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A LOWER BOUND ON THE ARL TO DETECTION OF A
CHANGE WITH A PROBABILITY CONSTRAINT
ON FALSE ALARM!

By BENJAMIN YAKIR

Hebrew University of Jerusalem

An inequality that relates the probability of false alarm of a change-
point detection policy to its average run length to detection is proved. By
means of this inequality, a lower bound on the rate of detection, when the
change occurs after a long delay, is derived.

1. Introduction. Let f,(x) = exp{6x — V(6)} be the density, with re-
spect to some o-finite measure, of a one-parameter exponential family. Let
(a, b) be an open interval of real numbers on which ¥ is finite, and let 6, and
6 be known, a < 6, < # < b. We will assume, as in [2, page 1268], that

6, = 0.
Consider the following simple formulation of a change-point detection with
a probability bound on false alarm: Let X, X,,... be an infinite sequence of

random variables, and let 1 < v < «, an (extended) integer, be an unknown
parameter: the change-point of the sequence. Witheach 1 < v <wand a < w
< 0, a probability measure on the sequence of observations is associated by
which the observations are independent. Under the probability measure [F"(f)”g,
the marginal density of the first » — 1 observations is f,, whereas the dens1ty
of the observations that follow is f,. Under the probability measure P{)
(= P,) the observations are ii.d. with density f,, and under P{) (= P,) they
are ii.d. with density f,. Let Z% = log[ f,(X,)/f,(X,)] be the log-hkehhood
ratio of an observation, and set Z?% =72 Denote by I(w, 0) the P,
expectation of Z>° [1(6) = I(0, 0)].

A detection policy is a stopping time, defined on the sequence of observa-
tions. For the most part of this paper, the stopping times that will be
considered are those that satisfy the probability constraint

(1) Po(N < ®) < a,

for a given 0 < @ < 1. Among such policies one seeks the policy that mini-
mizes the average run length (ARL) to detection:

(2) EY)(N — v+ 1IN > v).

However, which among the policies that satisfy (1) is best depends on the
value of v in (2). It is well known, for example, that when » = 1 the power-1
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SPRT minimizes (2) among all stopping times that satisfy (1). Nevertheless,
the performance of the SPRT is poor when large values of v are considered.

The main result in this article is an inequality that relates the probability
of a false alarm in (1) to the ARL to detection, given in (2). As a corollary of
this inequality (Corollary 2), we are able to confirm part of a conjecture of
Pollak and Siegmund [2, Section 6], regarding the rate of divergence of (2),
considered as a function of v, as v — .

At the end of this paper we will look at stopping times that satisfy the
stronger constraint

(3) P, (N <») < a,
for all a < w < 0. The conjecture in [2] states that, for any stopping rule
satisfying (3),

(4) lim sup EQ), (N — v+ 1IN = ») /log v > 1/1(0, 6).

v— ®©

It will be shown, via a counterexample, that the conjecture as stated is not
true.

2. The main inequality. The main result is the following theorem.

THEOREM 1. Assume that Z?, the log-likelihood ratio of an observation, is
nonlattice under P, and has a finite Prexpectation I1(0). Then there exists a
finite constant ¢ such that

aexp[c/(1— a)]
l—« '

(5) Y exp{—I(G)[E%”yé(N— v+ 1N > v)} <
v=1
The constant ¢ does not depend on «, v or N. However, it does depend on 6.

Proor. Define, foreach n =1, 2,...

.. exp{ zze}

v=1

These statistics are known as the Shiryayev—Roberts statistics. It is easy to
check that, for any stopping time N,
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In particular, if N satisfies (1), then P{’)(N > v) > 1 — a, hence

o

(6) Y. exp{—Ey)[log R4IN > »]} <
=1

1—a

For each n > v, the statistic R’ can be represented as a product of two
terms:

n v—1 v—1 n J-1
Rz=exp{zz5} Yexo| D2 +1+ ¥ exp{—ZZf}
i=v j=1 i=j Jj=v+1 i=v
=exp{ZZi9}><W9(V,n).

It follows, since Z/, Z/ ,,... are iid. under the measure P{")(-|N > v), that
Ey)[log RYIN = v]
— I(0)EYY(N — v+ 1IN = v) + E§)(log W*(v, N)IN = »)

E¢) (log W'(», )
l1—« )

(7

< I(G)[EE)TG(N— v+ 1IN > v) +

(Notice that log W is positive when N > v, and its definition can be ex-
tended to be zero when N < v.)

However, the P{’)-distribution of the random variable W’(v, N) is stochas-
tically dominated, uniformly in » and N, by the distribution of W! + 1 + W/,
where W) and W{ are independent of each other, the distribution of W{ is
the P, d1str1but1on of X7_jexp{-X/_ ,Z 9} and the distribution of W, is the

—d1str1but1on of X7 1exp{2 "} To assert this claim, notice that the
P(") distribution of Z" exp{Z” 1Zf’} is identical to the P,-distribution of
Z”,% exp{Z_,Z}} Wh1ch s Po-almost surely smaller than
Z“’ , exp{Y/_,Z}. Likewise, LI, , exp{ YIZ0ZP} is P()-almost surely
smaller than Z°J° ,exp{—X/_ ,,Zf}

From Theorem 4 in [1] it follows that the second term on the right-hand
side of (7) is bounded, uniformly in v and N. Plugging (7) into (6) completes
the proof. O

COROLLARY 1. Assume that Z! is nonlattice under P, and has a finite
second moment under B,. Let a,, a,,... be a sequence of positive numbers.
Then the upper limit

log a
(8) limsup |[E’)(N — v+ 1IN > v) + I(ge)”

is infinite for every stopping time N that satisfies (1) iff ¥_, a, = .
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PRrROOF. Assume first that X_; a, < «. Let
aa

(9) @, = ———, l1<v<oo,
k=10
The stopping time

N=inf{n: h avexp{z Zf} + )Y e 1},
v=1 v=n+1

i=v

%

which is similar to a policy suggested in [2], would produce a finite upper
limit in (8). The last claim follows from the relation

n
Nsinf{n: ZZ{’Z—logaV}, v=12,...,
i=v
Wald’s lemma and from the fact that the expectation of the overshoot is
bounded.
Assume next that the sum of the sequence {a,} diverges. Inequality (5) can
be rewritten in the form

Vgl a,,exp{—](@)[[EE{?,(N—v+ 1IN > v) + 100) T

logay}} B aexplc/(1— a)]

It is easy to see that a finite upper limit in (8) would produce a contradiction.
O

COROLLARY 2. Under the assumptions of Corollary 1, relation (59) in [2]
holds for w = 0; that is,

limsup Ey')(N — v+ 1IN > v) /log v > 1/1(0, 9),

v— ®©

for any stopping rule that satisfies (3) [and hence (1)].

ProOOF. The proof follows immediately from the proof of Corollary 1 with
a,=1/v. O

3. A counterexample. Corollary 2 states that the conjecture of Pollak
and Siegmund is true for w = 0. It is false, however, for a < v < 0. For any
such o one can find a stopping rule o, satisfying (3), for which (4) is false.
Indeed, fix a < w < 0. Consider, for any integer m and negative real 7,
a < 1 < 0, the auxiliary stopping rule

n n

N(m,n) =inf{in>m + 1: avexp{EZ?’9}+ Y a,,22},
v=n+1

v=m+1 i=v

where «a, is defined in (9) with a, = 1/(v log? v). Note that, forany a < { < n,

P (N(m,m) <) < 5
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and that, for any v > m,
—log( «,/2) + const.
I(n,0)

The constant is a bound on the expected overshoot. It depends only on 7
and 6.

Given 0 < ¢ < —w, let §,, beatestof Hy: n> w + ¢ versus H;: n < o +
g, based on the first m observations, with significance level a/2. Let m =
m(w, &) be a sample size needed to assure that the power of the test, at
N = w,is at least 1 — &.

Consider the stopping rule

og=0(w,e) =N(m,(w+ ¢&)8§,).

The stopping rule o satisfies (3), since P, (0 <) is less than «/2 for
N < w + £ and less than « for w + £ < n < 0. This stopping rule is a random
mixture of the two stopping times N(m, 0) and N(m, o + &). The mixture is
based on the first m observations. It can be shown that

EC)(N(m,m) — v+ 1IN(m,n) = v) <

(1-—a/2)(1-¢&)

As a result it follows that the ARL to detection, for all v > m, satisfies the
relation

P{)(8, = 0lo > v) <

EYy(o— v+ 1o > v)
—log a,/2 + const. £ —log a,/2 + const.
+
I{w+¢e,0) (1-0a/2)(1-¢) 1(0,0)

A contradiction to (4) can be derived from the above inequality since I(w + &,
6) > I(0, ) and & can be chosen arbitrarily small.
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