that each basis in the anisotropic
Haar system corresponds to a certain decorated tree so this constraint says
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that collections of coefficients which are allowed to be nonzero simultaneously
correspond to certain collections of indices. This constraint can be made quite
explicit and algorithmic, although we do not go into details here.

If we optimize the empirical complexity K(f, y) over all f arising from a
B € Epop We get exactly the estimator (4.1)-(4.3). We encourage the reader
to check this fact.

Second, there is the CART constraint. Let &, gy be the collection of all
vectors B for which the nonzero coefficients in the corresponding B only refer
to atoms which can appear together in an orthogonal basis, and for which the
nonzero coefficients only occur in an hereditary pattern in that basis. We
remark that usgr € Epos- 3 B

If we optimize the empirical complexity K(f, y) over all f arising from a
B € Eoarr We get exactly the estimator (2.4)—(2.5). We again encourage the
reader to check this fact.

We now make two simple observations about the minimum complexity
formalism, valid for any %, which the reader should verify.

K1. The theoretical complexity of f * upperbounds the predictive loss
K(f*, f) = IIf* - fl3.

K2. The minimum theoretical complexity is within a logarithmic factor of the

ideal risk
minK(f, f) = minl||f - fl5 + )\ZO'ZN(};)
few few
<\ Ipi;(llf— flI3 + o*N(f))
fe
_ : Q_ 2 ©.Q
= \2 IB_nEH@;(HCI)B Bz + 02#{J. B; # 0})

= \2%(Ideal %, f).

These observations, translated into the cases &gop and &gy, give Theo-
rems 7.1 and 7.2, respectively.

A.1.3. Proof of the complexity bound. In what follows we assume the
noise level o2 = 1. We follow, line-by-line, Donoho and Johnstone (1994a, b)
who analyzed the unconstrained case ¢ = R”. Exactly the same analysis
applies in the constrained case.

We first let f° denote a model of minimum theoretical complexity:

K(f°,f) = min K(7, f).
fe®
As f * has minimum empirical complexity,

K(f*y) <K(f°y).
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As |f* —yll2 =|If* — f— 2|2 we can relate empirical and theoretical com-
plexities by
K(f*,y) = K(f* f) + 2z, f = [*) +lzl3,

and so, combining the last two displays,

K(f*,f) <K(f° f) + 2(z, f* = ).
Now define the random variable

7 (k) = sup{Cz,m?* — m'): |lm’ — fl3 < k, 2N(m’) < k}.

Then

K(f* f) <K(f°.f) +27(K(f* f)).

This display shows the key idea. It turns out that 7(k) < k for all large %,
and so this display forces K(f*, f) to be not much larger than K(f°, f).

Denote the minimum theoretical complexity by K° = K(f°, f). Define
k; =21 — 8/) ' max(K°, A*) for j > 0. Define the event

B, = {w (k) <4k/{ forall k > k}.
On the event B, the inequality
k<K°®+27(k)
has no solutions for k£ > k;. Hence, on event B,,
K(f*, f) <k,
It follows that

8

EE(f*,f) < ¥ kjo1 Prob{K(f*, 1) € [k} k)

J

Il
=]

IA
s

ki Prob{K(f*,f) > kj}

J

Il
o

Y ki1 Prob{Bjc}.

j=0

IA

By Lemma A.1 we get
EK(f*,f) <ky X 2771 /(27)!

Jj=0
<max(K° 22)(1-8/¢) 6.
Hence, the complexity bound (A.1) holds, with A({) = (1 — 8/7)716.
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LEMMA A.1 [Donoho and Johnstone (1994a, b)].
Prob{B;} < 1/(27).

The proof depends on tail bounds for chi-squared variables, which, ulti-
mately, depend on concentration-of-measure estimates (e.g., Borell-Tsirel’son
inequality).

A.2. Proof of Lemma 8.4. The proof of each display is similar, so we

just discuss the first. Fix a rectangle R = I, X I, with |I,| = 27/1. Let R"°
and RY! denote the left and right halves:

fr ¢r> = 21‘/2{mefdxdy - le’Ofdxdy}.

Hence for the very special increment 4 = 271,

[ (Dyf)(x,y)dxdy = [ (f(x+h,y) = f(x,y)) dxdy
RY RY

= [, fdxdy = [ fdxdy =27/%CF, d).
RV RLO

For any sum X, over rectangles R with disjoint interiors,

le,OD}L f

Now by assumption 1/p < p+ 1/2, which (as p < 1/2) means p > 1. Let
1/p +1/p" =1,

4

YKF, dp)l? =222 ),
R R

< ”D}ILf”LP(RlvO)“l”LP’(RLO)’

[0

YK F, dpdI? < 20 /250=2) S IDLF|I 2o groy.
R R

SO

Now if Y, is interpreted to mean the sum over a partition of [0,1]? by
congruent rectangles, then

YND; FllEsr) = 1D} FllErh,
R

and so from || D} fllzrrroy < D} fllz»(ry We conclude that

1/p
X Kf éml? < 2/0/P=1/2| DL FllLecqy
ReZ(j)

< 2/1/p-1/ 20 = 9-i$19i1/P-1/D (.

A.3. Proof of Lemma 8.6. We assume for the proof below that §, and
8, are mutually irrational. Very slight modifications allow us to handle the
exceptional cases.
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Think of the quarterplane consisting of (x, y) with x, y > 0 as a collection
of square “unit cells,” with vertices on the integer lattice. Think of the set
where x6; = y8, as aray S in this quarterplane, originating at (0, 0).

Let p; = (ji()), j(7)) denote the sequence of pairs of values j, 8, = j,8,
where j, +j, =j. Let p¥ = (ji()),j5(j)) denote the sequence of pairs of
values obtained from the optimal sequential partitioning of definition 8.5.

Our claim, to be established below: p; and p; always belong to the same
unit cell.

It follows from this claim that j¥(j) > j;(j) — 1 and ji(j) > jo(j) — 1;as a
result

max(2 D%, 27750 < 2 max(2 )0 2 alide)

and the lemma follows.

The claim is proved by induction. Indeed, at j =0, p; = p7 = 0. So the
claim is true at j = 0.

For the inductive step, suppose the claim is true for steps 0 <j < J; we
prove it for J + 1. Let C; denote the unit cell containing p;, where, if several
cells qualify, we select a cell having p; on the skew diagonal.

Under this convention, at each step j, p; lies on the skew diagonal through
this cell, which joins its upper left corner to its lower right corner. Supposing
the claim is true at step j, p} is either at the upper left corner or at the lower
right corner of the cell. Note also that C;,, is either above C;, or to the right
of C..

V&;ith this set-up, the inductive step requires two things: (1) that if p% is at
the lower right corner of C,, and Cj, , is above C,, then, p%,, is above p¥,
that is, b,(J + 1) = 1; (2) that if p% is at the upper left corner of C;, and if
C,., is the cell to the right of C,, then p%_ ; is to the right of p%, that is,
b(J+1) =1

Now note that the trajectory of p% is being determined by greedy mini-
mization of the function f(x, y) = max(2~%1*,27 %) by paths through integer
lattice points. Below the ray S, (d/dx)f(x,y) = 0. We conclude that unit
moves in the x-direction are useless when one is below S. On the other hand,
below S, (d/dy)f(x, y) < 0. So a unit move in the y-direction if it is avail-
able, is useful. Above the ray S, the situation is reversed: (d/dy)f(x, y) = 0.
We conclude that any move in the y-direction is useless when one is above S.
But a unit move in the x-direction, if it is available, is useful.

Suppose one is in case (1) of the above paragraph. Then one knows that the
upper right vertex of C; is below or on the ray S. It follows that a full unit
move in the y direction is available and useful. The greedy algorithm will
certainly take it, and case (1) is established.

Suppose one is in case (2) of the above paragraph. Then one knows that the
upper right vertex of C; is above or on the ray S. It follows that a full unit
move in the x direction is both available and useful. The greedy algorithm
will certainly take it, and case (2) is established.
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A.4. Proof of Lemma 8.10. Define
N(e) = sup{#{i: 16,(f,BAB( 8y, 8,))l > &}: fe%‘sl"s?(C)}.
The property in question amounts to the assertion that
(A.2) N(&)"""?e <KC, Ve> 0.

By Corollary 8.7, there are constants y; = ;(C) so that for f € 7> °2(C), the
coefficients in BAB(§;, §,) obey

1/p
[ Zlal?) <,
R
Now define
n(e,d,y) = sup{#{i: 16, > 8}2 6 R 6], < y}.
Then
N(e) <1+ ) n(8,2j,yj),
Jj=0
where the y; are as above. Easy calculations [see (10.5) and (10.6)] yield
n(e,d,y) = min(d, (y/&)P); from y, = C277(°*1/271/P) we get (A.2).

A.5. Proof of Lemma 8.11. The proof is an application of the following
fact, called the “incompressibility of Hypercubes” in Donoho (1993). Suppose
that /# is an orthogonal hypercube symmetric about zero; then it can be
written X; a;g; where the g; are orthogonal and the a vary throughout the
cube |a;| < &. We call any basis starting with elements g, g,,...,8, a
natural basis for /7 In that basis, /# is rotated so that the axes cut orthogo-
nally through its faces.

Let % be a natural basis for such a /# and let ® = (%, %) be the body of
coefficients of /# in that basis. Let U be any orthogonal matrix. Then for
absolute constants ¢(p) and 0 < p < 2,

sup|lUB|l;» = c( p) supl6]];».

006 =LC]
In Donoho (1993), this is shown to be a consequence of Khintchine’s in-
equality

To use this, we argue by contradiction. Suppose that the hypotheses of the
lemma hold, and yet for a certain basis Z*, 7*(0(F, %*)) = 7 — ¢ where
&> 0. Then for 0 < § < &, we have the weak-type inclusion O(7, #*) c wl™°.
Equally, we have the stronger inclusion (%, #*) c [ °,

Let Z be the jth hypercube in the sequence posited by the theorem, and
let %; be a natural basis for 7. There is an orthogonal matrix U; so that
0(f, #%) = Uo(f, B):

sup |0(h, &)+ = sup lU0(h, Z,)llis
heX] heX]

> c(7— 8)supllo(h, B;)lli—s.
heZ;
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On the other hand,

sup|0(h, Bl = m7 " %;
he%]ﬁ

= /1, Y,/ (r=8)=-1/7
(m] 8])m.]
> com}/ O oo,

Hence O(%, %*) ¢ 1™ ° for any & > 0. This contradiction proves Lemma 8.10.
A.6. Proof of Lemma 8.12.

The construction. Let g be a smooth function on R? supported inside the
unit square [0, 1]2, whose support contains the half-square [1/2, 3 /4]%. Sup-
pose that [(d/dx)gllz- < & and that |(d/dy)gll- < €. Suppose also that
llgllzz = 1.

Let #(j) be the tiling of [0, 1] selected at level j by BAB(8;, 8,). As this is
a spatially homogeneous basis, all tiles are congruent. For an R €.%()), let
gr denote the translation and dilation of g so that it just fits inside R, that
is, supp(gr) € R and R /2 C supp(gy) where R /2 denotes the rectangle with
the same center homothetically shrunk by a factor of 50 percent.

Let g, = C277(r*1/2 /(6£); define

Z;={ Y aRgR:IaRlsej}.
ReZ())

ProOPERTY 1. We first note that # obeys the dimension inequality as-
sumed in the statement of the lemma, with K = 1/(6¢). Set p = §,8,/(8; +
8,) and 7=2/(2p+ 1). With m; =2/ the dimension of % and & the
sidelength, one gets

m;/e; = Cy >0,
with C, = C/(6¢).

PROPERTY 2. The key claim about % is the embedding .7 c 7> °2(C): for
any [ €%,
sup A=%D} fllLr@p < C,
0<h<1

sup A=%D} fllLrz < C.
0<h<1

(A.3)

We prove the first inequality only, starting with estimates for differences
of gz. Let R be of side 2771 X 2772,

Let h > 2771, and let R, denote the translation of R by “to the left by A.”
Then if (x,y) € R,, Djgp(x,y) = gpg(x + h, y), while if (x,y) €R,
D} gp(x,y) = —gp(x, y). Note further that R, is not generally part of the
tiling %(j), but instead overlaps with two tiles, R; and Rj, say. Let
br(x, y) = gglx + h, y)15.(x, y), and cglx, y) = gg(x + h, y)1p:(x, y). Then
Digp =ap + by + cp, where ap is supported in R, and b, and cp are
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supported in Rj. We have for each R,
lagll, lbglls, llcgll.. < £2772.

Now consider the case 0 < 7 < 2771, Let bp(x, y) = gp(x + A, Vg (x, ¥),
and cp(x,y) = 0 and set R} = R} = R,. Then D} gy = ap + by + cg, where
ap is supported in R and by and cj are supported in R;°. We have

llaglle, 16z, llegll. < min( A2/, 1) 2772,

Now consider increments of f= L apgr. Rearrange the terms to have
common support
1p_
D, f= ZaRaR + aR;bR + ag:cp.
R
Now

ICeg)ir, I(eg:)lir < I(ag)llzr.
By assumption, 1/p < p + 1/2;as p <1/2 we have p > 1, and the triangle
inequality gives

1D 1, < | T apas
R

| S, + | T amgen
P R P

< lICag)ll» m}gXIIaRlloo + ICag; )le mP:?XIIbRIIm + ICag)lle mRaXIICRIIoo

< 3¢ min( A2/, 1)l ag)ll».
Hence

A

sup A=%D} fll, < suph 3£ ag)ll; min( A2/, 1)2/0/271/P)
0<h<1 h

= 3¢1l(ag)l11s2°/2"1/7) suph =% min(h2, 1)
h

= 3§||( C(R)||lp2-j(l/2_ 1/p)2.j181.
Now from the proof of Lemma 8.6 we know that for BAB(§,, §,),

2]151 <2 Zjﬂ’
we conclude that
sup h™2D; fll, < 6£2/r*1/2=1/P)| o], < C.
0<h<1
This establishes (A.3).

A.7. Proof of Lemma 9.3. Recall the proof of Lemma 8.12. Let £ > 0 be

given, and pick j so that the values ¢;, £;,; defined in that lemma satisfy
g1 < e g

Construct the hypercube 7 exactly as in Lemma 8.12, only using side-
length & in place of &;.

We first note that the generating elements g, are orthogonal with respect
to the sampling measure /%, because they are disjointly supported. We also
note that because of the dyadic structure of the sampling and the congruency
of the hypercubes, each g has the same /3 norm as every other g. Call this
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norm & = &(¢&). Finally, we note that

1 1/2
S = 8( M., Zg(xi)2) llgllzz0, 172,
where the sum is over an M, X M, array of grid points, where M, = 2777/,
Hence 7 is an orthogonal hypercube for 1%. The asymptotics of the side-
length can be derived from the fact that g is nice, the grid is becoming finer
as j increases, and so the indicated sum converges to the corresponding
integral, whence

8=¢e(1+0(1)).

The hypercube .7 that results has two properties: first,

my e = Cy(¢),

where
Ci(e) = Co(e/sj) > 00(8j+1/8j) =C/6£2 (P12,

Hence the dimensionality of the hypercube obeys (9.4), with K = (6£2(P*1/2)7,
Second,

# cF%(C).

This inclusion follows exactly as in Lemma 8.12.
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