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DECOMPOUNDING: AN ESTIMATION PROBLEM
FOR POISSON RANDOM SUMS

BY BORIS BUCHMANN AND RUDOLF GRÜBEL

Technische Universität München and Universität Hannover

Given a sample from a compound Poisson distribution, we consider
estimation of the corresponding rate parameter and base distribution. This
has applications in insurance mathematics and queueing theory. We propose
a plug-in type estimator that is based on a suitable inversion of the
compounding operation. Asymptotic results for this estimator are obtained
via a local analysis of the decompounding functional.

1. Introduction. The statistical problem to be discussed in this paper is
motivated by applications from insurance mathematics and queueing theory. In the
standard model of risk theory [see, e.g., Beard, Pentikäinen and Pesonen (1984)
or Grandell (1991)], claims of random size X1,X2,X3, . . . arrive at random times
T1, T1 +T2, T1 +T2 +T3, . . . . The random variables X1,X2,X3, . . . , T1, T2, T3, . . .

are assumed to be independent, the Xk , k ∈ N, have distribution P and the
interarrival times Tk , k ∈ N, are exponentially distributed with parameter λ. In
particular, the claim arrival times are given by the points of a Poisson process with
constant intensity λ. For all t ≥ 0,

St = ∑
k : T1+···+Tk≤t

Xk(1)

is the total claim amount up to and including time t . Similarly, in a queueing
context as discussed, for example, in Asmussen (1987), if customers arrive at a
service point in bulks of size X1,X2, . . . at the time points of a Poisson process
then (1) gives the total number of customers that arrive in the time interval (0, t].

The assumptions imply that the distribution Q of S1 can be written as a
convolution series,

Q = �(λ,P ) with �(λ,P ) = e−λ
∞∑

k=0

λk

k! P
�k.(2)

Q is the compound Poisson distribution with rate λ and base (or claim size or
bulk size) distribution P . (Unfortunately, Poisson distributions with a random
parameter, i.e., mixed Poisson distributions, are often called compound in the
literature.)
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Assume now that we observe the process S = (St )t≥0 at equally spaced time
points h,2h, 3h, . . . , nh. After rescaling if necessary we may take h to be equal
to 1. Then the increments

Yk := Sk − Sk−1, k = 1, . . . , n,

of the process are independent and have distribution Q. Is it possible to “recover”
P (and λ) from such a sample of Q-observations? This only makes sense if
P (Xi = 0) = 0 as otherwise the function (λ,P ) �→ Q is not one-to-one and an
identifiability problem arises, so we will assume this throughout the paper.

The “direct” problem, from P to Q, has been considered by Pitts (1994a), who
used the plug-in estimator derived from (2),

Qn := �(λ,Pn) = e−λ
∞∑

k=0

λk

k! P
�k
n ,(3)

where Pn denotes the empirical distribution function associated with a sample
of size n from P . The rate λ was assumed to be known. Regarding P �→ Q =
�(λ,P ) as a nonlinear operator (functional) on a suitable function space one
can then use the local analytic properties of the functional, such as continuity
and differentiability, to deduce statistical properties of Qn, such as consistency,
asymptotic normality and asymptotic validity of bootstrap confidence regions,
from the corresponding properties of Pn. A similar approach was used in Grübel
and Pitts (1993) and Politis and Pitts (2000) for nonparametric estimation in
renewal theory, in Pitts (1994b) for G/G/1 queues and in Grübel and Pitts (2000)
for nonparametric estimation of perpetuities.

In the context of the “inverse” problem, from Q to P , such a plug-in approach
seems not to be feasible, at least on first sight. Compounding transforms a
probability distribution into a probability distribution. Compounding can therefore
easily be applied to empirical distributions whereas in the other direction,
“decompounding” so to speak, we do not have an analogue of (2) in this strict
sense. Indeed, as a rule empirical distributions are not in the range of the
compounding functional P �→ Q. Nevertheless, reasonable (in the sense of being
algorithmically feasible and accessible to asymptotic analysis) plug-in estimators
can be constructed if we are prepared to make some sacrifices. In the discrete
situation, by which we mean that P (N) = 1, we can proceed in a relatively
straightforward manner as � turns out to be locally invertible if its domain is
extended to general summable sequences. The discrete case is of course the one
that is of primary interest in queueing applications. In the general case, which is
the natural frame for applications in risk theory, we face the difficulty that, roughly
speaking, the statistical and the algebraic-topological aspects of the problem do not
match as well as in the discrete case where the estimates on the Q-side converge in
total variation norm, a norm that relates well to convolution. In the general case the
empirical distribution associated with the Q-sample will only converge in a weaker
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norm, such as the supremum distance of the respective distribution functions, and
the corresponding asymptotic normality result will lead to a limit process whose
paths are no longer of bounded variation. The concession we make in this situation
consists of switching to a relatively weak norm; however, we still have uniform
convergence over bounded intervals for our general plug-in estimator.

The paper is organized as follows. Section 2 contains the main results, first
for the discrete case and then for the general case. Our results are stronger
for the discrete case. We restrict ourselves to asymptotic normality which, as
indicated above, follows from a differentiability property of a suitably chosen
inverse map. We do not discuss consistency as it is similarly related to the weaker
property of continuity. The asymptotic normality results can be used in the discrete
case to obtain asymptotically correct confidence intervals for individual claim
size probabilities by Studentization, but in order to obtain confidence regions
for the whole probability mass function or distribution function we would need
the quantiles of the distribution of some functional of an infinite-dimensional
Gaussian process. Bootstrap confidence regions are the practical alternative and
the differentiability properties that we establish in the course of our proofs of
asymptotic normality can also be exploited to prove the asymptotic validity of
bootstrap confidence regions. The details of this argument have been carried out in
Grübel and Pitts (1993, 2000) and will not be repeated here.

Section 3 discusses algorithmic aspects and gives some illustrative numerical
examples. Proofs are collected in Sections 4 and 5. The last section contains
some remarks on possible extensions and other aspects of our results. A different
approach to decompounding, based on likelihood ideas, will be treated in a
separate paper.

2. Main results. We first consider the discrete case, with P and Q related
by (2) and P (N) = 1, which obviously implies Q(N0) = 1. Let p = (pi)i∈N0 and
q = (qi)i∈N0 with pi := P ({i}), qi := Q({i}) be the respective probability mass
functions. The compound mass function can be obtained recursively from the rate
and the mass function of the base distribution by

q0 = e−λ, qi = λ

i

i∑
j=1

jpjqi−j for all i ∈ N.(4)

Formulas of this type arise quite generally in the context of discrete infinite
divisibility [see, e.g., Johnson, Kotz and Kemp (1992), page 352]. In insurance
mathematics, (4) is known as Panjer recursion. The recursion can easily be inverted
to give

λ = − logq0, pi = − qi

q0 logq0
− 1

iq0

i−1∑
j=1

jpjqi−j for all i ∈ N.(5)
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Now assume that Y1, . . . , Yn are independent with common distribution Q. The
associated empirical probability mass function qn = (qn,i)i∈N0 is given by

qn,i = 1

n
#{1 ≤ m ≤ n :Ym = i}.

We risk an ambiguity in order to keep the notation compact: q with a single index
i or j refers to the components of q , q with index n to the empirical probability
mass function. As in the step from (2) to (3) we define the plug-in estimators λn

and pn = (pn,i)i∈N0 for λ and p by λn = − logqn,0,

pn,i = − qn,i

qn,0 logqn,0
− 1

iqn,0

i−1∑
j=1

jpn,jqn,i−j for all i ∈ N

and pn,0 = 0. Degenerate cases such as qn,0 = 0 need separate consideration.
We handle this together with a similar aspect relating to pn: We are interested
in statistical properties such as consistency and asymptotic normality, which
both refer to a topology on some space for the estimates. Weak convergence
for distributions on N0 is equivalent to convergence in total variation norm by
Scheffé’s theorem, which leads us to consider the space

�1 :=
{
a ∈ RN0 :

∞∑
i=0

|ai| < ∞
}

of absolutely summable sequences of real numbers together with the norm

‖a‖1 =
∞∑
i=0

|ai|.

We write δk = (δki)i∈N0 for the element of �1 that has δkk = 1 and all other
entries equal to 0. Obviously, qn is a random element of �1 but a priori there is
no guarantee that Panjer inversion stays inside this space, that is, we might well
have pn /∈ �1. In Section 4 we will show that

lim
n→∞P (qn,0 = 0 or pn /∈ �1) = 0.

Hence, if we simply put λn = 1 and pn = δ1 if qn,0 = 0 or pn /∈ �1 then we can
regard our estimates as elements of the space R × �1. In our first result, weak
convergence refers to the product topology on this space that is generated by
Euclidean distance on the first and by ‖ · ‖1 on the second factor. The condition
on p is discussed in Section 4 below.

THEOREM 1. Assume that
∑∞

i=1 p
1/2
i < ∞ and let (ri)i∈N0 be defined

recursively by

r0 := 1

q0
, ri := − 1

q0

i∑
j=1

qj ri−j for all i ∈ N.(6)
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Then (
√

n(λn −λ),
√

n(pn −p)) converges in distribution to a centered Gaussian
random element (ξ, (Zi)i∈N0) of R × �1 as n → ∞ with Z0 ≡ 0 and covariance
structure

Eξ2 = r0 − 1,

EξZi = 1

λ
(pi − ri − pir0) for all i ∈ N,

EZiZj = 1

λ2

(
pirj + pjri + pipj r0 − pipj +

i∑
l=0

rlrl+j−iqi−l

)
for all i, j ∈ N with j ≥ i ≥ 1.

(7)

We now turn to the general case. For simplicity we assume that λ is known. As in
the discrete case we have P and Q related by (2) and Y1, . . . , Yn independent with
distribution Q. Let F and G be the distribution functions of P and Q respectively;
Gn with

Gn(x) = 1

n

n∑
m=1

1[0,x](Ym) for all x ≥ 0

is the empirical distribution function associated with Y1, . . . , Yn. (Here and in the
following 1A denotes the indicator function of the set A.) These functions are
elements of the space D = D([0,∞)) of functions h : [0,∞) → R that are right-
continuous and have left-sided limits; we also require that limx→∞ f (x) exists
for elements of this space. For any such function h we write h◦ for the function
x �→ h(x)−h(0). If h is the distribution function of some probability measure then
the transition from h to h◦ corresponds to the removal of the atom at zero of this
measure. For example, G◦

n(x) is the fraction of strictly positive Y -values that are
less than or equal to x. We now define an estimator Fn for F by

Fn(x) =
∞∑

k=1

(−1)k+1eλk

λk
(G◦

n)
�k(x) for all x ≥ 0.(8)

Of course, “�” continues to denote convolution which, however, is now defined
only on a subset of D × D (details are given in Section 5). Note that the absolute
values of the coefficients in this series increase at an exponential rate, so it is not
clear a priori that this definition makes sense—indeed, this will be part of our
next result. It follows from Lemma 7 below and from the arguments given at the
beginning of Section 4 that this new estimator is “backward compatible” to the
earlier estimator for the discrete case.

We need one more definition. For any τ ∈ R let D(τ) be the space of all
functions f with the property that x �→ e−τxf (x) is an element of D. On D we
consider the supremum norm

‖f ‖∞ = sup
x≥0

|f (x)| for all f ∈ D,
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which makes D a Banach space. Similarly, when equipped with

‖f ‖∞,τ = sup
x≥0

e−τx |f (x)| for all f ∈ D(τ),

D(τ ) becomes a Banach space. In our second main result weak convergence refers
to these spaces, where the σ -field is the one generated by the open balls in the
respective norm.

THEOREM 2. Let τ > 0 be such that
∫

e−τxF (dx) < (log 2)/λ. Then√
n(Fn − F) converges in distribution as n → ∞ with respect to (D(τ ),‖ · ‖∞,τ )

to a centered Gaussian process Z with covariance structure

EZsZt =
∫ ∫

G◦((s − u) ∧ (t − v)
)
H(du)H(dv) − e−2λH ◦(s)H ◦(t)

for all s, t ≥ 0, with H given by

H(x) = 1

λ

∞∑
k=1

(−1)k+1eλk(G◦)�(k−1)(x).

3. Algorithmic aspects and numerical examples. The (in)famous von
Bortkewitsch data [see, e.g., Quine and Seneta (1987)] give the number of deaths
caused by horse kicks in the Prussian army, for various corps and years. The values
0–4 were observed 109, 65, 22, 3 and 1 time(s), respectively. The interpretation of
a possibly compound rather than simple Poisson distribution as horses killing more
than one soldier in one go is somewhat far fetched, but it seems interesting to see
our procedures at work with a real data set.

Plugging the q-values into the inverse Panjer recursion we obtain the estimates

λn = 0.6069, pn,1 = 0.9825, pn,2 = 0.0396,

pn,3 = −0.0365, pn,4 = 0.0207,

all rounded to four decimal places. Note the occurrence of a negative value.
Theorem 1 can be used to obtain asymptotically correct confidence intervals for the
individual estimators, using plug-in estimates (again) for the unknown asymptotic
covariances. Estimates for r can be obtained from the q-estimates via (6), and (7)
leads to the estimate

ξ Z1 Z2 Z3 Z4

ξ 0.8349
Z1 0.4531 1.0926
Z2 −0.5193 −1.5048 2.2433
Z3 0.0468 0.4860 −0.9019 0.5674
Z4 0.0456 −0.0591 0.1467 −0.1707 0.1171
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for the asymptotic covariance matrix. With n = 200 we obtain the values 0.0739,
0.1060, 0.0533 and 0.0242 for the standard errors of the individual estimates, again
rounded to four decimal places. The estimates for the mass function p are therefore
all within one standard deviation of p = δ1, which corresponds to an ordinary
Poisson distribution. Hence, on the basis of these calculations there is no reason to
assume that horses run amok.

We now consider a nondiscrete example with simulated data. The right-hand
plot in Figure 1 displays the estimates obtained for two samples of size 1000
from a compound Poisson distribution with rate 2, the left-hand plot shows
the empirical distribution functions for the compound data. The claim size
distribution is a mixture of the exponential distribution with parameter 1 and the
distribution concentrated at the single value 1, with mixing coefficients 2/3 and
1/3 respectively; the corresponding distribution function is displayed as a dotted
line. To obtain the estimates numerically we discretized the data and then applied
the inverse Panjer recursion given in (5). The arguments given in Section 5 for the
differentiability of the decompounding functional can easily be adapted to obtain
a version of continuity that justifies this approximation, hence the choice of the
discretization parameter is not a major issue here. We mention in passing that using
Panjer recursion instead of transform methods avoids problems that may arise with
the latter if the Fourier transform of the q-sequence winds about 0; see Embrechts,
Grübel and Pitts (1993), Grübel and Hermesmeier (1999) and the references given
there for FFT based calculation of compound distributions, and Buchmann (2001)
for the homotopy problem. Using recursion rather than transform methods also
makes it possible to calculate a finite initial segment of the distribution functions
of interest.

While the two compound empirical distribution functions are relatively close
to each other, this is not the case for the two estimates of the base distribution
function. Figure 2 shows that increasing the sample size improves the estimate,
but that increasing the rate leads to a deterioration.

FIG. 1. Two estimates for the total and the individual claim size distribution (n = 1000, λ = 2).
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FIG. 2. Estimates for the individual claim size distribution (left: n = 10,000, λ = 2, right:
n = 10,000, λ = 5).

We notice that the estimates for the base distribution are not distribution
functions as they are, as a rule, not increasing; see Section 6.3 for possible
modifications. The estimates capture the jump at 1. Also, the precision seems to
decrease for increasing x-values, in accordance with our results.

4. Proof of Theorem 1. In the discrete case the basic convolution inequality

‖a � b‖1 ≤ ‖a‖1‖b‖1 for all a, b ∈ �1

can be used to transfer the familiar power series calculus to �1. In particular,

exp(a) =
∞∑

k=0

1

k!a
�k

is well defined on the whole of �1 and writing

â(z) =
∞∑
i=0

aiz
i, −1 < z < 1,

for the generating function associated with a = (ai)i∈N0 ∈ �1 we have

b̂(z) = exp
(
â(z)

)
for b := exp(a)

(it should always be clear from the context which space the exponential function
refers to). This implies

d

dz
b̂(z) =

(
d

dz
â(z)

)
b̂(z),

which upon comparing coefficients leads to

b0 = exp(a0), ibi =
i∑

j=1

jajbi−j for all i ∈ N.
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This shows that Panjer recursion can be regarded as an algorithm that implements
the exponential function on �1 (in fact, on even larger spaces).

We require two more properties of the exponential function on �1, and both are
easily verified with the help of generating functions. First,

exp(a + b) = exp(a) � exp(b) for all a, b ∈ �1;
second, using the fact that we deal with real vector spaces throughout,

exp(a) = exp(b) �⇒ a = b for all a, b ∈ �1.

As a first application of these rules we obtain that q = exp(λ(p − δ0)) has a
convolution inverse given by q�(−1) = exp(−λ(p − δ0)). Comparing coefficients
in q�(−1) � q = δ0 shows that q�(−1) = r with r as in the statement of Theorem 1;
in particular, r ∈ �1. Let λ,p, q and λn,pn, qn be as in Section 2.

LEMMA 3. If ‖qn − q‖1 < ‖r‖−1
1 then

(λn − λ)δ0 + λp − λnpn =
∞∑

k=1

1

k

(
r � (q − qn)

)�k
.

PROOF. The series

an :=
∞∑

k=1

1

k

(
r � (q − qn)

)�k
converges in �1 because of

‖r � (q − qn)‖1 ≤ ‖r‖1‖qn − q‖1 < 1.

We know that

− log(1 − z) =
∞∑

k=1

1

k
zk, −1 < z < 1,

which results in

exp
(−ân(z)

) = r̂(z)q̂n(z).

This means that we have found an element bn := λ(p − δ0) − an of �1 such
that qn = exp(bn). As explained above, the components of qn can be obtained
recursively from those of bn. Inverting the recursion, using the fact that the
exponential function is one-to-one on �1 and using the definition of λn and pn

in Section 2 we finally see that

an = λ(p − δ0) − λn(pn − δ0)

which implies the statement of the lemma. �

Our next auxiliary result can be regarded as a differentiability property of a
function closely related to discrete decompounding. Convergence refers to ‖ · ‖1.
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PROPOSITION 4. If
√

n(qn − q) → a as n → ∞ for some a ∈ �1 then
√

n(λ − λn)δ0 + √
n(λnpn − λp) → r � a.

PROOF. As the condition implies qn → q we may assume because of
Lemma 3 that

(λn − λ)δ0 + λp − λnpn =
∞∑

k=1

1

k

(
r � (q − qn)

)�k
.

This in turn implies
√

n(λ − λn)δ0 + √
n(λnpn − λp) = r �

(√
n(qn − q)

) + bn

with

bn := −√
n

∞∑
k=2

1

k

(
r � (q − qn)

)�k
.

As convolution is continuous we obtain the limit r � a for the first term in the
decomposition, hence it remains to show that bn tends to 0 in �1. This however is
obvious from

‖bn‖ ≤ ‖√n(q − qn)‖1‖r‖1

∞∑
k=1

1

k + 1

(‖r‖1‖q − qn‖1
)k

and ‖qn − q‖1 → 0. �

On first sight it seems that this proposition is of little use as we do not have
pointwise convergence of the random quantities

√
n(qn − q), where qn denotes

the empirical mass function associated with a sample of size n from q . What we
do have is the following consequence of the Borisov–Durst theorem [see, e.g.,
Dudley (1999), Theorem 7.3.1].

PROPOSITION 5. If
∑∞

i=0 q
1/2
i < ∞ then

√
n(qn − q) converges in distribu-

tion to a centered Gaussian process V = (Vi)i∈N0 with covariance

cov(Vi,Vj ) = δij qi − qiqj for all i, j ∈ N0.

Further, if
√

n(qn − q) converges in distribution then
∑∞

i=0 q
1/2
i < ∞.

To see that
∑∞

i=0 q
1/2
i < ∞ follows from the condition

∑∞
i=1 p

1/2
i < ∞ in

Theorem 1 we note that the function φ,

φ(a) =
∞∑
i=0

|ai|1/2,
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has the properties

φ(a + b) ≤ φ(a) + φ(b), φ(αa) ≤ |α|1/2φ(a), φ(a � b) ≤ φ(a)φ(b).

Using these and monotone convergence we obtain

∞∑
i=0

q
1/2
i ≤

∞∑
k=0

(
e−λ λk

k!
)1/2

( ∞∑
i=1

p
1/2
i

)k

,

which gives the desired implication. In fact, the two conditions are equivalent, the

other direction being immediate from qi ≥ λe−λpi , hence
∑∞

i=1 p
1/2
i < ∞ is a

necessary condition in Theorem 1.
The Skorohod representation theorem provides the connection between the dis-

tributional result in Proposition 5 and the pointwise statement in Proposition 4: We
can construct a probability space (��,A�,P �) carrying random sequences V �,
q�
n , n ∈ N, such that L(V �) = L(V ), L(q�

n ) = L(qn) for all n ∈ N, and

lim
n→∞

√
n(q�

n − q)(ω�) = V �(ω�) for all ω� ∈ ��

[we write L(X) for the distribution of the random quantity X]. Within this
construction we can use Proposition 4 to obtain

√
n
(
(λ − λ�

n )δ0 + (λ�
np�

n − λp)
)
(ω�) → r � V �(ω�) for all ω� ∈ ��,

where (λ�
n ,p�

n ) depends on q�
n exactly as (λn,pn) depends on qn, that is, via (5).

Switching back to the original quantities and using the distributional equalities
built into the construction we obtain

√
n(λ − λn)δ0 + √

n(λnpn − λp) → W in distribution,

with W := r � V , V as in Proposition 5. [This is one of the standard methods for
proving weak convergence, known as the infinite-dimensional delta method; see
Grübel and Pitts (1993, 2000), Pitts (1994a, b), Politis and Pitts (2000) and the
references given in these papers for a similar treatment of estimation problems in
other areas.] The distributional convergence implies λn → λ in probability. Using
this and

√
n(pni − pi) = 1

λn

(√
n(λnpni − λpi) + pi

√
n(λ − λn)

)
together with some standard rules for weak convergence we obtain(√

n(λn − λ),
√

n(pni − pi)
) → (ξ,Z) in distribution,

with ξ := −W0, Z0 ≡ 0 and

Zi = 1

λ
(Wi + piW0) for all i ∈ N.
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The steps transforming V into Z are bounded linear operators on �1, hence Z is a
centered Gaussian process. It remains to calculate the covariance structure. We do
this for the intermediate process W ; the formulas for ξ and Z then follow easily
from the above definitions of these quantities in terms of W .

Using r � q = δ0 we obtain

EW 2
0 = E(r0V0)

2 = r2
0EV 2

0 = r2
0q0 − r2

0q2
0 = r0 − 1,

and similarly, for i ≥ 1,

EW0Wi = Er0V0

i∑
j=0

rjVi−j

= r0

i∑
j=0

rj (q0δ0,i−j − q0qi−j )

= r0riq0 − r0q0(r � q)i = ri.

The same arguments lead to

EWiWj =
i∑

l=0

rlrl+j−iqi−l for j ≥ i ≥ 1.

5. Proof of Theorem 2. We put D(∞) := ⋃
τ>0 D(τ). Let Dm(∞) ⊂ D(∞)

be the subset of those functions that have finite variation on all intervals [0, x],
x > 0. We will use capital letters F,G,H for elements of Dm(∞). Equivalently,
Dm(∞) can be considered as the space of signed measures µ (hence the
index “m”) with the bound

|µ|([0, x]) = O(eτx) as x → ∞
for some τ = τ (µ) < ∞ on the increase of the total variation, the connection
being provided by H(x) = µ([0, x]). These measures in turn can be characterized
by the condition that the measure µτ with µ-density x �→ e−τx is a finite signed
measure on the Borel subsets of the nonnegative half line for some τ < ∞. (Our
arguments here and below use exponential tilting in a somewhat implicit manner.)
The measure associated with a function H ∈ Dm(∞) is nonnegative if and only if
H is (weakly) increasing. Let D+

m(∞) denote the corresponding subset of Dm(∞).
We write Dm, Dm(τ ) and D+

m, D+
m(τ ) for the intersection of D, D(τ) with Dm(∞)

and D+
m(∞), respectively.

Elements of Dm(∞) are characterized by their Laplace transform,

H̃ (θ) =
∫

e−θxH(dx) for all θ > τ(µ).

If H ∈ D(τ) then the integral is finite for all θ > τ . Convergence with respect
to ‖ · ‖∞,τ of a sequence (Hn)n∈N in D+

m(τ ) to some H ∈ D+
m(τ ) implies vague
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convergence of the corresponding tilted measures, which in turn implies H̃n(θ) →
H̃ (θ) as n → ∞ for θ > τ . An alternative and more direct argument for this
fact can be based on H̃ (θ) = θ

∫ ∞
0 e−θyH(y) dy, θ > 0, which follows from an

integration by parts.
Lower case letters f,g,h denote generic elements of D(∞) that might have

infinite total variation on finite intervals. For the convolution product to be defined
we need some variation condition for at least one of the factors; this is discussed
in some detail in Grübel and Pitts (1993). The situation here is simpler as we deal
with the “one-sided” case only; that is, all measures are concentrated on [0,∞),
so we can simply write

g � H(x) =
∫

g(x − y)H(dy) for all x ≥ 0,

which should be selfexplanatory in view of the notational conventions introduced
above. Two useful properties of convolution are collected in the following lemma.

LEMMA 6. (a) If H,Hn ∈ D+
m are such that limn→∞ ‖Hn − H‖∞ = 0, then

lim
n→∞‖g � (Hn − H)‖∞ = 0 for all g ∈ D.

(b) If H ∈ D+
m(∞) then ‖g � H‖∞,τ ≤ ‖g‖∞,τ H̃ (τ ) for all τ > 0.

PROOF. (a) The statement is easily checked for g = 1[0,a), 0 < a ≤ ∞, and
then immediately generalizes to functions g0 that can be written as finite linear
combinations of such indicator functions. It is not difficult to show that the latter
class is dense in D [see also Billingsley (1968), page 110], hence the assertion
follows from

‖g � (Hn − H)‖∞ ≤ ‖g0 � (Hn − H)‖∞ + ‖g − g0‖∞
(
Hn(∞) + H(∞)

)
,

together with a standard ε–δ argument.
(b)

‖g � H‖∞,τ = sup
x≥0

e−τx

∣∣∣∣∫[0,x]
g(x − y)H(dy)

∣∣∣∣
≤ sup

x≥0

∫
[0,x]

|e−τ(x−y)g(x − y)|e−τyH(dy)

≤ ‖g‖∞,τ

∫
e−τyH(dy). �

The following auxiliary result takes over the role of Lemma 3 in the discrete
case. Note that we again use the fact that our transforms are real-valued.
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LEMMA 7. If G is a distribution function with G̃◦(τ ) < e−λ then the series

�(G) :=
∞∑

k=1

(−1)k+1eλk

λk
(G◦)�k

converges in D(τ). Further, �(G) = F if G = �(λ,F ).

PROOF. Using Lemma 6(b) together with the obvious inequality

‖f ‖∞,τ ≤ ‖f ‖∞ for all f ∈ D,

we obtain

‖H�k‖∞,τ ≤ H̃ (τ )k−1 for all k ∈ N,

if H is the distribution function for some (sub)probability. This implies the
convergence of the series.

The series can obviously be written as the difference of two increasing functions
and is therefore an element of Dm(∞). The associated Laplace transform is

�̃(G)(θ) =
∞∑

k=1

(−1)k+1eλk

λk
G̃◦(θ)k = 1

λ
log

(
1 + eλG̃◦(θ)

)
, θ > τ,

hence the final statement of the lemma follows on using

exp
(
λF̃ (θ) − λ

) = G̃(θ), G̃◦(θ) = G̃(θ) − e−λ for all θ > 0,

and the identifiability of elements of Dm(∞) by their Laplace transforms. �

For all H ∈ D+
m(∞) we have H̃ ◦(θ) → 0 as θ → ∞ by dominated convergence,

hence the condition on G in Lemma 7 and the following proposition, which serves
as the analogue of Proposition 4 in the discrete case, is satisfied if τ is chosen large
enough.

PROPOSITION 8. Let G, Gn (n ∈ N) be elements of D+
m with G(0) = 0 and

Gn(0) = 0 for all n ∈ N. If
√

n(Gn − G) → h as n → ∞
with respect to ‖ · ‖∞ for some h ∈ D and if τ is such that G̃(τ ) < e−λ then

√
n
(
�(Gn) − �(G)

) → h � H as n → ∞
with respect to ‖ · ‖∞,τ , with H := 1

λ

∑∞
k=1(−1)k+1eλkG�(k−1).

PROOF. We have

G�k
n − G�k = (Gn − G) � Hn,k with Hn,k =

k−1∑
j=0

G�j
n � G�(k−1−j),
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which leads to the basic decomposition
√

n
(
�(Gn) − �(G)

) − h � H = A(N,n) + B(N,n) + C(N,n) − D(N)

with

A(N,n) := 1

λ

∞∑
k=N+1

(−1)k+1eλk

k

√
n(Gn − G) � Hn,k,

B(N,n) := 1

λ

N∑
k=1

(−1)k+1eλk

k

(√
n(Gn − G) − h

)
� Hn,k,

C(N,n) := 1

λ

N∑
k=2

(−1)k+1eλk

k

(
h � Hn,k − kh � G�(k−1)

)
,

D(N) := 1

λ

∞∑
k=N+1

(−1)k+1eλkh � G�(k−1),

valid for all n,N ∈ N (because of Hn,1 = G�0 = 1[0,∞) it is enough to start with
k = 2 in the third term). For a given ε > 0 we need an n0 ∈ N such that for all
n ≥ n0 the sum of the norms of the four terms is less than ε, where we may choose
an appropriate N .

Using Lemma 6(b) as in the proof of Lemma 7 we obtain

‖A(N,n)‖∞,τ ≤ 1

λ
‖√n(Gn − G)‖∞

∞∑
k=N+1

eλk

k
H̃n,k(τ ).

Let η < 1 be such that G̃(τ ) < ηe−λ. Since G̃n(τ ) → G̃(τ ) as n → ∞ we can find
an n1 < ∞ such that G̃n(τ ) ≤ ηe−λ for all n ≥ n1. But then

H̃n,k(τ ) =
k−1∑
j=0

G̃n(τ )j G̃(τ )k−1−j ≤ kηk−1e−λ(k−1)

so that

lim
N→∞ sup

n≥n1

∞∑
k=N+1

k−1eλkH̃n,k(τ ) = 0.

Convergence of
√

n(Gn − G) implies that the sequence is bounded, hence we
obtain

lim
N→∞ sup

n≥n1

‖A(N,n)‖∞,τ = 0.

The same arguments work with the fourth term, resulting in

lim
N→∞‖D(N)‖∞,τ = 0.
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The number of terms in B(N,n) and C(N,n) is finite for any given N , hence it
is enough to show that these converge to 0 individually as n → ∞. For those in
B(N,n) this follows from the assumptions of the theorem, the boundedness of
H̃n,k(τ ), n ∈ N and Lemma 6(b). In order to deal with the terms in C(N,n) we
first note that, for k ≥ 2,

Hn,k − kG�(k−1) =
k−1∑
j=0

(
G�j

n � G�(k−1−j) − G�(k−1))

=
k−1∑
j=1

(
G�j

n � G�(k−1−j) − G�(k−1))

=
k−1∑
j=1

(G�j
n − G�j) � G�(k−1−j)

= (Gn − G) �

k−1∑
j=1

Hn,j � G�(k−1−j).

Together with Lemma 6(b) this yields∥∥h �
(
Hn,k − kG�(k−1))∥∥∞,τ

≤ ‖h � (Gn − G)‖∞
k−1∑
j=1

H̃n,j (τ )G̃(τ )k−1−j

≤ ‖h � (Gn − G)‖∞
k(k − 1)

2
ηk−2e−λ(k−2)

with η and n as in the bounds for A(N,n). Lemma 6(a) yields ‖h�(Gn−G)‖∞→0
as n → ∞. Hence we have

lim
n→∞‖B(N,n)‖∞,τ = lim

n→∞‖C(N,n)‖∞,τ = 0

for any fixed finite N ∈ N.
A routine argument now completes the proof: Given ε > 0, we can find integers

n1 and N such that ‖A(N,n)‖∞,τ + ‖D(N)‖∞,τ < ε/2 for all n ≥ n1. For this N

we can find an n2 such that ‖B(N,n)‖∞,τ + ‖C(N,n)‖∞,τ < ε/2 for all n ≥ n2.
This shows that the sum of the norms of the four terms in the decomposition is less
than ε for all n ≥ n0 := max{n1, n2}. �

For the proof of Theorem 2 we now proceed as in the discrete case, with
the function spaces D, D(τ) replacing the sequence spaces that we used in
Section 4. Convergence in distribution in these function spaces is a technically
much more complicated issue: for details we refer the reader to one of the excellent
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research monographs and textbooks on this subject, such as Dudley (1999),
Pollard (1984), Shorack and Wellner (1986) and van der Vaart and Wellner (1996);
Billingsley (1968) is the classic in this area.

The analogue of Proposition 5 is the empirical central limit theorem [see,
e.g., Pollard (1984), page 97]. In the present setting this theorem states that√

n(Gn −G) converges in distribution to a rescaled Brownian bridge B ◦G, which
is a centered Gaussian process with covariance function given by

cov
(
(B ◦ G)(s), (B ◦ G)(t)

) = EB(G(s))B(G(t)) = G(s ∧ t) − G(s)G(t)

for all s, t ≥ 0. As h �→ h◦ is a measurable and continuous linear operator on D

this implies that
√

n(G◦
n − G◦) converges in distribution to V := (B ◦ G)◦, which

is again a centered Gaussian process. A straightforward calculation shows that the
covariance structure of V is given by

cov
(
V (s),V (t)

) = G◦(s ∧ t) − G◦(s)G◦(t)

for all s, t ≥ 0. The distribution of the limit process is concentrated on the set of
those functions in D that have their discontinuities at the jumps of G◦, a separable
subspace of D. We may therefore apply the Skorohod representation in the form
given in [Pollard (1984), page 71]. In complete analogy with the discrete case
discussed in Section 4, now with Proposition 8 instead of Proposition 4, this leads
to the convergence in distribution in D(τ) of

√
n(Fn − F) = √

n
(
�(G◦

n) − �(G◦)
)

to Z := V � H , with H as in the statement of the theorem. Again, Z arises from V

by a deterministic linear transformation and therefore is again a centered Gaussian
process. Its covariance structure is given by

cov
(
Z(s),Z(t)

)
= EV � H(s)V � H(t)

=
∫
[0,s]

∫
[0,t]

EV (s − u)V (t − r)H(du)H(dr)

=
∫
[0,s]

∫
[0,t]

(
G◦((s − u) ∧ (t − r)

) − G◦(s − u)G◦(t − r)
)
H(du)H(dr)

=
∫
[0,s]

∫
[0,t]

G◦((s − u) ∧ (t − r)
)
H(du)H(dr) − G◦� H(s)G◦� H(t).

Together with

H ◦ = 1

λ

∞∑
k=2

(−1)k+1eλk(G◦)�(k−1) = −eλ

λ

∞∑
k=1

(−1)k+1eλk(G◦)�k = −eλG◦ � H,

this completes the proof. �
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6. Comments. In Section 6.1 we discuss the connection to other stochastic
processes. Section 6.2 explains a testing application. Two variants of the plug-in
estimator are briefly considered in Section 6.3. The final subsection contains some
concluding remarks.

6.1. Other stochastic processes. In the previous sections we have seen our
basic problem as an inference problem of the classical type, where the observations
are a sample from a fixed distribution with a specific structure. We briefly point out
that the above can also be seen as an inference problem for stochastic processes; in
fact, we have already mentioned in the Introduction that the sample typically arises
from observing some compound Poisson process S = (St )t≥0 at equally spaced
time intervals. The process S can also be regarded as a marked point process,
and these and their statistics are treated in Karr (1986). This embedding of the
decompounding problem also points toward several generalizations of our basic
setup. Some of these are of theoretical interest and have considerable potential
for applications, for example, processes with nonconstant rate such as doubly
stochastic or Cox processes. Among these, Poisson processes with a Markov
modulated intensity have received considerable interest over the years; see, for
example, Asmussen (1989). On overview of the literature on the statistical analysis
of queueing systems is given in Bhat, Miller and Rao (1997).

6.2. A testing application. For Poisson distributions, that is, with the base
distribution concentrated at the single value 1, the asymptotic covariance structure
of the plug-in estimator given in Theorem 1 can be further evaluated, resulting
in

Eξ2 = eλ − 1, EξZ1 = λ−1(1 + λeλ − eλ),

EZ2
1 = λ−2(λ2eλ − λeλ + eλ − 1),

EξZi = −λ−1ri, EZ1Zi = λ−2ri(1 − i − λ) for i ≥ 2,

EZiZj = λ−2(−1)j rimi,j for 1 ≤ i ≤ j,

with

ri = eλ (−λ)i

i! , mi,j =
i∑

l=0

(
i

l

)
λl+j−i

(l + j − i)! for 1 ≤ i ≤ j.

This displays the limit distribution as a function of the rate parameter λ

and can be used to obtain asymptotically correct critical regions of tests
for Poissonity, if λ is estimated by, for example, the mean of the data. It
would be interesting to compare the power of the resulting test with the
power of other tests of Poissonity proposed in the literature; see, for example,
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Klar (1999) and the references given there, especially for compound Poisson
alternatives.

6.3. Two variants of the plug-in estimator. It is immediate from (3) (or, more
probabilistically, from the interpretation of compound distributions as random
sums) that qi > 0 for all i in the additive semigroup generated by the support
of p. As a consequence probability mass functions associated with compound
distribution cannot have bounded support, which means that the empirical mass
function qn cannot be the mass function of a compound Poisson distribution. In
particular, even if the Panjer inversion applied to qn yields an element of �1 with
high probability if n is large, this sequence will always have negative entries.
Therefore, the plug-in estimator needs some modification in order for the estimates
to be probability distributions. In the discrete case a straightforward remedy is to
simply replace the negative entries by 0 and then to normalize to keep the sum of
the entries to be equal to 1. This changes the plug-in estimate pn into �(pn), say. It
is easy to see that � is continuous at p, which means that consistency is not lost by
applying �. However, a similarly straightforward transfer of asymptotic normality
by a delta method argument is not possible as � is not differentiable at p. A closer
analysis, carried out in Buchmann (2001), shows that we still have convergence in
distribution of

√
n(�(pn) − p), but that the limit is no longer Gaussian.

A second modification of the plug-in estimator is motivated by the observation
that the sample y1, . . . , yn from the compound distribution cannot possibly contain
any information about the base probabilities pk with k ≥ zn := max{y1, . . . , yn}.
It therefore seems natural to stop the Panjer inversion at zn, as we have done in
the horse kick example in Section 3. It is shown in Buchmann (2001) that this
modification does not change the distributional asymptotics.

In the continuous case we have the similar phenomenon that the plug-in
estimator for the distribution function of the individual claims is itself not a
distribution function (see the right-hand plots in Figures 1 and 2). We could
associate with any F that defines a signed measure distribution functions F (1),
F (2) via

F (1)(x) = inf{F(y) ∨ 0 :y ≥ x}, F (2)(x) = sup{F(y) ∧ 1 :y ≤ x},
but at present we do not know the effect of these modifications on the asymptotic
distribution of the estimators.

6.4. Concluding remarks. The theorems in Section 2 show that the decom-
pounding problem can be solved on the usual n−1/2-level, a fact that we continue
to find slightly surprising. At least in the general case we were initially regarding
the problem as “ill-posed,” with the corresponding consequences such as a rate
lower than n−1/2 for the estimates. Of course, the classification of a problem as
ill-posed or inverse, etc. depends on the choice of topologies, so our results may
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be rephrased as saying that there are statistically meaningful choices for the latter
where decompounding can be considered to be a perfectly regular problem. How-
ever, numerical experiments such as given in Section 3 remind us of the fact that
a good rate is not a guarantee for high precision: comparing the left-hand and the
right-hand plots in Figure 1 shows that the “constant in front of the rate” may be
rather high. This effect becomes more pronounced with increasing rate λ. Indeed,
we know from the central limit theorem for random sums that the precise form of
the individual claim size distribution becomes irrelevant as λ → ∞ and that only
the first two moments survive.
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