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¨MOBIUS TRANSFORMATION AND CAUCHY
PARAMETER ESTIMATION

BY PETER MCCULLAGH

University of Chicago

Some properties of the ordinary two-parameter Cauchy family, the
circular or wrapped Cauchy family, and their connection via Mobius¨
transformation are discussed. A key simplification is achieved by taking
the parameter u s m q is to be a point in the complex plane rather than
the real plane. Maximum likelihood estimation is studied in some detail.
It is shown that the density of any equivariant estimator is harmonic on
the upper half-plane. In consequence, the maximum likelihood estimator
is unbiased for n G 3, and every harmonic or analytic function of the
maximum likelihood estimator is unbiased if its expectation is finite. The
joint density of the maximum likelihood estimator is obtained in exact
closed form for samples of size n F 4, and in approximate form for n G 5.
Various marginal distributions, including that of Student’s pivotal ratio,
are also obtained. Most results obtained in the context of the real Cauchy
family also apply to the wrapped Cauchy family by Mobius transforma-¨
tion.

1. Cauchy distributions and Mobius groups.¨

1.1. Parameterization. Let Y be a Cauchy random variable with the
usual parameterization in which m represents the median or centre of
symmetry, and s is the scale parameter or probable error. The parameter
space is then taken to be the upper half-plane with s ) 0. For almost all
purposes, however, it is advantageous to take u s m q is as a point in the
complex plane rather than the real plane. Rather than restrict the parameter
space to the upper half of the complex plane, it is generally more convenient
to use the whole plane and to identify conjugate pairs of points. This
parameter space, which we denote by U or Q is isomorphic to the upper
half-plane. For u / 0, u and u give rise to the same Cauchy density2

< <u2
1 f y ; u s .Ž . Ž . 2< <p y y u

It is helpful here to think of the sample space as the real axis embedded in
the parameter space. For u s 0 the Cauchy distribution is a point mass2
at u .1

Received November 1992; revised March 1995.
AMS 1991 subject classifications. Primary 62A05; secondary 62E15.
Key words and phrases. Bartlett adjustment, Brownian motion, circular Cauchy distribution,

complex parameter, equivariance, fractional linear transformation, harmonic measure, invariant
measure, invariant statistic, likelihood ratio statistic, Mobius group, robustness, wrapped Cauchy¨
distribution.

787



P. MCCULLAGH788

Ž .For notational simplicity we write Y ; C u , with a single complex argu-
Ž .ment, meaning that Y has the Cauchy distribution with median R u and

< Ž . <probable error I u .

Ž .1.2. Real Mobius group. The standard Cauchy distribution u s "i is¨
obtained as the ratio of two independent standard normal variables. As a
consequence, if X is a bivariate normal random variable with zero mean and
covariance matrix S, then Y s X rX has the Cauchy distribution with1 2

< <1r2median u s s rs and probable error u s S rs . If we make a real1 12 22 2 22
nonsingular linear transformation from X to X X,

X X aX q bX1 1 2sXž / ž /X cX q dX2 1 2

with matrix A, it is evident that X X is also bivariate normal. Consequently,
Y X s X X rX X must also be Cauchy. The relation between Y and Y X is1 2

aY q b
X2 Y s ,Ž .

cY q d
which is called a fractional linear transformation. The set of such transforma-
tions with real coefficients and nonzero determinant forms a group known
variously as the real fractional linear group, the real Mobius group, the¨

Ž .projective group or SL 2, R .
It follows from the preceding construction that the Cauchy family is closed

under the real Mobius group. The advantage of using a complex parameter¨
space is evident in the expression for the induced transformation on the
parameter space:

aY q b au q b
3 ; C .Ž . ž /cY q d cu q d

Ž .Note that even if I u ) 0, the transformed parameter may have negative
imaginary part. It is only by using the entire complex plane and identifying
conjugate pairs that the induced transformation can be presented in the

Ž .simple form 3 .
The real Mobius group is generated by composing three types of transfor-¨

mation, namely, location shifts, scale multiples and reciprocals:

Y ¬ Y q b , Y ¬ aY and Y ¬ 1rY .

Numerous families of distributions are closed under location]scale transfor-
mation, but the Cauchy family is the only univariate location]scale family

w Ž .that is also closed under reciprocals Knight 1976 , Knight and Meyer
Ž .x1976 . For that reason any results given here are unlikely to extend beyond
the two-parameter Cauchy family.

The standard Cauchy distribution has parameter u s "i. From this one
distribution the entire family can be generated from the standard by applying
location]scale transformations alone,

Y s u q u « ,1 2
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Ž .where « ; C i . Apart from the sign of u , this is the unique transformation2
Ž . Ž .in the location]scale group that generates C u from C i . Within the real

Mobius group, however, there is an entire one-dimensional family all of which¨
Ž . Ž . Ž .transform C i to C u . To see this, we observe that if « ; C i ,

a« q b ai q b
X4 « s " ; C " s C "iŽ . Ž .ž /yb« q a ybi q a

is also standard Cauchy provided that a and b are real and not both zero.
Ž . � 4The set of transformations 4 , under which the parameter i, yi is invari-

� 4 � 4ant, is known as the stabilizer of i, yi or the isotropy group of i, yi . We
denote this group by I. The isotropy group associated with an arbitrary point
� 4u , u is the set of transformations

Y y u1
Y ¬ u " u g ,1 2 ž /< <u2

where g g I.

1.3. Circular Cauchy distribution. Let Z be a random variable on the
unit circle in the complex plane given by

1 q iY
Z s ,

1 y iY

Ž .where Y ; C u is real-valued. This is a 1]1 transformation from the ex-
tended real line to the unit circle. It is an elementary exercise to show that
the density of Z with respect to arc length on the circle is

< < <2 <1 y c
5 f z ; c s ,Ž . Ž . 2< <2p z y c

Ž . Ž . U Ž .where c s 1 q iu r 1 y iu . We write Z ; C c to denote the Cauchy
Ž .distribution 5 on the unit circle.

Ž . < <If I u ) 0, then c - 1, in which case the absolute value sign can be
Ž .omitted from the numerator in 5 . However, the image of u is 1rc , a point

outside the unit circle. Thus, the parameter space for the circular Cauchy is
� 4the extended complex plane in which pairs of points c , 1rc are identified.

Ž . Ž . Ž .Note that, in 5 , f z; 1rc s f z; c as required.
The uniform distribution is a special case given by the parameter point

� 40, ` .
Although it appears to bear scant resemblance to the real Cauchy distribu-

tion, the circular Cauchy does possess many of the properties of the real
Ž .Cauchy distribution. In particular, the family 5 is closed under the action of

the Mobius group on the unit circle. To say the same thing in another way,¨
the transformations

Z y g
6 Z ¬ exp ia Z and Z ¬ ,Ž . Ž .

g Z y 1
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< < U Ž .with g / 1, map the unit circle onto itself. If Z ; C c , the induced
distributions are

c y g
U UC exp ia c and C ,Ž .Ž . ž /gc y 1

< <respectively. The first of these transformations is a rotation: for g - 1 the
second is a straight-line projection through the point g onto the opposite side
of the circle.

Note in particular that the uniform distribution is unaffected by rotation:
� 4the set of rotations is the isotropy group for c s 0, ` . If Z is uniform,

< <projection through c with c - 1 produces a Cauchy distribution with
U Ž .parameter c : if Z ; C c , projection through c gives a uniform distribu-

Ž . Ž .tion. The isotropy group for c is obtained by i projecting through c , ii
Ž .rotating through an arbitrary angle and iii projecting through c .

Ž .1.4. Harmonicity. Suppose u ' u x, y is a continuous real function on
the closed unit disc satisfying

­ 2 u ­ 2 u
2= u s q s 0,2 2­ x ­ y

for all z s x q iy in the open disc. Then u is said to be harmonic on the open
Ž . < <unit disc. If Z has the circular Cauchy distribution 4 with c - 1, then

Ž Ž .. Ž . wŽ . xE u Z s u c . The proof follows from Rudin 1987 , Theorem 11.9 .
Ž .Since the real and imaginary parts of a holomorphic analytic function are

Ž Ž .. Ž . Ž .harmonic, it follows that E g Z s g c provided that g ? is continuous on
the closed unit disc and analytic on the open unit disc. In particular, the

Ž .complex moments of the circular Cauchy distribution 4 are

7 E Zk s c k ,Ž . Ž .
for integer k s 0, 1, . . . .

For any measure on the unit circle, the complex moments are also the
Fourier coefficients. These are sufficient to identify the distribution uniquely.

Ž .Consequently, property 7 uniquely identifies the circular Cauchy among all
measures on the unit circle.

Ž .1.5. Wrapped Cauchy distribution. Let W s exp iY , where Y is real.
< <Then W s 1, and W is said to be the wrapped version of Y on the unit circle.

Ž .The terminology is taken from Mardia 1972 , although the wrapping there is
done entirely in terms of real variables. If Y has the real Cauchy distribution
Ž .1 , its characteristic function is

E exp itY s exp itu ,Ž . Ž .Ž .
Ž . Ž . Ž .for all t G 0 provided that I u G 0. It follows then that E W s exp iu s c ,

say, and

E W k s c k ,Ž .



CAUCHY PARAMETER ESTIMATION 791

for positive integer k. These are the moments of the circular Cauchy distribu-
tion, from which it follows that the wrapped Cauchy family coincides with the
circular Cauchy family.

1.6. Convolutions. In the context of Cauchy distributions there are two
natural convolution operations depending on whether we are dealing with the
real-valued Cauchy or the circular Cauchy distribution. For independent
real-valued Cauchy variables
8 Y q Y ; C u q u ,Ž . Ž .1 2 1 2

Ž . Ž .provided that I u and I u are both nonnegative. This result follows from1 2
the characteristic function

E exp it Y q Y s E exp itY E exp itYŽ . Ž . Ž .Ž . Ž . Ž .Ž .1 2 1 2

s exp itu exp itu s exp it u q u ,Ž . Ž . Ž .Ž .1 2 1 2
for t G 0.

For independent circular Cauchy variables we have the alternative convo-
lution operation
9 Z Z ; CU c c ,Ž . Ž .1 2 1 2

< < < <provided that c F 1 and c F 1. The latter result follows simply from1 2
moment calculations:

k kk k k kE Z Z s E Z E Z s c c s c c ,Ž . Ž .Ž . Ž .Ž .1 2 1 2 1 2 1 2

for nonnegative integer k.
Ž . Ž .In a certain sense, the proofs and statements of 8 and 9 are identical.

Ž .The proof of 8 can be interpreted as showing that the product of two
Ž .wrapped Cauchy variables is also a wrapped Cauchy variable. The proof of 9

says exactly the same for circular Cauchy variables. However, the circular
and wrapped Cauchy families are identical.

It is convenient in what follows to assume that the parameters satisfy
Ž . < < Ž .I u G 0 and c F 1. Also, Y ; C u are independent. The image of Y onj j j j j

Ž . Ž .the unit circle is Z s 1 q iY r 1 y iY , which has the circular Cauchyj j j
distribution with parameter c .j

Ž .On the real line, the image of 9 is given by
Y q Y u q u1 2 1 2

10 Y [ Y s ; C .Ž . 1 2 ž /1 y Y Y 1 y u u1 2 1 2

It can be shown by induction that the ‘‘circular sum’’ of Y , . . . , Y , obtained1 n
Ž .by repeated application of 10 , is

r rÝ y1 S Y Ý y1 S uŽ . Ž . Ž . Ž .2 rq1 2 rq1
Y [ ??? [ Y s ; C ,r r1 n ž /Ý y1 S Y Ý y1 S uŽ . Ž . Ž . Ž .2 r 2 r

Ž .where, for 0 F r F n, S Y is the reduced monomial symmetric function in Yr
of degree r:

S y s y y ??? y ,Ž . Ýr i i i1 2 r

nwith summation over terms having unequal subscripts.ž /r
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Ž .For the special case in which the Y ’s are identically distributed, 9 gives
U Ž n. < <ŁZ ; C c . If c - 1, the limiting distribution is uniform on the circle.j

The image on the real line is
rÝ y1 S YŽ . Ž .2 rq1

Y [ ??? [ Y s r1 n Ý y1 S YŽ . Ž .2 r

r n 2 rq1Ý y1 uŽ . ž /2r q 1
; C ª C i ,Ž .

r n 2 r� 0Ý y1 uŽ . ž /2r

11Ž .

in which the limiting distribution is standard Cauchy. In other words, the
Ž . Ž .parameter ratio on the right of 11 tends to "i provided only that I u / 0.

Ž .In fact 11 can be viewed as a kind of central limit theorem for independent
and identically distributed random variables, not necessarily Cauchy. This
central limit theorem asserts that Y [ ??? [ Y has a standard Cauchy limit1 n
provided that the distribution of Y has a continuous component. To see why1
this is so, we observe that the circular sum is the image on the real line of the
product Z ??? Z on the unit circle, which is in turn determined by the sum1 n
of the arguments modulo 2p . If the distribution of Z has a continuous1

wcomponent, the product is asymptotically uniform on the unit circle Wold
Ž . Ž . x1934 , Kolassa and McCullagh 1990 , Section 3 . Hence the circular sum
Y [ ??? [ Y on the real line is asymptotically standard Cauchy.1 n

1.7. Connection with Brownian motion. The results given in preceding
sections are most easily understood in connection with Brownian motion in
the complex plane. A complete description of the connection between Brown-
ian motion and harmonic analysis can be found in Rogers and Williams
Ž .1986 , but the following brief description will suffice for present purposes.

Ž .Let B t be the position at time t of a Brownian particle in the complex
Ž . < <plane starting at B 0 s c with c - 1. Such a particle will eventually leave

the unit disc. Since Brownian paths are continuous, the time of first exit T is
< Ž . <the smallest t for which B t s 1. The point of first exit is a random

Ž . U Ž .variable Z ' B T whose distribution is C c . It is a property of Brownian
Ž Ž .. Ž .motion, sometimes known as the martingale property, that E u Z s u c

Ž .provided that u ? is harmonic in the unit disc.
Levy’s theorem states that Brownian paths are preserved by analytic´

Ž .transformation. In other words, if w z transforms the unit disc to the unit
Ž Ž ..disc, then w B t is a Brownian path in which the particle moves with

< < wvariable instantaneous ‘‘velocity’’ given by dwrdz see Rogers and Williams
Ž . x U Ž .1986 , Sections 4.33 and 4.34 . This transformed particle starts at c s w c

U Ž .and exits at Z s w Z . A consequence of Levy’s theorem is that the trans-
Ú U Ž U .formed exit point is again circular Cauchy, Z ; C c . A specific example

is the function
z y 1

w z s exp ,Ž . ž /z q 1
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which is analytic on the open unit disc, but not 1]1. Again, the transformed
Ž . U Ž Ž ..exit distributions is w Z ; C w c .

The real Cauchy distribution is the exit distribution of Brownian motion
from the upper half-plane, or lower half-plane if u - 0. The Cauchy transfor-2

Ž . Ž .mation property 3 is a consequence of Levy’s theorem in which w ? is´
fractional linear.

2. Maximum likelihood estimation. In this section y , . . . , y are the1 n
observed values of independent and identically distributed random variables

Ž . Ž .Y , . . . , Y , where Y ; C u . It is known from the work of Copas 1975 that1 n i
the likelihood function is unimodal for n G 3. In this section, various nonnu-
merical aspects of the problem of parameter estimation are considered, in
particular the implications of equivariance under the real Mobius group. The¨
distribution of the maximum likelihood estimator is derived in closed form for
n F 4 and studied in some detail.

2.1. Closed-form maximum likelihood estimate. We consider first the case
n s 2 with observations y s y1 and y s 1. Then the likelihood function is1 2

u 2
2

L u s .Ž .2 2 2< < < <1 q 2u q u 1 y 2u q uŽ . Ž .1 1

Ž . 2The likelihood contours at level L u s 1r4r , with r G 1, satisfy the2
equation

2 22 2 2 2u q u y r y r u q u q r y r s 0,Ž . Ž .Ž . Ž .1 2 1 2

2'which identifies a pair of circles of radius r, one with center at ir s i r y 1 ,
the other with center at yir. All such circles pass through the sample points
y1 and 1. The contour of maximum likelihood is the unit circle, or more

Ž .generally, the circle having y , y as diameter.1 2
For n s 4 it is convenient to order the sample points y - y - y - y .Ž1. Ž2. Ž3. Ž4.

The likelihood function can be written as the product

L u ; y s L u ; y , y L u ; y , yŽ . Ž . Ž .4 2 Ž1. Ž3. 2 Ž2. Ž4.

Ž .in which the first factor is maximized on the circle with diameter y , y ,Ž1. Ž3.
Ž .and the second factor is maximized on the circle with diameter y , y . TheŽ2. Ž4.

overall maximum thus occurs at the intersection of these circles and is given
by

y y y y yŽ2. Ž4. Ž1. Ž3.
û s ,1 y y y q y y yŽ4. Ž3. Ž2. Ž1.

y y y y y y y y y y y yŽ . Ž . Ž . Ž .' Ž4. Ž3. Ž3. Ž2. Ž2. Ž1. Ž4. Ž1.
û s .2 y y y q y y yŽ4. Ž3. Ž2. Ž1.

This expression is correct for any cyclic permutation of the ordered sample
values.
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For n s 3 a different argument is required. First, if the observed values
'Ž .are y1, 0, 1 , the maximum likelihood estimate is ir 3 . For any configura-

Ž .tion of three distinct values y , y , y there exists a real Mobius transfor-¨1 2 3
mation matrix

a bA s ž /c d

Ž . Ž .that transforms the points y1, 0, 1 to y , y , y . The required coefficients1 2 3
are given by

a s y y q y y y 2 y y , b s y y y y ,Ž .1 2 2 3 1 3 2 3 1

c s 2 y y y y y , d s y y y .2 1 3 3 1

Since the maximum likelihood estimator is equivariant, it follows that

'i air 3 q b
û y s A( s .Ž . ' '3 cir 3 q d

Simplification of the real and imaginary parts gives

2 2 2y y y y q y y y y q y y y yŽ . Ž . Ž .3 1 2 1 2 3 2 3 1
û s ,1 2 2 2y y y q y y y q y y yŽ . Ž . Ž .1 2 2 3 3 1

y y y y y y y y yŽ . Ž . Ž .1 2 2 3 3 1ˆ 'u s 3 .2 2 2 2y y y q y y y q y y yŽ . Ž . Ž .1 2 2 3 3 1

Ž .Ferguson 1978 gives the same formulae without derivation and shows that
they satisfy the likelihood equations.

2.2. Robustness in small samples? Given that closed-form estimates are
available for n s 3 and n s 4, one can examine in some detail how the
maximum likelihood estimate is affected by perturbations of arbitrary size in
one or more observations. We consider here the case n s 4 with y , y , y1 2 3
held fixed. It follows from the geometrical construction described in the

ˆpreceding section that u must lie on one of the semicircles with diameters
ˆŽ . Ž . Ž .y , y , y , y and y , y . Further, u is a continuous function of y.1 2 1 3 2 3

ˆConsequently, as y varies from y` to `, u moves continuously on these4
semicircular arcs. This locus is shown in detail in Figure 1. It can be seen

ˆthat the scale component u is particularly sensitive to near-coincidences in2
ˆŽ .the observations. Also, as y increases beyond max y , y , y , u decreases4 1 2 3 1

Ž .to a limiting value, namely, the median of y , y , y . This limiting value is1 2 3
not the same as the estimate with y omitted.4

Similar calculations for n s 5 show that the locus is a smooth closed curve,
but the qualitative phenomenon of sensitivity to clustering in the data points
remains apparent.
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Ž . Ž .FIG. 1. Locus of the maximum likelihood estimator for y` - y - ` with y , y , y s 0, 3, 4 .4 1 2 3
Ž .The maximum likelihood estimator with y omitted is marked by = at 3.23, 0.80 .4

2.3. Equivariance. The term equivariance refers to the behaviour of an
estimator T of u under the action of a group GG on the sample space. It is
assumed that the family of distributions is closed under the action of the
group, so that, for each g g GG, Y and gY belong to the same family with
parameters u and gu , respectively. In the present context, the group acts

n Ž .componentwise on y g R as in 2 : its action on the parameter space is given
Ž . X Xby 3 . To estimate u s gu , one might first transform the data to y s gy and

Ž X . Ž .then compute T y . Alternatively, one could compute T y and then trans-
Ž .form to gT y . There is no guarantee, even for consistent estimators, that

these two procedures yield the same numerical value. If, however,

12 T gy s gT y ,Ž . Ž . Ž .

Ž .for all g g GG, the estimator T ? is said to be equivariant under GG. Typical
estimators based on the sample median and sample probable error, or
semiinterquartile range, are equivariant under location]scale transforma-
tion, but not under the larger Mobius group. The maximum likelihood¨
estimator, however, is automatically equivariant because the likelihood func-

wtion based on gy is the same as the likelihood function based on y Eaton
Ž . x1989 , Section 3.3 .

From the definition, an equivariant estimator T of u satisfies the property

pr T g S ; u s pr T g gS; gu ,Ž . Ž .

for all g g GG and for all measurable S ; U. Consequently, the density, if it
exists, must satisfy

pr T g dt ; u s p t ; u m dt ,Ž . Ž . Ž .
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Ž . Ž .where m ? is invariant measure under the action of GG on U, and p gt; gu s
Ž .p t; u is invariant under the action of GG on U = Q. In the case of the Mobius¨

group acting on U = Q via
at q b au q b

13 gt s , gu s ,Ž .
ct q d cu q d

Ž . < <2 Ž . 2x t; u s t y u r4t u is a maximal invariant, and m dt s dt dt rt is2 2 1 2 2
invariant measure, unique up to a multiplicative constant. In other symbols,
Ž . Ž .x gt; gu s x t; u and

dt dt dt dt1 2 1 2s .H H2 2t tS gS2 2

Consequently, any equivariant estimator of u in the Cauchy problem must
have a density of the form

p xŽ .n
14 pr T g dt s dt dt ,Ž . Ž . 1 224p t2

Ž .for some function p ? on the positive real line. The reason for inserting then
Ž .constant 4p is that p ? is then the marginal density of the pivotal statisticn

< <2T y u r4T u .2 2
In many problems involving group action, the action of the group on the

parameter space is isomorphic to the action of the group on itself, either left
action or right action. The Cauchy problem is not an instance of this because
the parameter space is not isomorphic to the group. For that reason, the
distinction between left- and right-invariant measures does not arise. The
invariant measure given above is a measure on the parameter space, not
Haar measure on the group.

2.4. The orbit of a nonequivariant estimator. Apart from the maximum
likelihood estimator, most other estimators of u are not equivariant under GG,
although they are typically equivariant under location]scale transformation.
It is of interest, therefore, to examine the set of possible estimators that could
be obtained by first transforming y componentwise to gy, and then correcting

y1 Ž .by applying g to the estimate. In symbols, if T ? is not equivariant, its
orbit is defined as the set

gy1T gy : g g GG .� 4Ž .
Ž . y1 Ž .If T y is consistent for u , so also is g T gy .

The estimator used here is the sample median and the semiinterquartile
range defined as follows. With the observations indexed from 0 to n y 1 and
arranged in increasing order, we define

n y 2 n y 2
i s , i s , i s i q 1, i s i y 1;1 4 2 1 3 44 4y q

1 y w y y y q w y y yn y 2 Ž . Ž . Ž .i i i i4 1 3 2w s y i ; T s ,1 24 2
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w x w xwhere x is the integer part of x rounding down, and x is the smallesty q
integer not less than x, that is, rounding up.

Figure 2 exhibits the orbits for two data configurations with n s 5 and
n s 6. The remarkable observation is that the orbit is a smooth curve in Q for
n F 5, but for n G 6 the orbit is the union of n arc segments. This discontinu-
ity at n s 6 seems to be characteristic of estimators based on order statistics.
Estimators that are not equivariant under sign reversal have more compli-
cated orbits.

y1 Ž .If we regard the real part of g T gy as a generalized median, Figure 2a
exhibits a paradox, in that this generalized median can occur slightly beyond
the range of the observations. Also, the generalized probable error can be
arbitrarily close to zero for n F 5.

Ž .2.5. Distribution of the maximum likelihood estimator. Equation 14
specifies the distribution of an equivariant estimator of u up to an undeter-

Ž .mined function p x on the positive real line. In this section we focus on then

Ž . y1 Ž . ŽFIG. 2. a Orbit of a nonequivariant estimator g T gy for n s 5; y s y3.0, y2.0, y1.0, 1.5,
. Ž . Ž .2.0 : the value of T y is marked by (; the mle is marked by =. b Orbit of a nonequivariant

y1 Ž . Ž . Ž .estimator g T gy for n s 6; y s y3.0, y2.0, y1.0, 0.5, 1.5, 2.0 : the value of T y is marked
by (; the mle is marked by =.
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Ž . Ž .maximum likelihood estimator and obtain expressions for p x , p x and3 4
Ž .the asymptotic form as n ª ` of p x .n

Ž .The strategy is to make a nonsingular transformation from y , . . . , y to1 n
Ž . Ž . Ž .t, a , in which t s t , t and a s y y t rt are the components of the1 2 j j 1 2
configuration statistic. Maximum likelihood estimation imposes constraints

Ž .on the configuration such that a , a can be expressed in terms ofny1 n
Ž .a , . . . ,a . The marginal distribution of T can then be obtained by inte-1 ny2

Ž .grating out the auxiliary n y 2 -dimensional variable a. The transformation
y s t q t a has a Jacobian of the formj 1 2 j

­ yŽ .
ny2s t J a ,Ž .2 n­ t , aŽ .

Ž . Ž .in which J a depends on the expression for a , a in terms ofn ny1 n
Ž . Ž .a , . . . , a . Specifically, J a is the absolute value of the determinant of1 ny2 n

­ a ­ any1 ny1
1 y a y aÝ Ýny1 j­ a ­ aj j

15 ,Ž .
­ a ­ an n

1 y a y aÝ Ý� 0n j­ a ­ aj j

in which the sums run from j s 1 to n y 2.
In the case of the Cauchy distribution, the configuration takes on a

Ž . Ž .particularly simple form when expressed in terms of z s 1 q ia r 1 y iaj j j
w Ž .xon the unit circle. The likelihood equation is Ýz s 0 McCullagh 1992 .j

< <Given values z , . . . , z satisfying z F 1, where1 ny2 ?

z q ??? qz1 ny2
z s ,? 2

Ž Ž < <y2 .1r2 .the remaining two points are yz 1 " i z y 1 provided that z / 0.? ? ?

For n s 3 the configuration is necessarily of the form

z , v z , v 2 z or z , v 2 z , v z ,Ž . Ž .
< < Ž .with z s 1 and v s exp 2p ir3 . On the original scale this translates to

' ' ' 'a q 3 a y 3 a y 3 a q 3
a, , or a, , .ž / ž /' ' ' '1 y a 3 1 q a 3 1 q a 3 1 y a 3

22 2 2'Ž . Ž . Ž . < <Equation 15 gives J a s 6 3 1 q a r 1 y 3a = 2, the doubling fac-3
tor coming from the two distinct configurations. Likewise, for n s 4, the

Ž . Žconfiguration is necessarily a permutation of z , z , yz , yz or a , a ,1 2 1 2 1 2
.y1ra , y1ra . This gives1 2

2 a y a 1 q a aŽ . Ž .1 2 1 2
J a s = 3.Ž .4 2 2a a1 2
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For n s 3 and u s i the joint density of T is

` t J a daŽ .2 3
,H 2 2 23y` p 1 q t q t a 1 q t q t a 1 q t q t aŽ . Ž . Ž .� 4 � 4 � 41 2 1 1 2 2 1 2 3

Ž . Ž 2 .which simplifies to p x r 4p t , with3 2

'3 3
16 p x s .Ž . Ž .3 2p 1 q 3x q 3xŽ .

Likewise, for n s 4 and u s i, the density of T is
` ` 2 24p 1 q t q t a 1 q t q t aŽ . Ž .� 4 � 4H H 1 2 1 1 2 2

y` y`

y12 2 2= 1 q t y t ra 1 q t y t ra t J a da da .Ž . Ž . Ž .� 4 � 41 2 1 1 2 2 2 4 1 2

Ž . 2After much simplification this reduces to p x r4p t , with4 2

12 log 1 q 2 xŽ .
17 p x s .Ž . Ž .4 2p x x q 1 2 x q 1Ž . Ž .

The process of simplifying these integrals is exceedingly tedious and error-
prone, but the preceding formulae can easily be verified numerically. This
direct method seems not to be feasible for n ) 4.

Ž .The large-sample behavior of p x is difficult to compute, but the follow-n
ing argument gives an upper bound for the large-deviation rate,

y1 Ž .ylim n log p x . First compute the conditional density of T given thenª` n
value of the configuration statistic a. From the Jacobian calculations given

ny2 Ž .above, this conditional density is proportional to t Ł f t q a t ; u . Thus2 1 j 2
Ž 2 .the conditional density with respect to invariant measure dt dt rt is1 2 2

proportional to
t f t q a t ; u .Ž .Ł 2 1 j 2

j

The maximum of this density occurs at t s u . The determinant of the
Ž 2 < 2 <2 .logarithmic second-derivative matrix at t s u is n y Ýz r4, which canj

be approximated by n2r4. Laplace approximation then gives

n f t q a t ; u tŽ .1 j 2 2
<f t a; u (Ž . ŁT < A 2 f u q a u ; u u4p t Ž .j 1 j 2 22

n t u 1 q a2Ž .2 2 js ,Ł2 224p t j u q t y u q a t2 Ž .2 1 1 j 2

y1 ˆ 'Ž .with relative error O n . Since u is n -consistent, the components of a
satisfy

ˆY y u dž /j 1 j
a s s « yj j 'ˆ nu2
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Ž . Ž .where « s Y y u ru are independent standard Cauchy and d are O 1j j 1 2 j p
and exchangeable. In fact,

ˆd 1 1 u uj 1 1s y y q y ,j ž /' ˆ ˆu un u u2 22 2

Ž . Ž .so the average of the d ’s is O 1 . For any differentiable function h ? , thep
Ž . Ž . XŽ . 1r2mean-value theorem gives h a s h « q d h j rn , where j lies in thej j j j j

Ž . Ž . Xinterval a , « . If h « has finite mean and h is bounded, the law of largej j
numbers gives

h a h «Ž . Ž .j j y1r2s q O n ª E h « .Ž . Ž .Ž .Ý Ý pn n

Ž .From the appendix to McCullagh 1993 , if « is standard Cauchy,

E log 1 q « 2 s log 4,Ž .
2 22 < <E log u q t y u q « t s log t y u ,Ž . Ž .Ž .2 1 1 2

Ž . Ž .where I t and I u are both positive. Hence, taking

22 2h a s log 1 q a y log u q t y u q at ,Ž . Ž . Ž .Ž .2 1 1 2

we have

t u 1 q a2 4t uŽ .2 2 j 2 2 y1r2E log s log q O n .Ž .2 2ž /2 < <ž / t y uu q t y u q a tŽ .2 1 1 j 2

By the law of large numbers, therefore,

1 4t u2 2
<y log f t a; u ª log s log 1 q x .Ž . Ž .T < A 2ž /n < <t y u

This is the large-deviation rate for the conditional distributions: it is indepen-
dent of the value of the conditioning statistic. For the unconditional large-
deviation rate, Jensen’s inequality gives

y1 y1 <y lim n log f t ; u s y lim n log Ef T a; uŽ . Ž .T T < A
nª` nª`

y1 <F yE lim n log f t a, u s log 1 q x .Ž . Ž .½ 5T < A
nª`

If this inequality is strict, as it appears to be for positive x , we have here a
conundrum. On the one hand the conditional large-deviation rate does not
depend on the value of the conditioning variable. On the other hand the
unconditional large-deviation rate is smaller than the conditional rate. Even
though it is agreed that the conditioning variable is not relevant for the
computation of large-deviation probabilities, there is no agreement on which
limit to use.
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Ž . y1 Ž . Ž .Application to 14 gives lim n log p x G ylog 1 q x . Simulation re-n
sults indicate that

ynq118 p x ( n y 2 1 q xŽ . Ž . Ž . Ž .n

is reasonably accurate for samples as small as n s 5. This approximation
achieves the conditional large-deviation rate. It is also consistent with the

ˆŽ .'familiar moderate-deviation limit that nr2 u y u ru is bivariate standard2
normal and nx is unit exponential. Exact results for n F 4 suggest that x

Ž .has finite moments up to but not including order n y 2. Approximation 18
achieves this property, but the claim has not been proved.

Ž .2.6. Moments and other expectations. Let u t be any function that is
Ž . Ž .harmonic on U. If T has a density of the form 14 , the expected value of u T

is given by
1

E u T s u t p x dt dt .Ž . Ž . Ž .Ž . HH 1 224p t2

The curve for x equal to a constant is a complete circle in U with center
Ž Ž .. 'v s u , u 1 q 2 x and radius r s 2u x 1 q x . As a consequence, it isŽ .1 2 2

Ž . Ž .convenient to make a change of variables from t , t to x , f as follows:1 2

't s u q 2u x 1 q x cos f ,Ž .1 1 2

't s u 1 q 2 x q 2u x 1 q x sin f ,Ž . Ž .2 2 2

with Jacobian
­ t , tŽ .1 2 s 2 t u .2 2­ x , fŽ .

This change of variables gives

` p u u v q r exp if dfŽ .Ž .2
19 E u T s p x dx .Ž . Ž . Ž .Ž . H H 2p v q r sin fŽ .Ž .0 yp 2

w Ž .The standard form of the Poisson integral formula Rudin 1987 , Section
x5.22 ,

p
21 1 y r h exp if dfŽ . Ž .Ž .

s h r exp ia ,Ž .Ž .H 22p 1 q r y 2r cos f y aŽ .yp

'with a s ypr2 and r s xr x x q 1 , givesŽ .
p1 h exp if df x exp iaŽ . Ž .Ž .

s hH ž /2p ' '1 q 2 x q 2 x 1 q x sin f x 1 q xyp Ž . Ž .
Ž .if h ? is harmonic on the open unit disc and continuous on the closed disc.

Ž .Application of the formula in this form to 19 gives
`

20 E u T s p x u u dx s u u ,Ž . Ž . Ž . Ž . Ž .Ž . H
0

Ž .provided that the integral exists and u ? is harmonic on the upper half-plane.
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Note in particular that the real and imaginary parts of an analytic
Ž . < Ž . <function are harmonic. Consequently, if g ? is analytic on U with E g T -

Ž Ž .. Ž . Ž . k Ž .`, it follows that E g T s g u . In particular, if g t s t , the integral 6
Ž . ky1converges provided that Hp x x dx - `. In the case of the Cauchy maxi-
Ž < <k .mum likelihood estimator, E T - ` for k - n y 1 if our conjecture regard-

Ž .ing the moments of p x is correct.n

2.7. Marginal distributions. It is of some interest to obtain the marginal
Ž .distributions of T and T , and of the pivotal statistic T y u rT , analo-1 2 1 1 2

gous to the Student t-ratio used in normal-theory inference. For n s 3 and
Ž .u s 0, 1 , integration using residues gives exact expressions as follows:

3 dt1
21a pr T g dt s ,Ž . Ž .1 1 2 2'p 1 q t 4 q 3tŽ .1 1

' '2 3 dt 22
21b pr T g dt s ,Ž . Ž .2 2 3r2 1r22 1r2 1r2p 1 q tŽ . 1 q « 1 q 1 q «Ž . Ž .2 Ž .

2''T 3 3 dt 1 q 4 q 3t1
21c pr g dt s log ,Ž .

2 2 2ž / ' 'T p 4 q 3t 1 q 4 q 3t2

12 2 2Ž Ž . . Ž .where « s 4t r 3 1 q t in 21b . Since 0 F « F , the second factor in2 2 3
Ž .21b is bounded between 0.83 and 1.0. Thus, the density is approximately the

Ž .positive half of a Student t on two degrees of freedom. Expression 21c is a
mixture of Student t-distributions on odd degrees of freedom in which the

Ž . Ž . Ž .first few weights are 3rp , 1r 8p , 9r 640p and 15r 7168p . In other
words, the density is essentially Cauchy with probable error 1.1, which is a

'little less than 2r 3 , the probable error of the leading term. These densities
are not members of any of the standard univariate families, nor are they
simple transformations of standard distributions.

For n s 4 the available formulae are a little more complicated:

'log v q 1 q v v q 2Ž .12 dt ž /2
pr T g dt sŽ .2 2 2 3r2 'žp t v q 22

Ž .22a 'log v y 1 q v v y 2Ž . 2 log 2vž /
q y ,' ' /v y 2 v

2 2 2' '< < < <T 12 1 q t log t q 1 q t y 6 t log 4 q 4tŽ .Ž .1Ž .22b pr g dt s dt,
2 2ž / 'T < <p t 1 q t2

Ž .where v s t q 1rt . The mean of T is 1, which is consistent with 20 : the2 2 2
variance, determined numerically, is 2. The tail behaviour of the density is
36 log t rp 2 t 4. The tail behaviour of the density of T rT is 6 log trp 2 t 3: the2 2 1 2
mean absolute deviation is approximately 1.69. I have not succeeded in
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finding a closed-form expression for the marginal density of T , although its1
variance must be 2.

Ž . Ž .Resorting to approximation 18 for large n, and keeping u s 0, 1 for
simplicity, the marginal distribution of T is given by2

n y 1 TŽ . 2
; F ,2Žny2. , 2Žny1.n y 2

Ž .with unit expectation and variance 2r n y 3 for n ) 3. Further, the condi-
tional distribution of T given T is proportional to Student’s t on 2n y 31 2
degrees of freedom:

1 q t2
<T T s t ; t .1 2 2 2 ny3'2n y 3

Ž .2 Ž .This has mean zero, conditional variance 1 q t r 2n y 5 and uncondi-2
Ž .tional variance 2r n y 3 for n ) 3. Note that harmonicity requires

Ž . Ž . Ž .var T s var T and cov T , T s 0 if these moments exist. The approxi-1 2 1 2
Ž .mate marginal density of the pivot T rT , obtained from 18 by Laplace1 2

approximation, is

T n y 1 23n G2 n dtŽ . Ž .1
23 pr g dt ( .Ž . ny1r21r4ž /T 2 2'2 '4p 2 G 2n 1 q t 1 q 1 q tŽ . Ž . Ž .

where n s n y 1. This is a correction of, and an improvement over, a similar
Ž . Ž < <n .formula in McCullagh 1993 . The tails of this distribution are O 1r t , that

is, like those of t , in agreement with the exact distribution for n s 3. Forny2
large n, the centre of the distribution is such that the standardized ratio

Ž .'nr2 y 1 T rT is approximately distributed as Student’s t on 2 n y 1 r31 2
degrees of freedom.

Ž .2.8. Information in the marginal and full likelihoods. In general, if T ? ,
as an estimator of u , is equivariant under location]scale transformation, the

Ž .data may be partitioned into y s t, a in which t is the value of the
estimator and a is ancillary. The marginal likelihood based on T alone is
thus

24 L u ; t s E L u ; t , a ,Ž . Ž . Ž .M A

Ž . Ž Ž ..where L u ; y s exp l u ; y is the full likelihood based on data y. The
Cauchy log-likelihoods are

< <225 l u ; y s n log u y log y y u ,Ž . Ž . Ý2 j

26 l u ; t s log p x .Ž . Ž . Ž .M n

Ž .The latter expression applies only if T ? is equivariant under the real
Mobius group, which is assumed in the remainder of this section.¨
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Ž .The second term on the right-hand side of 25 is harmonic in u . Conse-
quently, the Laplacian of the log-likelihood satisfies

n
2 2= l u ; y s n = log u s y ,Ž . 2 2u2

which is a constant independent of the data. Similar calculations show that
the Laplacian of the marginal log-likelihood is given by

=2 l u ; t s =2 log p xŽ . Ž .M n

2 2
­x ­x

X 2s g x q q g x = xŽ . Ž .n nž / ž /­u ­u1 2

x 1 q x gX x q 1 q 2 x g x� 4Ž . Ž . Ž . Ž .ns ,2u2

X 2 ˆ ˆ2Ž .where g s p rp . Note that y= l u ; y s nru is the trace of the observedn n n 2
information matrix and has a natural statistical interpretation in terms of

2 Ž .precision of estimation. Likewise y= l t; t is the trace of the marginalM
Ž .observed information matrix based on the statistic T y s t.

The Laplacian of the likelihood is given in terms of logarithmic derivatives
by

2 2
­ l ­ l

2 2= L s L q q L= l.ž / ž /­u ­u1 2

2 2 Ž .At stationary points we have = L s L= l. Using 24 , the Laplacian of the
marginal likelihood is

=2L u ; t s E =2L u ; t , aŽ . Ž .M A

2 2
­ l ­ l n

s E L u ; t , a q q E L u ; t , a yŽ . Ž .A A 2ž /½ 5ž / ž /­u ­u u1 2 2

2 2
­ l ­ l n

s E L u ; t , a q q L u ; t y .Ž . Ž .A M 2ž /½ 5ž / ž /­u ­u u1 2 2

On evaluating this expression at the marginal maximum likelihood estimate
u s t and dividing through by L , the trace of the marginal observedM
information matrix is obtained in the form

n L t ; t , a ­ l t ­ l t nŽ . Ž . Ž .
2 2 2Ž . Ž . w �Ž . Ž . 4x27 y= l t; t s y E q F .M A2 2L t ; t ­u ­ut tŽ .M 1 22 2

Equality is achieved if and only if t is a stationary point of both l and l .M
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Ž .In terms of the density p x and for any equivariant estimator, thisn
result implies

­ log p 0Ž .nyg 0 s y F n ,Ž .n ­x

equality being achieved only by the maximum likelihood estimator. In other
words, the maximum likelihood estimator achieves maximum local concentra-

Ž .tion as measured by the invariant x t; u . It should be borne in mind that, for
Ž . Ž y1 . Ž .large n, x T ; u s O n . In large samples, it is the local behaviour of p ?p n

near the origin that dominates.
Ž . Ž .Note that the exact expressions 16 and 17 satisfy the condition that

Ž . Ž . Ž .yg 0 s n, but approximation 18 gives yg 0 s n y 1.n n

2.9. Marginal likelihood ratio statistic. The marginal likelihood ratio
Ž . Ž .statistic is G s 2 log p 0 y 2 log p x , a function of the invariant statistic.n n

Ž .The exact distribution can be obtained for n s 2 and n s 3 using 16 and
Ž .17 . The first three cumulants are 3.877, 15.676 and 126.690 for n s 3, and

Ž .3.217, 10.080 and 62.357 for n s 4. However, approximation 18 gives the
rŽ . ŽŽ . Ž ..rvery simple result that the r th cumulant of G is 2 r y 1 ! n y 1 r n y 2 .

Ž .Consequently, ignoring the error in 18 , the Bartlett adjusted statistic
Ž . Ž . rŽ .n y 2 Gr n y 1 has r th cumulant equal to 2 r y 1 !, which is exactly the
r th cumulant of x 2 on two degrees of freedom. Note that, even for n s 3 and2

Ž .4, the approximate cumulants based on 18 are reasonably accurate, and the
Bartlett adjustment is quite effective.

3. Miscellaneous topics.

3.1. Invariant tests. Let Y , . . . , Y be independent and identically dis-1 n
tributed with distribution F. Suppose that it is required to test the null

Ž .hypothesis that F is in the two-parameter Cauchy family C ? . The alterna-
tive hypothesis includes all continuous distributions on the real line. If

Ž . Ž .Y ; C ? , then gY ; C ? for all g g GG. Likewise, the alternative hypothesis
is preserved by GG. Consequently, a plausible argument can be made for
treating Y and gY as equally consistent or equally inconsistent with the null
hypothesis. This criterion of invariance leads to the selection of a test statistic

Ž . Ž .that is constant on orbits, that is, T gy s T y for all g g GG and for all
y g Rn.

The easiest way to describe the class of invariant test statistics is to begin
ˆ ˆŽ .with the configuration statistic a s y y u ru and to transform to thej j 1 2

Ž . Ž .unit circle via w s 1 q ia r 1 y ia . The maximal invariant under GG is thej j j
Ž .vector w modulo rotations. All invariant test statistics are of the form T w

such that, for every real a ,

T exp ia w , . . . , w s T w , . . . , w .Ž . Ž . Ž .Ž .1 n 1 n
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r < <The Fourier sum T s Ýw is not itself invariant, but T is invariant. Ther j r
Fourier sums can be used to generate other invariant statistics that are also
symmetric functions of y. One simple example is

T s T T T ,r st r s t

with r q s q t s 0. Note that T s T , and T s 0 is a consequence of theyr r 1
likelihood equation.

Some of these statistics have simple statistical interpretations. For exam-
< < < <ple, T is a measure of bimodality of the configuration on the circle; T is a2 3

measure of circular trimodality and so on.
It appears to be difficult, perhaps even impossible, to construct an invari-

ant test that is sensitive to skewness or asymmetry of any form in F.
Certainly no such test exists for n s 3 because any three distinct points on
the real line can be transformed to any other three distinct points by an
element of GG. For n s 4 the only invariant is the cross-ratio, which does not
measure skewness. I have been unable to prove or even formulate adequately
the claim of nonexistence of such a test for general n ) 4, but it is difficult to
imagine what form such a test statistic could take as a function of w , . . . , w .1 n
Skewness on the real line does not translate directly to skewness on the

< <circle. For example, a large value of T does not, of itself, suggest asymme-3
try.

3.2. The configuration statistic. The configuration statistic W as defined
in the preceding section is a vector whose components are unit complex
numbers adding to zero. The distribution of W does not depend on the
parameter, but W is not invariant under GG. The orbit of W under GG is the set

Ž .of all componentwise rotations exp ia W of W, all components rotated equally.
Since the distribution of W is unaffected by g, one is tempted to conclude

Ž .that W ; exp ia W, that is, that the joint distribution of W is invariant
under rotation. This claim is false. The effect on W of first applying a
transformation g to Y is a rotation, but the angle of rotation a depends onˆg
ˆ Ž .u . The correct conclusion, that exp ia W ; W for each g g GG, does notˆg

Ž .imply exp ia W ; W for any fixed a / 0. In fact, for n s 3, the density of
'a 3 at x can be obtained by contour integration in the form1

21 x y 1 1 q x
log q x log ,2 2 ž /4 1 y xp x y 1Ž .

'which has singularities at x s "1 or a s "1r 3 . The density of W has1
period 2pr3 with singularities at y1, yv and yv 2 and is clearly not
uniform.

Ž . ŽIf Z has the circular Cauchy distribution 5 with parameter c , Z y
. Ž .c r c Z y 1 is uniformly distributed on the unit circle. However, the circular

U ˆˆŽ . Ž .configuration vector with components W s Z y c r c Z y 1 is not an
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ancillary statistic: its distribution depends on c . In general, although the
U ˆconfiguration W is a rotation of W, the angle of rotation depends on c ,

which induces a dependence on the parameter.

3.3. Regression models. The family of linear regression models for the
median is not closed under Mobius transformation, so the results given here¨
have no relevance for ordinary Cauchy regression models. However, it should
be possible to extend some of the results of Section 2 to the invariant
regression model described below.

Let y , . . . , y be the observed values of independent Cauchy random1 n
variables Y , and let z , . . . , z be given complex-valued nonstochastic covari-j 1 n

Ž .ates satisfying I z / 0. In the fractional linear regression model, thej
conditional distribution of Y given the covariates is Cauchy with parameterj
u satisfyingj

b z q b00 j 01
28 u s s b ( z ,Ž . j jb z q b10 j 11

where the parameter b is a 2 = 2 real matrix with unit determinant, that is,
Ž . < <b g SL 2, R . In other words, Y has median u and probable error uj 1 2j j

Ž .given by the real and imaginary parts of 28 . Thus, we may write Y ;j
Ž .C b ( z for the conditional distributions of the components of Y. This familyj

of regression models is closed under fractional linear transformation in the
Ž .sense that, for each matrix g g SL 2, R ,

g (Y ; C g (u ' C g b ( z ,Ž . Ž .j j j

where g (u denotes fractional linear transformation and g b denotes matrix
multiplication.

Ž .Regrettably, bona fide applications of 28 are not easy to envisage.
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