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DIRECT USE OF REGRESSION QUANTILES TO CONSTRUCT
CONFIDENCE SETS IN LINEAR MODELS

BY KENNETH Q. ZHOU AND STEPHEN L. PORTNOY1

University of Illinois, Urbana]Champaign

Direct use of the empirical quantile function provides a standard
distribution-free approach to constructing confidence intervals and confi-
dence bands for population quantiles. We apply this method to construct
confidence intervals and confidence bands for regression quantiles and to
construct prediction intervals based on sample regression quantiles. Com-
parison of the direct method with the studentization and the bootstrap
methods are discussed. Simulation results show that the direct method
has the advantage of robustness against departure from the normality
assumption of the error terms.

1. Introduction. Using distribution-free statistics to test hypotheses
and to construct confidence intervals has become a popular robust approach
for statistical inferences. Here, sample regression quantiles will be used
directly to construct confidence intervals and confidence bands for regression
quantile functions and to construct prediction intervals for future response
variables. Although regression quantiles were introduced by Koenker and

Ž .Basset 1978 just 15 years ago, the sample quantile is a much older concept.
During the past three decades, various approaches were proposed for con-
structing confidence intervals and confidence bands for quantiles. Since re-
gression quantiles are a natural generalization of sample quantiles from the
location model to the linear model, it is worthwhile to give a brief review of
those used in the sample quantile case.

We especially consider three approaches: studentization, the bootstrap
Ž .approach and the direct or distribution-free approach. For convenience, we

assume X , . . . , X is a random sample from a population with distribution1 n
function F, density f and quantile Fy1. Let X , . . . , X be the correspond-Ž1. Žn.

ˆ ŷ1Ž . Ž .ing order statistics, and let F F be the empirical distribution quantile
y1Ž .function. The approximated studentized confidence interval for F u for

y1ˆŽ . Ž . 'some u g 0, 1 has the standard form F u " sz u 1 y u rn , where s isŽ .a
1r4 Ž y1Ž ..an n -consistent estimator of the sparsity function 1rf F u . Note that

the notation z and s will be used through the end of the paper. Hence, toa
y1Ž .obtain a confidence interval for F u , one has to obtain a consistent

Ž y1Ž ..estimator of 1rf F u , which is often hard. An alternative approach that
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circumvents the problem of estimating the sparsity function is the bootstrap.
However, the bootstrap approach has been considered by several authors to
be unsatisfying in constructing confidence intervals for quantiles. See Hall
Ž .1992 .

The direct method is another approach that does not need to deal with the
sparsity function and is especially interesting because of its efficiency of

Ž .computation. The idea is simple. For some u g 0, 1 , we use two order
Ž . y1Ž .statistics X , X to be a confidence interval for F u , where p and qŽ p. Žq .

w y1Ž . xare two integers chosen in such a way that P X F F u F X G 1 y 2a ,Ž p. Žq .
where computation of p and q can be carried out by using tables of binomial
probabilities, by using tables of the incomplete beta functions or by large-

Ž .sample approximation. Detailed procedures are discussed in Serfling 1980
among many others. In the case of constructing confidence bands for quan-

Ž .tiles, Csorgo and Revesz 1984 discussed two approaches: one is studentiza-¨ ˝ ´ ´
Ž .tion, another is distribution free here we call it the direct approach . The

ŷ1 1r2 y1r2Ž Ž . Ž Ž ..first approach leads to a confidence band F u " sc u 1 y u n ,n a

. Ž .« F u F 1 y « , where c is the 1 y 2a th percentile of the supremum of an n a

Brownian bridge and s is defined above. The second approach results in a
ŷ1 1r2 y1r2� Ž Ž Ž .. . 4confidence band F u " c u 1 y u n , « F u F 1 y « . They shown a n n

that the two confidence bands are asymptotically equivalent. All of the
approaches discussed above can be generalized to the case of regression
quantiles. We shall emphasize the asymptotic properties of direct confidence
intervals and confidence bands and their equivalence to the studentized
versions.

The model we consider is

1.1 y s xX b q u , i s 1, . . . , n ,Ž . i i i

Ž .where the p-dimensional design vectors x s 1, x are partitioned corre-˜i i
Ž .sponding to b s b , b , in which b is the intercept parameters. Error0 1 0

terms u , . . . , u are assumed to be i.i.d. according to F with median 0. Now1 n
the u th sample regression quantiles are defined as the vector b g R p mini-

n Ž X . Ž . q Ž . ymizing Ý r y y x b , where r m s um q 1 y u m . When x s 1, theis1 u i i u i
Ž .sample regression quantile is simply the sample quantile. From this defini-

Ž .tion, it is not difficult to see that the population analog is b u s b q
y1Ž . Ž .e F u . As shown in Bassett and Koenker 1982 , this important parame-1

ters configuration relates directly to the concept of conditional quantile
function of y given x,

< X X y11.2 Q u x s xb u s xb q F u .Ž . Ž . Ž . Ž .y

A wide literature has been published on developing methods based on regres-
sion quantiles. Extensive reviews can be found in some recent papers: Koenker

Ž . Ž .and Portnoy 1987 , Portnoy and Koenker 1989 and Gutenbrunner,
wŽ . xJureckova, Koenker and Portnoy 1993 , GJKP hereafter . In the next sec-ˇ ´

tion, we will introduce confidence intervals for the conditional quantile
X Ž .function xb u for fixed x and u and then construct prediction intervals for

� 4future response variables Y . Section 3 is devoted to discussion of confi-nq i
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dence bands for regression quantiles. We shall discuss our simulation results
in Section 4 and offer some conclusions and remarks in Section 5.

Ž .2. Confidence intervals for conditional quantiles. Fix u , a g 0, 1
Ž .and let z denote the 1 y a th standard normal percentile point. Thea

Ž . X Ž .studentized approach leads to a 1 y 2a 100% confidence interval for xb u
of the form

Xˆ Xˆ2.1 I s xb u y a , xb u q a ,Ž . Ž . Ž .Ž .1n n n

X y1 ''where a s sz x Q xu 1 y u r n and s is the consistent estimate ofŽ .n a

the sparsity function described in Section 1. The direct approach yields a
confidence interval of the form

Xˆ Xˆ2.2 I s xb u y b , xb u q b ,Ž . Ž . Ž .Ž .2 n n n

X y1 ''where b s z x Q xu 1 y u r n . The question is: How do we compareŽ .n a

I with I ?2 n 1n
Before stating the results in Corollary 2.1, we shall verify the asymptotic

ˆ ˆŽ . Ž .properties of b u q b and b u under some regularity conditions on then
design matrix X and the distribution function F. The conditions are as
follows:

Ž . y1Ž . Ž y1Ž .. XŽ y1Ž ..F1 F is twice differentiable at F u and f F u s F F u ) 0;
Ž . < < Ž 1r4.X1 max x s O n ;i j i, j

Ž . n 5 5 3 Ž .X2 Ý x s O n ;is1 j
Ž . y1 n X Ž y1r4 .X3 n Ý x x s Q q O n log n , where Q is a positive definite p = pis1 i i

matrix.

By equivariance of regression quantiles, we set Ýn x s 0 for j s 2, . . . , pis1 i j
without loss of generality. Also, to simplify the discussion, we introduce

Ž . Ž . Ž .additional notations: C x s u y I x - 0 and e s 1, 0, . . . , 0 . Now we es-u 1
tablish a Bahadur representation.

Ž . Ž . Ž .THEOREM 2.1. Assume that conditions F1 and X1 ] X3 hold. Let e1
Ž .and C ? be defined as above. If k is a sequence of constants such thatu n

y1r2 ŽŽ .3r4. Ž .k s u q kn q O log nrn for some u g 0, 1 and constant k, then,n
for n ª `,

y1r2 y1 y1 nke n n Q1 y1b̂ k y b u s q x C u y F uŽ . Ž . Ž .Ž .Ýn i u iy1 y1f F u f F uŽ . Ž .Ž . Ž . is1
2.3Ž . 3r4log n

qO .ž /ž /n

Ž . Ž . n Ž y1Ž ..PROOF. Define W t, u s 1rn Ý x C u y x t y F u . Then, byn is1 i u i i
Lemma A1 in the Appendix and the definition of k , we haven

3r4log n
y1r2ˆ2.4 W b k y b u , u s ke n q O a.s.Ž . Ž . Ž .Ž .ž /n n 1 ž /ž /n
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By Lemma A2, we have

3r4y1 y3r45 52.5 sup W t, u y W 0, u q f F u Qt s O n log n ,Ž . Ž . Ž . Ž . Ž .Ž . Ž .n n p
5 5t FMn

Ž .where M is defined in Lemma A2. Now, using 2.5 and the method ofn
wŽ . x Ž . Ž . Ž y1r2Ž .1r2 .Jureckova 1977 , Lemma, 5.2 , we have b k y b u s O n log n .˘ ´ n p

ˆŽ . Ž . Ž .Therefore, by substituting b k y b u for t in 2.5 and then substitutingn
Ž . Ž .2.4 into 2.5 , we have

ke1 y1 ˆq W 0, u s f F u Q b k y b uŽ . Ž . Ž . Ž .Ž . Ž .n n'n2.6Ž .
3r4y3r4q O n log n . IŽ .Ž .p

Theorem 2.1 can be viewed as a generalization to linear models of a
Bahadur representation of order statistics in the location model. When

Ž .k s u for all n, equation 2.3 reduces to the representation obtained byn
Ž .Ruppert and Carroll 1980 except for the asymptotic order of the remainder

Ž .terms. Note that condition F1 is the same as the condition in Theorem 2.5.1
Ž .of Serfling 1980 . The conditions on the design X are standard in linear

regression analysis. Samples from typical distributions like student-t with
degrees of freedom larger than 4, gamma, beta, uniform, lognormal and

Ž . Ž .normal will satisfy conditions X1 ] X3 .

Ž . Ž .COROLLARY 2.1. Let I , I , a and b be defined in 2.1 and 2.2 . Under1n 2 n n n
Ž . Ž . Ž . Ž . py1 Ž .conditions F1 and X1 ] X3 , ; x s 1, x , x g R , ; u g 0, 1 and˜ ˜

n ª `, we have the following:

3r4log n
X Xˆ ˆa xb u " a s xb u " b q O ;Ž . Ž . Ž .n n p ž /ž /n

X Xˆ'n xb u " b y xb uŽ . Ž .Ž .n

X Xy1 y1'z x Q xu 1 y u x Q xu 1 y uŽ . Ž .aª N " , ;D y1 2 y1ž /f F u f F uŽ . Ž .Ž . Ž .
bŽ .

3r4X X y1r4P xb u g I s P xb u g I q O n log nŽ . Ž . Ž .Ž .1n 2 n
cŽ .

3r4y1r4s 1 y 2a q O n log n .Ž .Ž .

Ž . Ž .PROOF. The proof of parts a and b is a straightforward application of
Ž . Ž .Theorem 2.1. See Zhou 1995 for details. As for part c , follow the argument

wŽ . xof Hall 1992 , Section 2.7 and apply Theorem 2.1 and the Berry]Esseen
wtheorem for sums of independent but nonidentical random variables Feller

Ž . x1966 , page 521 . I
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Corollary 2.1 indicates that the coverage errors of I are of order2 n
Ž y1r4Ž .3r4. 1r4O n log n ; I and I are asymptotically equivalent when an n -1n 2 n

consistent estimator of 1rf is used. Note that the computation of b is quiten
Ž .simple even when sample size is large. Portnoy 1991 shows that the number

Ž .of breakpoints of regression quantile solutions is of order only O n log n .
Efficient algorithms and Fortran subroutines are described in Koenker and

Ž .D’Orey 1987 .
In many situations, a prediction interval for a future response variable is

useful. The conventional method based on studentized least squared estima-
tor requires the normality assumption on F. Here, the direct approach is

� 4napplied to construct prediction intervals without this assumption. Let x , yi i 1
Ž .be the samples corresponding to model 1.1 , and let Y be the futurenq1

Ž .response variable. The 1 y 2a 100% prediction confidence interval for Ynq1
is

X Xˆ ˆ2.7 I s x b u , x b u ,Ž . Ž . Ž .p nq1 n 1 nq1 n 21

where 0 - u - u - 1, u y u s 1 y 2a and x is the predictor assumed1 2 2 1 nq1
ˆŽ .known. The subscript n of b u indicates that the estimation is based on past

n observations. The following corollary gives the asymptotic order of coverage
probability of I .p1

COROLLARY 2.2. Let u and u be the two points defined above. Assume F1 2
is twice differentiable at u and u and has positive density at the two points.1 2

Ž . Ž .Also assume conditions X1 ] X3 . Then the asymptotic coverage probabilities
Ž y1r2 .of I are 1 y 2a with errors of the order O n .p1

PROOF. Apply Theorem 2.1 and Taylor’s series expansion theorem. I

Sometimes, a confidence region for Y , . . . , Y may be of interest. Bynq1 nqm
using the Bonferroni principle, we extend the prediction confidence interval
for Y tonq1

X Xˆ ˆx b u x b uŽ . Ž .nq1 n 1 nq1 n 2
. .. .2.8 I s , ,Ž . p . .2

X X� 0 � 0ˆ ˆx b u x b uŽ . Ž .nqm n 1 nqm n 2

Ž . Žwhich is a confidence region for Y , . . . , Y , where u y u s 1 ynq1 nqm 2 1
.1r m2a . Applying Corollary 2.2, we have

2.9 P Y , . . . , Y g I s 1 y 2a q O ny1r2 , n ª `.Ž . Ž . Ž .Ž .nq1 nqm p2

The above results do not rely on the symmetry of F. However, when F is
symmetric and u is equal to u , we expect the coverage errors of the1 2
prediction intervals to be of smaller order than those when F is asymmetric
because of the cancellation among the second- or higher-order terms of their
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Bahadur representations. In addition, the confidence intervals I , I andp2 n 1
X ˆ XˆŽ Ž . Ž ..I defined above can be replaced by other terms: I s b u " b q xb u ,2 np n 12X ˆ X ˆ ˆ X ˆ XŽ Ž . Ž . Ž . Ž ..I s b u y d q x b u , b u q d q x b u and I which˜ ˜p 0 1 n nq1 1 1 0 2 n nq1 1 2 p1 2

can be expressed in a similar way as I X . The asymptotic equivalence betweenp1X X X Xˆ' Ž Ž .I , I , I and I , I , I can be easily justified by showing that n xb u˜2 n p p 2 n p p 1 n1 2 1 2

ˆ y1r4 3r4 y1r2Ž .. Ž Ž . . Ž .yxb u s O n log n when u s u q O n . However, this is an˜ 1 n
immediate consequence of Theorem 2.1. One advantage of this expression is
that the confidence intervals are always well defined. Bassett and Koenker

XˆŽ . Ž .1982 show the conditional quantile function xb u is not necessarily a
monotone function of u except at x s x.

So far, we have shown that the studentization and the direct confidence
intervals are asymptotically equivalent. It is of theoretical interest to go
further to obtain the exact order of coverage errors of the confidence inter-
vals. For the studentized confidence interval I , estimating 1rf is crucial to1n
the coverage error of the resulting confidence intervals. A natural estimator

ŷ1 ŷ1Ž Ž . Ž ..of 1rf is F u q h y F u y h r2h whose convergence rate depends onn n
Ž .the bandwidth h. It has been shown by Bofinger 1975 that the estimator

Ž y1r5.has an optimal covergence rate when h s O n . However, Hall and
Ž .Sheather 1988 show that the optimal convergence rate of an estimator of

1rf does not imply an optimal coverage probability of the corresponding
confidence interval. By using Edgeworth expansions, they show that in

y1r3 ˆŽ .location models when h s O n , the coverage error of I is of order1n
Ž y2r3. Ž y2r5.O n and is only O n when the Bofinger estimator is used. The

coverage errors of bootstrap confidence intervals have also been investigated
Ž .by some researchers. Hall 1992 shows that ordinary percentile confidence

Ž y1r2 .intervals for quantiles have coverage errors of order O n . Also Falk and
Ž .Kaufmann 1991 show that the coverage probabilities of backward bootstrap

confidence intervals of quantile are higher than that of ordinary percentile
confidence intervals and are exactly the same as that of the direct confidence
intervals. Now one tends to conjecture that the above conclusion is also true

Ž .in the case of conditional quantiles. However, Hall 1992 implies that the
unsmoothed bootstrap percentile confidence intervals have coverage error of
order no lower than ny1r4 and both smoothed bootstrap and studentized
confidence intervals for the 0.5th regression quantiles have coverage errors of
order no lower than ny2r5. Reviewing the above results, we see that the
confidence intervals for 0.5th regression quantile functions have convergence
order no higher than the 0.5th quantiles. The exact convergence order of the
coverage errors of the direct confidence intervals may be obtained by deriving

Xˆ 1r2 X Xˆ 1r2Ž Ž . Ž . Ž ..Edgeworth expansions of P xb u y cn F xb u F xb u q cn for fixed
x and u . These are not in the scope of this paper, but we conjecture that, in
the case of quantile regression, the coverage errors of the direct confidence
intervals have convergence order no lower than both studentized and boot-
strap confidence intervals. It is also reasonable to expect that the backward
bootstrap approach performs better than the ordinary percentile method for
conditional quantiles. We shall compare the performance of these methods in
our simulation study in Section 4.
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3. Confidence bands for conditional quantiles. First, we are inter-
ested in constructing confidence bands for a class of conditional quantile

� X Ž . 4functions xb u , x g XX , where XX is a set of x with u fixed. A popular way
� X Ž . p � 44to construct confidence bands for S* s xb u , x g R y 0 is the so-called

Ž .S-method or Scheffe’s method . The following proposition gives the result.´

Ž .PROPOSITION 3.1. Let S* be the class defined above. Denote the 1 y a
X Ž .100% level confidence band for the function xb u , x g S*, as J . Then1n

Ž . Ž . Ž .under conditions F1 and X1 ] X3 ,

1r22x u 1 y uŽ .p , aX X y1ˆ3.1 J s xb u " x Q x ,Ž . Ž .1n 2 y1½ 5nf F uŽ .Ž .

Ž . 2 Ž .for any u g 0, 1 where x is the 1 y a th percentile of the chi-squarep, a

distribution with p degrees of freedom.

The proposition follows easily from the Cauchy]Schwarz inequality and
Ž .Theorem 4.2 of Koenker and Basset 1978 . Note that the confidence band

given by the S-method involves the sparsity function 1rf. Now, the confidence
band given by the direct method is

1r2X X2 y1ˆ3.2 J s xb u " x x Q xu 1 y u rn ; ; x g S ,Ž . Ž .Ž .½ 52 n p , až /
which is distribution free. Here we need to impose some constraint on the

X y1'class S. Obviously, by the definition of the k in Theorem 2.1, x Q xrnn
Xy1r2 py1 y1Ž . � Ž . 4'should be of order O n . Set D s x s 1, x , x g R , x Q x F K ,˜ ˜K

where K is a constant not depending on n. The following theorem presents a
X X Xy1r2 y1ˆŽ . Ž .'uniform representation of xb u " n c x Q xu 1 y u y xb u for allŽ .

x g D and some constant c.K

THEOREM 3.1. Let D be the set just defined, and let c be a constant.K
Under the same conditions as those in Theorem 2.1, we have

X y1'c x Q xu 1 y uŽ .
X Xˆxb u " y xb uŽ .1r2ž /n

X Xy1 y1 n'c x Q xu 1 y u x QŽ . y1s " q x C u y F uŽ .Ž .Ý i u i1r2 y1 y1n f F u nf F uŽ . Ž .Ž . Ž . is1

3r4y3r4q O n log nŽ .Ž .p

uniformly for all x g D as n ª `.K
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PROOF. Let l be the smallest eignevalue of Q. Note that xXe s 1.min 1
Then

X y1'c x Q xu 1 y uŽ .
X X Xy1r2 y1ˆ 'sup xb u q n c x Q xu 1 y u y xb u yŽ . Ž .ž / 1r2 y1n f F uŽ .Ž .xgDK

n
X Xy1 y1 y1 y1 y1yn f F u x Q x C u y F uŽ . Ž .Ž . Ž .Ý i u i

is1

Xy1r2 y1ˆ5 5 'F sup x = b u q n c x Q xu 1 y uŽ .ž /
xgDK

X y1'c x Q xu 1 y uŽ .
yb u yŽ . 1r2 y1n f F uŽ .Ž .

n
Xy1 y1 y1 y1 y1yn f F u Q x C u y F u .Ž . Ž .Ž . Ž .Ý i u i

is1

5 5Note the first factor sup x F K. By Theorem 2.1, the second norm is ofx g DK
Ž y3r4Ž .3r4.order O n log n . Thus Theorem 3.1 follows. I

Ž .The following corollary shows that confidence band J in 3.2 with S2 n
Ž . � X Ž .replaced by D has coverage probability at least 1 y 2a 100% for xb u ,K

4x g D .K

COROLLARY 3.1. Assume the conditions of Theorem 3.1. For any fixed
Ž .u g 0, 1 ,

XP xb u g J , x g DŽ . 2 n K

3r4y1r4G 1 y a q O n log n as n ª `.Ž .Ž .
3.3Ž .

PROOF. The proof is a straightforward application of Theorem 3.1, the
Cauchy]Schwarz inequality and Feller’s version of the Berry]Esseen theo-

w Ž .xrem Feller 1966 . I

For a finite set of x, the Bonferroni method may give a narrower confi-
dence band, thereby being of more practical interest.

Next we are interested in constructing confidence bands for the set L sn
� X Ž . 4 1rŽ1q4 b.xb u , « F u F 1 y « , where « s n with b defined below in condi-n n n

Ž .tion X5 . This notation will be used through the end of the paper. Generaliz-
Ž .ing the approach of Csorgo and Revesz 1984 , we obtain¨ ˝ ´ ´

Xˆ3.4 J s xb u " d , « F u F 1 y « ,Ž . Ž .� 44 n n n n n

Ž .which is a 1 y a 100% direct confidence band for L , where d sn n
X y1 � Ž < Ž . < . 4 Ž .'v x Q xrn , v s inf t: P sup B u F t G 1 y a , where B u is aa a 0 - u -1
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Brownian bridge. The studentized confidence band is

Xˆ3.5 J s xb u " c , « F u F 1 y « ,Ž . Ž .� 43n n n n n

X y1'where c s sv x Q xrn . As in Section 1, we first investigate the asymp-n a
ˆ ˆ� Ž . 4 � Ž .totic properties of the processes b u " d , « F u F 1 y « and b u ,n n n

4« F u F 1 y « . The following further conditions on the distribution func-n n
Žtion F and design X are required as shown in GJKP these conditions are

.needed to extend the Bahadur representation into the tails as u ª 0 and 1 :

Ž . < XŽ . Ž . < < <F2 f x rf x F c, for x G K G 0 and c ) 0 where K is some constant;
Ž . < y1Ž . < Ž .yaF3 F u F cu 1 y u for 0 - u F u , 1 y u F u - 1, c ) 0;0 0
Ž . Ž y1Ž .. Ž Ž ..y1yaF4 1rf F u F c u 1 y u for 0 - u F u and 1 y u F u - 1,0 0

c ) 0;
Ž . < Ž . < � Ž .F5 f x ª 0 as x ª A q and x ª B y , where y` F A s sup x: F x s

4 � Ž . 40 and q` G B s inf x: F x s 1 ;
Ž . n 5 5 4 Ž .X4 Ý x s O n as n ª `;is1 i
Ž . 5 5 Ž Ž2Žbya.yd .rŽ1q4 b..X5 max x s O n for some b ) 0 and d ) 0 such1F iF n i

Ž .that 0 - b y a - «r2 hence 0 - b - 1r4 y «r2 .

THEOREM 3.2. Let k be the sequence of constants defined in Theorem 2.1.n
Ž . Ž . Ž . Ž .Under conditions F1 ] F3 and X1 ] X5 , we have the following:

Ž .a The representation in Theorem 2.1 holds uniformly for all « F u Fn
1 y « .n

Ž .b The representation in Theorem 3.1 holds uniformly for both « F u Fn
1 y « and x g D .n K

Ž . Ž .PROOF. a Let W t, u be defined as in the proof of Theorem 2.1. Byn
ˆ y1r2 y1r2Ž Ž . Ž . . Ž .Lemma A1, W b k y b u , u s n ke q o n almost surely. Deno-n n 1

� y1r24ting V s « F u F 1 y « , t F Kn and applying the procedures of proofn n
of Lemma 3.1 of GJKP, we have that

5 5 y1r23.6 sup W t, u y W 0, u y E W t, u y W 0, u s o nŽ . Ž . Ž . Ž . Ž . Ž .Ž .n n n n p
V

and

Xy1r2 y1 y1r2ˆ 'sup b u q n v b Q b y b u s O n .Ž . Ž .ž /a p
xgD , « FuF1y«K n n

The rest of the proof follows from the proof of Theorem 3.1 of GJKP.
Ž . Ž . Ž .b Combining part a and Theorem 2.1 leads to Theorem 3.2 b . I

ˆŽ . Ž .Theorem 3.2 a gives uniform-type Bahadur representations of b k yn
ˆŽ . Ž . Ž .b u . The one for b u y b u has been obtained by GJKP and by Koenker

Ž .and Portnoy 1987 . Note the Bahadur representation in GJKP and Koenker
Ž .and Portnoy 1987 can be viewed as special cases of Theorem 3.2.
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Ž . Ž .COROLLARY 3.2. Let J , J , c , d , D and L be defined by 3.4 , 3.53n 4 n n n n
Ž .and Theorem 3.1. Let B u be a p-dimensional Brownian bridge. Underp

Ž . Ž . Ž . Ž . Ž .conditions F1 ] F5 and X1 ] X5 , we have the following ; x s 1, x , x g˜ ˜
R py1 and n ª `:

y1 ˆ' 5 5 5 5a sup n f F u b u y b u ª sup B u ;Ž . Ž . Ž . Ž . Ž .Ž . D p
« FuF1y« 0-u-1n n

Xˆ Xˆ y1r2xb u " c s xb u " d q o nŽ . Ž . Ž .n n p
bŽ .

uniformly for u g « , 1 y « ;Ž .n n

w x w xc P L g J s P L g J q o 1 s 1 y a q o 1 .Ž . Ž . Ž .n 3n n 4 n

Here by L g J or L g J we mean that each element of L is contained inn 3n n 4 n n
the corresponding interval of J or J .3n 4 n

Ž . Ž .PROOF. The proof of parts a and b is a straightforward application of
Ž . Ž . Ž .Theorem 3.2 a . For part c , just follow the proof of Corollary 2.1 c . I

Ž .Like Corollary 2.1 of Csorgo and Revesz 1984 , which gives a confidence¨ ˝ ´ ´
� y1Ž . 4 Ž .band for the quantile process F u , « F u F 1 y « , Corollary 3.2 cn n

Ž .indicates that J is a 1 y a 100% confidence band for regression quantile4 n
process L with coverage probability 1 y a . Now the question is: Is it possiblen

Ž .to construct a confidence band which is simultaneous for both u g « , 1 y «n n
� X Ž . Ž .and x g D ? The answer is yes. Define M s xb u , u g « , 1 y « , x gK n n n

4 � Ž 5 Ž .5 . 4D and u s inf t: P sup B u F t F 1 y a . The studentized con-K a 0 - u -1 p
fidence band for M isn

Xˆ3.7 J s xb u " g ; u g « , 1 y « , x g D ,Ž . Ž . Ž .� 45n n n n K

X y1'where g s su x Q xrn . The direct confidence band for M isn a n

Xˆ3.8 J s xb u " h ; u g « , 1 y « , x g D ,Ž . Ž . Ž .� 46 n n n n K

X y1'where h s u x Q xrn .n a

COROLLARY 3.3. Under the conditions of Theorem 3.2,

3.9 P M g J s P M g J q o 1 s 1 y a q o 1 as n ª `,Ž . Ž . Ž . Ž . Ž .n 5n n 6 n

where the notations M g J and M g J are defined as in Corollary 3.2.n 5n n 6 n

Ž . Ž .PROOF. Apply Theorem 3.2 b and follow the proof of Corollary 3.2 c . I

As in the case of confidence intervals, we obtain alternative confidence
X X X Xˆ y1r2Ž Ž ..bands J , J and J by replacing the term xb u " O n in J , J ,2 n 4 n 5n 2 n 4 n

ˆ y1r2 XˆŽ Ž .. Ž .J and J by b u " O n q xb u . The asymptotic equivalence be-5n 6 n 0 1
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tween J , J , J , J and J X , J X , J X , J X can be easily justified by2 n 4 n 5n 6 n 2 n 4 n 5n 6 n
showing that

X Xy1r2ˆ ˆ'3.10 sup n xb u " O n y xb u s o 1 ,Ž . Ž . Ž . Ž .˜ ˜Ž .Ž .1 1 p
« FuF1y« , xgDn n K

which is an immediate consequence of Theorem 3.2.
The exact order of the errors in coverage probabilities of the above confi-

dence bands are also of interest. The coverage error of J is the same as I2 n 2 n
defined in Section 2. The coverage errors of J , J , J and J are3n 4 n 5n 6 n
supposed to be higher than J and J because the latter are not related to1n 2 n
« . We shall compare J with J by simulations in Section 4.3.n 1n 2 n

Ž .4. Simulation results. The objectives of this section are as follows: 1
to compare the performance of the confidence intervals given by the three

Žmethods the direct method based on regression quantiles, studentization
based on Bofinger’s variance estimator and studentization based on Hall and

. Ž .Sheather’s variance estimator ; 2 to compare the performance of the confi-
Ž .dence intervals generated by three resampling methods; 3 to compare the

performance of confidence bands by the direct method and the S-method; and
Ž .4 to compare the performance of the prediction confidence bands by the
direct method and the conventional approach. All of the simulations are
performed by using S-Plus software and Sun Sparc stations available in the
Advanced Computing Lab of the Department of Statistics at the University of
Illinois, Champaign.

4.1. The direct, Bofinger and Hall]Sheather confidence intervals. Only a
small part of our extensive simulation studies will be reported here. See Zhou
Ž .1995 for further details. To simplify the simulation, we fix the design

˜Ž . Ž .X s 1, X as a matrix consisting of four columns of values: 1, N 0, 1 ,
Ž . wUniform y1.2, 1.2 , and Student-t with five degrees of freedom denoted as

˜Ž .xT 5 . The columns of X are centered so that each has mean 0. The cdf of Y is
w Ž . Ž . Ž .xchosen from three distributions T 1 , T 3 and T 8 , and u is specified as

0.25, 0.5, or 0.90. So there are nine combinations of F and u . This is similar to
Ž .the simulation scheme used by Koenker 1994 , who compares the confidence

intervals for a slope parameter of linear regression models based on regres-
sion rank test statistics with other methods like percentile bootstrap and the

Ž .resampling approach of Parzen, Wei and Ying 1992 . For each of the nine
Ž .cases, the sample size n is set to 50 except for the case when F s T 1 and

u s 0.9, where n s 100. Empirical lengths of confidence intervals correspond-
ing to empirical level 0.9 are computed based on 1000 replications. The
simulation results are summarized in Table 1, which shows that if the cdf of

Ž . Ž .Y is T 3 or T 8 , the direct confidence intervals are slightly shorter than the
Ž .confidence intervals by the other two methods. When F is T 1 , the direct

interval is a little longer than the other two except for u s 0.9, in which the
direct method gives much shorter confidence intervals than the other two
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TABLE 1
Empirical lengths of the three types of confidence interval corresponding to 90% empirical levels;
F is student-t with degrees of freedom 1, 3 and 8; an asterisk means that sample size 100 is used

u df’s Bofinger Direct Hall–Sheather

0.25 1 1.915 1.901 1.903
3 0.893 0.859 0.877
8 0.714 0.711 0.727

0.5 1 0.860 0.861 0.853
3 0.662 0.654 0.665
8 0.616 0.608 0.615

0.9 1 10.51* 8.080* 9.010*
3 2.032 2.013 2.059
8 1.136 1.033 1.107

approaches. Comparison based on the lengths of confidence intervals alone
does not show large differences between the three methods.

Now the question is: How well do the empirical levels approximate the
nominal or theoretical levels under the three methods? In other words, are
the confidence intervals conservative on coverage probabilities? Figure 1 is a
plot of the nominal levels versus empirical levels for confidence intervals of

X Ž . Ž .the regression median xb 0.5 s b 0.5 . The diagonal lines are 458 lines that0
may be used to measure the correspondences between the nominal levels and
empirical levels. For the Bofinger-type studentized confidence intervals, the
points are well above the line especially when F is Cauchy; this shows that
the Bofinger confidence intervals are too conservative in the sense that they
are too wide at the fixed nominal level 0.9. Similar patterns show on the plots
for the Hall]Sheather confidence intervals, although the conservativeness of
the latter is not so severe as that of Bofinger confidence intervals. The direct
confidence intervals are unbiased in the sense that their nominal levels and
their empirical levels match well. Figure 2 shows the plots between the

Ž .empirical levels and the lengths of the confidence intervals of b 0.5 under0
the three methods. For the Bofinger approach, the shapes of the plotted
points are similar to exponential curves whereas the shapes of the plotted
data for the direct approach are almost linear. For the Hall]Sheather ap-
proach, the situation is between the two. What Figures 1 and 2 tell us is that
the lengths of the Bofinger confidence intervals increase more rapidly than
the direct confidence intervals when the empirical levels approach 1. Similar
remarks hold for the comparison of the confidence intervals by the
Hall]Sheather method and the direct method.

Our simulations also show that, when u is set to 0.90, the conservativeness
phenomenon described above disappears and the empirical coverage probabil-
ities both of Bofinger and Hall]Sheather confidence intervals are substan-

Ž .tially below the nominal level say, 0.9 , especially when F is Cauchy, where
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FIG. 1. Plots of empirical levels versus nominal levels for the three types of confidence interval of
Ž .b 0.5 . The diagonal lines are 458. Three types of error distribution are considered. Each point is

computed based on 1000 samples with size 50.

the direct confidence intervals are a little conservative. Hence, the two
studentized confidence intervals are very sensitive to F, u and a whereas the
direct confidence intervals are not and are much more robust to the departure
from the normality assumption of F. Hence from the point of view of
robustness, the direct method is preferred. The direct method is also more
efficient computationally than the other two methods.
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FIG. 2. Plots of empirical levels versus empirical levels for the three types of confidence intervals
Ž .of b 0.5 . Three error distribution functions are considered. Each point is computed based on

1000 samples with size 50.

4.2. Bootstrap confidence intervals. We perform simulations on the con-
fidence intervals given by the three versions of bootstrap and resampling

Ž .procedures: ordinary percentile with pairwise resampling OPPR ; backward
Ž .percentile with pairwise resampling BPPR ; and Parzen]Wei]Ying resam-

Ž .pling PWY . The details of the three resampling procedures will not be
Ž .presented here. For OPPR and BPPR, we refer to Efron 1979 and Falk and
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Ž . Ž .Kaufmann 1991 . As for PWY, Parzen, Wei and Ying 1992 has the detailed
description. The design X, F, sample size, number of replications and num-
ber of parameters p are the same as above. The resampling size is 200 for
each version type of resampling approach. From Table 2, we see that BPPR
confidence intervals have the same lengths of OPPR confidence intervals, but
their empirical levels are higher than those of OPPR confidence intervals.
This result confirms the conjectures in Section 1 that the backward bootstrap
confidence interval has smaller coverage errors than the ordinary bootstrap
confidence intervals. Table 2 also shows that PWY confidence intervals are
relatively longer than the other two bootstrap versions. Now, comparing

Ž .Tables 1 and 2 based on lengths and coverage probabilities CP , we see that
the three resampling confidence intervals are less appealing than the three
confidence intervals discussed before. This conclusion is expected and is
consistent with the conjecture mentioned at the end of Section 1.

4.3. Confidence bands for regression quantile functions. We shall compare
the direct confidence bands for regression quantile functions and the confi-
dence bands by the S-method with u fixed at 0.5. In order to plot the results,
we restrict p to 2. The sample size is set to 50 and the model can be

Ž .expressed as y s 1.0 q 0.5x q e . Let x be from Uniform y1.5, 1.5 and ei i i i j i
Ž . Ž .be from either N 0, 1 or T 3 . Intuitively, the comparison between the two

confidence bands is similar to the comparison discussed in the previous part.
However, some criteria are needed to measure the performance of a confi-
dence band. From Section 1, we know the confidence band we are going to

Ž .construct is simultaneous for all x in an interval which is set to y2, 2 here.
Ž .We first choose a sequence of x values from y2, 2 . Then we construct a

confidence interval for each x point and then compute the corresponding
length and coverage level. The average of the lengths and coverage levels are
then used to measure the performance of the confidence band. This approach
can only be used as an approximation and is by no means perfect. From Table
3, we see that the direct confidence bands, like the direct confidence intervals,
are robust to the departure from the normality assumption of F.

4.4. Simulations of prediction confidence intervals. Here, we compare the
prediction interval from Section 1 to the prediction interval based on studen-

TABLE 2
Empirical coverage probabilities and empirical lengths of the bootstrap confidence intervals with

nominal level 0.90 and u s 0.5

( ) ( ) ( )T 1 T 3 T 8

Bootstrap types Length CP Length CP Lenght CP

OPPR 1.098 0.955 0.730 0.959 0.658 0.938
BPPR 1.098 0.890 0.730 0.859 0.658 0.831
PWY 1.313 0.910 0.783 0.850 0.715 0.882
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TABLE 3
Empirical coverage probabilities and empirical lengths of the two types of confidence bands with

nominal level 0.90

( ) ( ) ( )T 1 T 3 T 8

u Length CP Length CP Length CP

S-method 0.25 2.674 0.978 1.176 0.953 0.967 0.931
0.50 1.263 0.976 0.918 0.949 0.842 0.941
0.85 5.574 0.992 1.598 0.965 1.175 0.958

Direct method 0.25 2.294 0.851 1.110 0.914 0.914 0.898
0.50 1.057 0.908 0.848 0.909 0.793 0.904
0.85 6.537 0.765 1.599 0.848 1.169 0.868

ˆ y1r2 ˆŽ Ž . .tization, which has the form x*b " 1 q s n z , where b and s arels ls a ls ls
the least squares estimators of the coefficients b and standard error s , and
x* is the predictor. Our simulation shows that for sample size 50 the direct
method tends to underestimate the coverage levels. However, when sample
size increases to 100, this phenomenon disappeared. Table 4 shows that the
studentized prediction confidence intervals are generally too long with re-
spect to the nominal level 0.9. In contrast, the direct prediction intervals give

ˆŽ Ž0.89 empirical level. In practice, it is recommended that x*b u y1
ˆ. Ž .. Ž .d , x*b u q d be used as the 1 y 2a 100% confidence bands for the u thn 2 n

conditional quantile if the sample size is small. Typically, u and u are set1 2
symmetrically such that 1 y u s u s a and the constant d can be set to2 1 n'z u 1 y u rn.Ž .a

5. Summary. We have shown that the direct method is a robust and
computationally efficient approach to constructing confidence intervals and
confidence bands for quantiles and regression quantiles. In particular, predic-
tions for future values are of practical interest. It should be pointed out that

Ž .the i.i.d. assumption on the error terms of model 1 can be weakened to
independence or even to stationary dependence. These cases suggest further
research on extending the direct method to heteroscedastic linear models and
ARMA models. Also, because regression quantiles are equivariant under

TABLE 4
Empirical coverage probabilities and empirical lengths of the two types of prediction intervals

with nominal level 0.90

Predictors I1.333 I1.000 I0.667 0.000 0.667 1.000 1.333

LS CP 0.923 0.923 0.923 0.923 0.923 0.923 0.923
LS length 5.528 5.513 5.503 5.495 5.503 5.513 5.527

Direct CP 0.884 0.890 0.894 0.896 0.893 0.889 0.883
Direct length 4.778 4.773 4.767 4.756 4.745 4.739 4.733
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monotone transformations, the direct method may be an effective way to
construct prediction intervals for future response variables in some nonlinear
models which can be linearly approximated by monotone transformations.

APPENDIX

Ž .LEMMA A1. Let W t, u be defined in Theorem 2.1. Assume conditionsn
ˆ y3r4Ž . Ž . 5 Ž Ž . Ž . 5 Ž .F1 and X1 . Then, with probability 1, W b u y b u , u s O nn

Ž .uniformly for u g 0, 1 .

PROOF. The lemma follows easily from Lemmas A.2 and A.1 of Ruppert
Ž . wand Carroll 1980 actually the gradient condition in Koenker and Bassett

Ž .x Ž .1978 and then condition X1 . I

Ž . Ž .LEMMA A2. Let C x be defined in Theorem 2.1. Assume conditions F1 ,u

Ž . Ž . y1r2Ž .1r2 Ž .X1 and X2 . Let M s c n log n . For fixed u g 0, 1 and n ª `, wen 0
have

3r4y1 y3r45 5A.1 sup W t, u y W 0, u q f F u Qt s O n log n .Ž . Ž . Ž . Ž . Ž .Ž . Ž .n n p
5 5t FMn

Ž . Ž . Ž . w Ž . Ž .xPROOF. Let H u , t s W t, u y W 0, u y E W t, u y W 0, u . Parti-n n n n n
� 5 5 Žw x . 4tion space D s t: t F 1rd q 1 d M as the union of a class EE of closedn n n

Ž .cubes E , which have vertices on the set k d M , . . . , k d M , wherei i1 n n i p n n
� Žw x .4 y1r4Ž .1r2k s 0, " 1, . . . , " 1rd q 1 and d s c n log n . Obviously, thei j n n 0

Ž w x . pnumber of cubes in EE is no bigger than 2 1rd q 3 . Using the monotonic-n
ity of C wrt xX t, we haveu i

5 5A.2 sup H t, u F P t, u q Q t, u ,Ž . Ž . Ž . Ž .n n n
5 5t FMn

where

5 5A.3 P t, u s max H t , u , t is the lowest vertex of E ,� 4Ž . Ž . Ž .n n i i i
E gEEi

y1Ž . Xand, with the notation r s u y F u y x t ,i j j j i

5 5Q t, u s max sup H t, u y H t , u ,Ž . Ž . Ž .n n n i½
E gEEi tgEiA.4Ž .

t is the lowest vertex of Ei i 5
n1

A.5 F max x C r q d M S y C r y d M SŽ . Ž . Ž .Ž .Ý j u i j n n j u i j n n j½ nE gEEi js1

n1
A.6 q E x C r y d M S y C r q d M S ,Ž . Ž . Ž .Ž .Ý j u i j n n j u i j n n j 5n js1
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p < < Ž . Ž Ž . Ž ..where S s Ý x . Note that P t, u s P t, u , . . . , P t, u is a vector.j is1 i j n n1 n p
y3r4Ž .3r4Set g s c n log n for some constant c . We haven 1 1

< < < <A.7 P P t, u G g F P H t, u G g .Ž . Ž . Ž .Ýn j n n j n
E gEEi

Ž . < < 1r4By condition X1 , there exists a L s.t. max x F Ln . Seti, j i j

A.8 Z s x C u y x t y Fy1 u y C u y Fy1 u ,Ž . Ž . Ž .Ž . Ž .Ž .i i u i i u i

< Ž . < < n n <then nH t, u is distributed as Ý Z y Ý EZ , where the Z ’s are inde-n is 1 i is1 i i
Ž X y1Ž ..pendent Bernoulli random variables with mean EZ s F x t q F ui i

Ž .yu . By condition F1 and Young’s version of Taylor’s series theorem we can
write the covariance matrix of Ýn Z asis1 i

n n
2 2X X X X X X X Xy1X Xf F u x t q O X X x t F a x x x t q O x x x t ,Ž . Ž . Ž .Ž . Ž . Ý Ýi i 1 i i i i i iž /

is1 is1

Ž y1Ž ..where a is a positive constant larger than f F u . Here, for two matrices1
A and B, A F B means B y A is nonnegative definite. Hence, by conditions
Ž . Ž .X1 and X2 ,

n n n
1r23 3 2 1r25 5 5 5 5 5 5 5Var Z F pa x t q O x t s O n log n .Ž .Ž .Ý Ý Ýi j 1 i iž / ž /

is1 is1 is1

w Ž . xTherefore, by the Bernstein inequality Serfling 1980 , page 95 , we have

< <P n H t, u G ngŽ .n j n

n2g 2
nF 2 exp n 1r4ž /2Ý Var Y q 2 Ln ng r3Ž .Ž .is1 i j n

A.9Ž .

F c exp yc log n F c nyc 3 ,Ž . .2 3 2

where c and c are some constants. We can set c , c and a s.t. c ) pr4.2 3 0 1 1 3
Then for n ª `,

p
1

yc 35 5A.10 P P t, u G g F pc 2 q 3 n ª 0;Ž . Ž .n n 2 ž /dn

that is,
3r4log n

A.11 P t, u s O .Ž . Ž .n p ž /ž /n

Similarly, setting h s c ny3r4 for some constant c , we haven 4 4

5 5A.12 P Q t, u G h ª 0.Ž . Ž .n n

Hence,

A.13 Q t, u s O ny3r4 .Ž . Ž . Ž .n p
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Ž . Ž .Combining P t, u and Q t, u , we haven n

5sup W t, u y W 0, uŽ . Ž .n n
5 5t FMn

3r4log n
5y E W t, u y W 0, u s O .Ž . Ž .n n ž /ž /n

A.14Ž .

Ž . Ž .Also, by conditions X1 ] X3 and Taylor’s series theorem, we have
n1

X y1E W t y W 0 s x F x t q F u y uŽ . Ž . Ž .Ž . Ž .Ž .Ýn n i in is1

n1 1 2X Xy1s x x t f F u q O x x tŽ . Ž .Ž .Ý Ýi i iž /n n is1

3r4y1 y3r4s Qt f F u q O n log n .Ž . Ž .Ž . Ž .p

Thus, the assertion of Lemma A2 follows. I
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