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We consider the problem of sharp-optimal estimation of a response
function f(x) in a random design nonparametric regression under a
general model where a pair of observations (Y, X) has a joint density
p(y, x) = p(y|f(x))7(x). We wish to estimate the response function with
optimal minimax mean integrated squared error convergence as the sam-
ple size tends to «. Traditional regularity assumptions on the conditional
density p(y|6) assumed for parameter 0 estimation are sufficient for
sharp-optimal nonparametric risk convergence as well as for the existence
of the best constant and rate of risk convergence. This best constant is a
nonparametric analog of Fisher information. Many examples are sketched
including location and scale families, censored data, mixture models and
some well-known applied examples. A sequential approach and some
aspects of experimental design are considered as well.

1. Introduction. The problem of nonparametric regression is well
known. Eubank (1988), Miiller (1988), Hardle (1990) and Wahba (1990) give
nice discussion in this area. Typically, an additive regression is explored
when we observe pairs (Y7, X,),(Y,, X,),...,(Y,, X,), where Y, = f(X)) + &,
l=1,2,...,n, and & is noise. The problem is to estimate the unknown
response function f(x), x € [0, 1]. The design points X, may be considered
fixed (the equidistant points are an example) or random (random design
regression) with density 7 (x) supported on [0, 1].

The focus of this paper is to explore more general random design regres-
sion when observations are independent realizations of the pair (Y, X) of
random variables with a fixed joint density p(y, x) = p(y|f(x))m(x). Note
that if p(y|f(x)) = p(y — f(x)), then we get the above-mentioned random
design additive regression. Moreover, we shall study a sequential estimator
f.=({f,, m=1,2,...},7), based on 7 observations Z" = (Z,Z,,...,Z,),
Z, = (Y}, X,) with restriction

(1.1) sup E/{(7/n)"} < 1

on the stopping time 7. In (1.1) the supremum is taken over a class of
response functions and B8 > 1 is some given constant.
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We would like to explore sequential estimators whose minimax mean
integrated squared error (MMISE) converges with optimal constant and rate
as n — o,

There is an extensive literature on sharp estimation for an additive model
and a fixed sample size. For example, in various versions of this setting,
Nussbaum (1985), Speckman (1985) and Golubev and Nussbaum (1990) give
precise bounds (including sharp constants) on the MMISE and define estima-
tors which achieve these bounds. In Golubev (1991), a general approach of
local asymptotic normality is applied for finding a local lower bound; in
particular, a lower bound is obtained for the case of an equidistant nonpara-
metric regression with given sufficiently smooth conditional density p(y|f(x))
and response functions are from some shrinking neighborhood of a known
function f,, that serves as a center of localization. A different approach is
considered in Fan (1993) where a minimax is defined with supremum over
both the response functions and joint distributions of (Y, X); a nearly optimal
(within a constant factor) minimax estimator is suggested which is also
sharp-optimal among all linear estimators.

In the present paper for the considered general setting, we give precise
bounds (including constants) on the MMISE, show that a sequential approach
does not improve MMISE convergence and suggest a sharp-optimal method of
estimation which is similar to a parametric scoring estimator: first, we
construct a pilot estimator; second, we use an orthogonal series estimator
where each Fourier coefficient is estimated by using the classical one-step
Newton—-Raphson approximation (scoring).

The lower bounds for MMISE convergence are considered in Section 2. The
sharp-optimal nonparametric scoring estimation is investigated in Section 3.
In these sections we always assume that both conditional density p(y|f(x))
and density 7w (x) of the design points are given. Section 4 is devoted to a case
of an unknown density 7 (x) of the design points. Examples of sharp-optimal
estimation are discussed in Section 5. Some extensions of the present setting
are discussed in Section 6. Proofs are deferred until Section 7.

2. Lower bound. We consider the general setting of random design
nonparametric regression with joint density p(y, x) = p(y|f(x))7(x). A goal
of this section is to find a lower bound for a localized MMISE convergence
when supremum is considered over a shrinking neighborhood around a given
function f,, and infimum is over all possible estimators. This localized ap-
proach is traditional in asymptotic parametric theory, see Ibragimov and
Khasminskii (1981), Golubev (1991) gives a nice discussion of this issue for
nonparametric curve estimation.

Here we study a localized analytic hyperrectangle H(f,, p, a, Q) = {f:

F(f(x) = folx)?dx < p?, f(x) — fo(x) € H(a, Q)} and a localized ellipsoid
E(fo, py @, Q) = {f: [§(f(x) — folx)?dx < p?, f(x) — fo(x) € &(a, @)}, where
p is a small parameter (p — 0).

The analytic hyperrectangle of order « is defined for a positive real « as

H(a,@) = {f(x): f(x) =X7_,60,0(x), 16,| <Q, [0,, ;| <Qe %/, i=0,1, j=
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1,2,...}. This is a subspace of analytic and periodic on [0, 1] functions; see
Bary (1964). The ellipsoid (the ath-order Sobolev subspace) is defined for a
positive integer a as &(a, Q) = {f: f has a — 1 absolutely continuous and
periodic derivatives, [}If2%(x) + (F((x)?]dx < Q) = {f(x): f(x) =
i 00,0(x), 65 + X7_ (1 + 2mj)**XN65;_, + 65,) < Q). Hereafter f(*) is the
ath derivative, 6; = (f, ¢;) = [¢f(x)¢(x)dx are the Fourier coefficients
of the functions f for the trigonometric basis {¢y(x) =1, @,; 1(x) =
V2 sin(27 jx), @y (%) = V2cos(2mjx), j=1,2,...}

These function classes have been intensively studied; see, for example,
Adams (1975), Nussbaum (1985), Speckman (1985), Donoho, Liu and MacGib-
bon (1990) and Golubev and Nussbaum (1990).

It is natural to suppose that the function f,, which is the center of
localization, belongs to the analytic hyperrectangular or to the ellipsoid,
respectively. Then {f,(x): x € [0,1]} C[a, b] € ® C R, where [a,b] =K is a
finite interval and 0 is an open (not necessarily finite) interval. Hereafter we
suppose that p(y|6) is defined over ©.

Recall some notation and results of asymptotic theory of point estimation,
following Ibragimov and Khasmingkii (1981). One of the main methods for
investigating a lower bound for risk convergence is based on uniform local
asymptotic normality (ULAN) of a parametric statistical experiment Ey, =
{z", %", u", P, 06 € 0}. Hereafter Ey, denotes a product of n identical
statistical experiments Ey, = z,%, n, Py, 0 €0}, where p is a o-finite
measure on %. All probability measures P,, 6§ € 0, are absolutely continuous
with respect to u and p(y|0) = dP,/du is the conditional density of the
observation Y given parameter 6. We denote a log-likelihood function corre-
sponding to n observations Y" as L(Y", 0,, 6,) = In(dP, /dP,) =
Z?: 11n(p(Yl|92)/p(Yl|91))

The parametric statistical experiment Ey , is called ULAN on ©, C © if
there exists a sequence of functions ¢(n,t¢) such that, for any sequences
t, €0, u,>uckandt, + ¢(n,t,)u, €0,, the following equality holds
LY, t, + on, t)u,, t,) =ulln,t,) — 1/2u® + R(n, u,, t,), where
A(n, t,) converges in distribution P to a standard normal random variable
and R(n,u,,t,) converges in probability P to 0.

We say that the parametric statistical experiment Ey, has a finite Fisher
information I(0) over 6 € O if the function /p(y|0) is differentiable in
L,(w), that is, there exists a function (y|6) such that for all § € ® the
following asymptotic equality holds: fl\/p(yIO +h) — \/p(yIH) -
hy(y10)uldy) = o(h?) as h — 0 and 1(0) = 4/y>(y|0)u(dy) < . Hereafter
g'(yl0) = dg(y|6)/d6 for any function g(y|6).

The following regularity conditions are sufficient for ULAN on K due to
Theorem 2.6.2 and Remark 2.3.2 in Ibragimov and Khasminskii (1981).

R1. The conditional densities p(y|§) are continuous in 6 for u-almost all
y €% and all 6 € 6.

R2. The statistical experiment Ey, has a finite Fisher information and
I(9) > 0 for all 6 € 0.
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R3. The functions ¢(y|6) are absolutely continuous in 6 for u-almost all
y €% and [[§'(y10)]%u(dy) < C < = for all § € ©.

Recall that these regularity conditions yield the continuity of I(#) in 6 on
®; see Lemma 7.1 in Ibragimov and Khasminskii (1981).

For our nonparametric regression problem, a nonparametric statistical
experiment is similar to the parametric case. In particular, E; , = {(z x
[0,1D", (% X &)", P}", f € .5}, where % is a Borel o-algebra of [0,1] and
P! has a density p(y|f(x))m(x) with respect to measure u X (Lebesgue
measure).

Hereafter we say that a conditional density p(y|0) satisfies ULAN on K if
the corresponding parametric statistical experiment Ey , is ULAN on K.

Let us introduce an assumption on the density of the design points.

R4. The density w(x) is continuous and bounded below from 0 on [0, 1].

Note that, under these conditions of regularity and our assumption on f,

7 (x)fo(x) is continuous,

(2.1) 0<m<a(x)I(fo(x))<M<o, xe[0,1].

We now introduce a nonparametric Fisher information. For the case of the
analytic hyperrectangle, this information is defined as I (w, f,) = aF(w, f,),
and the ellipsoid as I.(m, f,) = Q */2*P~ @+ V/2eR(q f.), where F(m, f,) =
1/ lm()I(fo(xN] P dx and P = 2a/27(a + 1)2¢/Ce*D(2q 4+ /@D g
the Pinsker constant.

We are now ready to formulate the main result of this section.

THEOREM 2.1. Let the conditional density p(y|0) satisfy ULAN on K and
assume (2.1) holds. Then

liminf liminfinf ~ sup [nIn~Y(n) Iy (7, fy)]

P20 == feH(fo, p, @, Q)
(2.2)
1, 2 2
<8, [(F(0) = () ) =1,
lim inf lim infinf sup [nlg(ﬂ_,fo)]Za/(ZaJrl)
p—0 n—ow feg(fo,p,a,Q)
(2.3)

fo{fol(ﬁ(x) —f(x))" dx} > 1,

where the infimum is taken over all sequential estimators f:(x) =
(1. (x, fo, Py, @, B), m =1,2,...}, 7) with restriction (1.1) on the stopping
time 7.

Note that the regularity conditions R1-R4 are sufficient for validity of the
assertions of the theorem.
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The next section establishes that these lower bounds are sharp-optimal;
that is, the nonparametric Fisher information defines the best constant of
risk convergence.

3. Method of sharp-optimal estimation. A suggested estimator is a
nonparametric analog of the scoring estimator [see Lehmann (1983) and
Borovkov (1984)]. We use a well-known method of splitting the data into two
parts with r and (n — r) observations for constructing a pilot estimator and
scoring estimator, respectively.

We say that the pilot estimator f,, based on r = r(n) = o(1)n observations,
is o(n~1/*)-convergent if rng f. ¢ K and

(3.1) sup Ef{[j:[”l/‘l(fr(x) —f(x))]2 dx} } =o0(1),

where the supremum is taken over the assumed class of response functions £,
that is, the analytic hyperrectangle or the ellipsoid. Recall that the range of f
is a subset of the given interval K = [a, b] and therefore if an estimate f,
satisfies (3.1), then [£.]1° is also an o(n~!/*)-convergent pilot estimator.
Hereafter [ 12 = max(a, min(f, b)) is the truncation of the function f.
Examples of constructing pilot estimators are considered in Section 5.
A nonparametric scoring estimator with pilot estimator f, and smoothing

coefficients w® = (w,,...,wy) is defined as

N
(3.2) fn(x, ;,wN) = [}F,(X)]WN + g wj‘I’j(ﬁ)ﬁpj(x),

Jj=0

where the nonparametric scoring functions

33) W(f)=(n-r)" ¥ a (XN NF(X))e (XD (YIF(X)

I=r+1

are similar to a parametric one, I'(y|0) = p’(y|6)/p(y|6) is a derivative of
the log-likelihood function I(y|0) = In p(y|#) with respect to 6 and [ f(x)],~ =
Zf’zowj( f, ¢;>¢,(x) means a smoothing f in the spectral domain. Recall that
{¢,(x)} is the basis in L,(0, 1).

Note that the estimator (3.2) is a well-known smoothing orthogonal series
estimator where the Fourier coefficients are estimated by the scoring proce-
dure.

We need one additional assumption, which is well known in the theory of
point estimation [see Lehmann (1983)], to formulate the main result of this
section.

R5. For every y € Z except on a set of u-measure zero, the log-likelihood
function I(y|0) is three times differentiable with respect to 6, |9%1(y]6)/
902 < My(y), where [MZ(y)p(yl®)u(dy) < C for 6 € K, and |931(y|0)/
303 < M;(y) such that [M,(y)p(y|6)u(dy) < C for 6 € K.
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THEOREM 3.1. Let regularity conditions R1-R5 hold and let fr be an
o(n~1*)-convergent pilot estimator. Then the nonparametric scoring estima-
tor (3.2) with wy = - =wy =1 and N = 2[In(n)/2«a] is sharp-optimal for
the analytic hyperrectangle, that is,

A

by S [ L LB [ ™) = )

=1+o0(1),

and this estimator with wy = 1, wy; = w,;_, = 1 — (2j/N)* and
2 1/2a+1)
(35) N=N(n,a,Q) = 2“n(2a +1)(a+1)Q/(2a(2m)™ ) J

is sharp-optimal for the ellipsoid, that is,

8y 1ot T B [ o) 1

=1+o0(1).

We use the notation | x] for the integer part of x.

Hence, the problem of sharp-optimal estimation of a response function is
converted into a relatively simple problem of an o(n~!/%)-convergent estima-
tion. This corresponds exactly to the situation for a parameter estimation
where a scoring estimate, which is a one-step Newton—Raphson approxima-
tion for the maximum likelihood estimate, is used instead of the asymptoti-
cally efficient maximum likelihood estimate.

A consideration of cases f < H(f,, p, a,Q) and f e &(f,, p, a, Q) is very
similar and so we leave the details to the interested reader.

REMARK 3.1. Regularity conditions R1-R5 are obviously far from the
minimally needed conditions. To simplify drastically these conditions, differ-
ent score functions have to be used; see Bickel, Klaassen, Ritov and Wellner
(1993). The splitting of the data in (3.1), where only the smallest part of the
observations is used for constructing a pilot estimator, is convenient but not
necessary.

4. Regression with unknown density of design points. In this sec-
tion we suggest a simple plug-in procedure which gives us an adaptive
sharp-optimal estimator for the case of unknown design density 7(x).

Assume that, using the first r = o(1)n observations, we can construct an
o(n~!/*)-convergent estimator 7 (x) of the density 7(x). Under this assump-
tion there always exists some nonnegative sequence 7, = o(1), which de-
creases slower than any power of n~!, such that

(4.1) sup ET{[Ll[n1/4(%r(x) — m(x)] dx] } =o(1)y,
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where the supremum is over the considered class % of the densities. The
sequence v, is used to truncate below the estimator 7.(x); that is, we define
(%) = [7.(20)]] .

This truncated estimator is used in the following plug-in procedure. Let
fi(x, N 1) be the estimator (3.2) with the scoring functions (3.3) based on
the dens1ty 7. Then we define a plug-in estimator f (x, f.,w", 7). Note that
we use the same first r observations for constructing both the pilot estimator
and the estimator of unknown design density.

THEOREM 4.1. Let assumptions R1-R5 be valid and let an o(n~'/*)-
convergent pilot estimator f, and an o(n_Al/ 4)-cpnvergent density estimator
#r(x) exist. Then the plug-in estimator f,(x, f,,w", ) is asymptotically
sharp-optimal.

Consider one particular example of constructing an o(n~1/*)-convergent
estimator of unknown density. Assume that n/r < CIln(n) and that the
density 7(x) belongs to a class of Lipschitz functions of order 8 > 1/2; that
is, sup, , <o, 1]|7T(u) — a(v)| < Llu — v|?, L < . Then the orthogonal series
estimator

(4.2) m(x) =1+ (2/r) Y., Y. cos(mjX;)cos(mjx)

I=10<j<8S
satisfies (4.1) with arbitrary y, > C In"*(r). Here S = r'/? /In3(r). A verifica-
tion of this assertion is similar to Efromovich (1985) and we leave it to the
interested reader.

REMARK 4.1. For the case of additive heteroscedastic nonparametric re-
gression, a different adaptive estimator is suggested in Efromovich and
Pinsker (1996).

5. Examples. We suppose that regularity conditions R1-R5 hold and the
parameters «, @, a and b are given. We also suppose that densities p(y|f(x))
and 7(x) are given and we set r = [n/In(n)).

It follows from Section 3 that under these conditions the problem of
sharp-optimal estimation is converted into a problem of an o(n~!/*)-conver-
gent estimation. The latter is the main issue of this section.

An o(n~'/*)-convergent pilot estimator usually exists for the ellipsoid with
a>1/2 and for the analytic hyperrectangle, but does not exist for the
ellipsoid with « < 1/2 [see Nussbaum (1985) and Efromovich (1992)].

If OJ(Z ) is an estimator of the unknown Fourier coefficient 6, with
Ef{(ﬂ (Z") - 6)*) < Cr 'In"*(r), 0 <j < J', then the truncated pI‘O_]eCtIOI’I
estimator

j=0

J’ b
(5.1) fi(x) = [ > éj(Zr)‘Pj(x)l

a
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is an o(n~!/*)-convergent pilot estimator for f< H(a,®), where J' =
J'(n, a) = 2|In(n)/4a + In(In(n))]. Hereafter C’s are used generically to de-
note positive constants and recall that [ x]? = max(a, min(x, b)).

This assertion follows from elementary algebra:
1, - 2 2 ?
Ef{[/o(f,(x)—f(x)) dx] }ngf +2
< C[J’Zr_1 In~*(r) + e‘z‘”']

=o(l)n*'.

Similarly, for the ellipsoid with o > 1/2, if EJ{(6(Z") — 6)% <
Cr~@atD/Cn-2(y), 0 < j < J”, the truncated projection estimator

J ~ 2
EO(%-(ZW - 6)

j>dJ’

y Hfr

J" b
(5.2) fi(x) = [ ) 5j(Z’)¢j(x)l

J=0 a

is an o(n~1/%)-convergent pilot estimator for fe€ &(a,Q). Here J" =
J"(n, ) = 2l nY 4 In(In(n))|.

Case 1 (Location family model). Consider the commonly studied nonpara-
metric regression model with p(y|f(x)) = p(y — f(x)), that is, Y; = (X)) +
&,1=1,2,...,n, and {¢;} is independent from {X;} iid noise with density
p(y). The estimators 6,(Z") are well known; see Efromovich (1992) and
Efromovich and Pinsker (1996). Moreover, there is extensive literature on
how to construct an o(n~1/*)-convergent pilot estimator; see Eubank (1988)
and Hardle (1990). For this setting Fisher information is constant and
therefore our scoring estimator is rather simple.

Case 2 (Scale family model). The conditional density is assumed to
be p(yl6) = 6"1p(y/6) with 6 >a >0 and u is the Lebesgue measure.
In this case I'(yl0) = —(p'(y/0)/p(y/0)y/0%) — 6°* and I(9) =
07%f, ,oltp' (1) p~'(¢) + 1]°p(¢) dt. We have to suggest a pilot estimator and
then we can apply the method of sharp estimation of Section 3.

ExampLE 2.1. Let Y, = f(X)¢, I =1,2,...,n, where the noise ¢ is iid
with E¢ = v > 0 and finite fourth moment. Poisson or binomial random
variables are examples of this noise. Then 6, = v~ 'E{Ym (X )¢, (X)} and the
method of moments estimator gives us an estimator 6,(Z") =
v IS Y (X)) e (X) for a Fourier coefficient 6, with rate-optimal risk
convergence E{(6,(Z") — 6,)*} < Cr?2. Hence, the estimators (5.1) and (5.2)
for the analytic hyperrectangle and the ellipsoid, respectively, can be used as
pilot estimators.

ExampLE 2.2. Let Y, = (X)), [ = 1,2,...,n, where the noise ¢, is iid
with zero means and finite eighth moment. A method of finding a pilot
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estimator is first to estimate f? and then to take the square root of this
estimate. We leave the details to the interested reader.

Case 3 (Mixture models). We restrict out attention to the case of mixing
two distributions with different means and finite fourth moments. That is,
p(ylf(x)) = f(x)g(y) + (1 — f(x)h(y), where g(y) and h(y) are the densi-
ties of the specified distributions with different means w, and u,, respec-
tively, and finite fourth moments. It is supposed that 0 < f(x) < 1 and
[0,1] c [a, b].

Because Ef{Yw‘l(X)go](X)} = 0,u, + (e; — 6)u,, the method of moments
estimator .(Z7) =[r 'Y/_ Y, 7" (Xl)goj(Xl) ejmpd(p, — my)~" has risk
convergence Ef{(B zm — 0, )*} < Cr~2. Hence, thls estimator can be used for
constructing a pilot estlmator (5.1 or (5.2). Here e, = 1 and e; = 0 for j > 1.

Note that the mixture model has ['(y|0) = (g(y) — h(yD[6g(y) + (1 —
0)h(y)]~" and 1(6) = [[1'(y|6)]*p(yl0)u(dy). Hence, we can directly use the
estimator f of Section 3. Its truncation [ f I gives us a bona fide sharp-
optimal estimate.

Case 4 (Incomplete data model). A general model, with examples of
missing data for a multinomial population, censored and grouped observa-
tions, is studied in Efromovich (1992). Dempster, Laird and Rubin (1977),
Lehmann (1983) and Borovkov (1984) are good references where expressions
for the log-likelihood function and the Fisher information may be found.
Hence, only a method of constructing a pilot estimator has to be explained.
Here we consider only one particular example.

ExamPLE 4.1 (Censored responses). Suppose that the unobserved data
(T,,X;) with conditional density p(¢|f(x)) = p(¢ — f(x)) are censored at a
fixed point (d, ), that is, that the available observations are (Y, X;) =
(minf{T}, d}, X,). Define V, =1 if Y, <d and V, = 0 otherwise. Set ®(0) =
F(d — 6) and ®,(x) = F(d — f(x)), where F(¢) is the cdf corresponding to
p(t). Hence, |®(x + &) — (x)| < max{p(d — O} f(x + &) — f(x)], where the
max is over 6 € [a, b]. Condition R1 implies the density p(d — 6) is bounded
away from « for § € [a, b] and therefore the function ®,(x) is at least from a
Bth-order Sobolev space, where 1/2 < 8 < min{l, «} for f € &(a, @) and (for
example) 8 = 1 for the analytic hyperrectangle. If, in addition to R1-R5, we
suppose that density p(d — 6) is bounded below from 0 for 6 € [a, b], then
F(d — 0) is a monotonically decreasing continuous function in 6 € [a, b].
Hence, there exists an inverse function ®71(-) = d — F~1(-) which derivative
is bounded away from . Now, if we denote F(d — b) = u and F(d — a) =
then it is simple to verify that the desired pilot estimator is

(5.3) fi(x) =d —F([dy(x,2)],),

where ®(x,Z") = [L/% PR, 0 ()Y, &, =r 'L Vm (X)e (X)), and we
drop the superscript for dJ.
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As an illustration, a sharp-optimal nonparametric scoring estimator for the
ellipsoid is

A N(n,a,Q) B
fulx) = b wj<fr,‘Pj>€Dj(x)
j=0
(5.4) +(n — r)*l Y m (X)) (F(X)) U (YIF(X))
=r+1
N, a,Q)
XY w; (X)) (%),
j=0

where ['(y|0) = —p'(y — 0)/p(y — 0)if y <d,and I'(y|0) = p(y — 0) /(1 —
F(y —0) if y=d, and 1(6) = [ [ p'(y — O)p (y — O)uldy) + p*(d —
0)/[1 — F(d — 6)]. By truncating f,(x) onto [a, b] we obtain a bona fide
sharp-optimal estimator.

Case 5 (Different models). We consider two well-known applied examples.

ExamPLE 5.1 (Poisson regression model). Suppose that Y;,Y,,... are
independent Poisson variables with intensity f(X;,), f(X,),..., respectively,
and that the response function f(x) satisfies inequalities 0 < a < f(x) < b <
o for some given a and b. Also let X;, X,,... be chosen independently with a
density 7(x) that satisfies R5. Regularity conditions R1-R5 are fulfilled, so a
natural o(n~1/*)-convergent pilot estimator is

b

r J
(5.5) fi(x) =|rt LY H(X) X e(X)e(x)] -
=1 j=0 a
A sharp-optimal estimator is
N
fu(x) = X wilf, e)e(x)
j=0

(5.6) . ) N
t(n-r)" L X[V - F(X)] L wio(X) (),

I=r+1

where J, wY and N are defined earlier and we drop the superscripts for .
Truncation of this estimator onto [a, ] gives a bona fide estimator.

ExamPLE 5.2 (Binomial regression model). We suppose that {(Y}, X)),
l=1,2,...} areiid, Y, is equal to 1 or 0 and P(Y, = 1|X = x) = f(x), where
0<a<f(x)<b<x<1 Then the desired pilot estimator is (5.5) and the
sharp-optimal estimator is (5.6). The interested reader is referred to
Efromovich and Thomas (1996) where this example is explored for the case of
small sample sizes.
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6. Extensions.

Design of experiments. The investigated sharp-optimal risk convergence
is a functional of the density 7 (x). Suppose that f(x) is given. Then it is of
interest to minimize this convergence further by optimal design of 7 (x).
Using the Cauchy—Schwarz inequality, we obtain that

2

[T 1] e = ([T (7))

with equality for

(6.1) () = I7VA(f()/ [T V(F(0) d,

Hence, due to Section 2, an experimental design with density 7*(x) is
optimal.

The response function f is a priori unknown, but this is not crucial here.
For some settings optimal designs do not depend on f at all. For example, in
a traditional additive regression, the Fisher information is constant and so
the optimal design is the uniform distribution regardless of the unknown
response function.

Is this design optimal among all sequential procedures when the choice of
the next X, can depend on all previous observations? This is open question.

Adaptation. Typically, neither the density p(y|6) nor the smoothness of
regression function are known a priori. A natural question for this setting is
whether an adaptive estimator with a sharp-optimal convergence exists. The
interested reader is referred to Efromovich (1986) and Efromovich and Pinsker
(1996) where, for a particular case of additive heteroscedastic regression, a
sharp-optimal adaptive estimator is suggested.

Multidimensional case. This is a natural extension where Y, X and f are
multidimensional. This case will permit us to consider scale-location families
as one of the particular examples.

Nonrandom design. Nonparametric regression with nonrandom design is
treated in the same way as random design nonparametric regression. For this
setting, instead of random predictors with density 7(x), the predictors are
regular points x;, which are generated by pseudo-density 7(x) on [0, 1] such
that [§m(x)dx = I/n.

Small sample sizes. This is an interesting applied problem. Results of
Efromovich and Pinsker (1996) and Efromovich and Thomas (1996) show that
a slightly modified asymptotically optimal estimator performs relatively well
for small sample sizes even in comparison with pseudo-estimators. One
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practical example of evaluating the sensitivity of explosives for slapper
detonators, based only on 25 observations, is explored in Efromovich and
Thomas (1996).

7. Proofs.

ProoF oF THEOREM 2.1. To prove (2.2), set H, = {f: f(x) folx) +
LV 10,0(x), N =|(n(n) — In(n(n))/al, 67 < Q* ln(n)/n j= , N},
6 (ZT) = (f, = fo» ;. Then, for sufﬁciently large n, we obtain that Hn -
H(fo, p, @, ®), and hence

B o L =)
1,4 2 N N 2
> fseué)n Ef{fo (fT(x) —f(x)) dx} > sup ). Ef{(ﬁj(ZT) - Hj) }

feH, j=1

We have converted the nonparametric problem into a well-known N-
dimensional parametric problem with parameter 6% = (6,,..., 8y) and basis

N=(¢p,..., goN) Set I ={I,;} to be an (N X N) Fisher 1nf0rmat10n matrix
where I =/ gpl(x)qoj(x)w(x)l(fo(x)) dx. I is a Toeplitz-type matrix and
therefore its eigenvalues v; < v, < -+ < vy satisfy relations 0 <m < »; <
vy < - < vy <M <o due to the assumption (2.1) and the theorem of
eigenvalues in Grenander and Szego (1958).

There exists an orthogonal transformation that transforms I into a diago-
nal matrix diag{v,,..., vy}. Applying this transformation to the vectors 6~
and ¢V and then invoking Theorem 1 and Corollary 1 from Efromovich
(1989), we obtain that Ry > n 'L, »7 (1 + o(1)). Hence, due to the asymp-
totic distribution theorem in Grenander and Szegé (1958) we get that
Ry = (nF(m, ) 'N( + o(1)) = In(n)(nly) (1 + o(1)), which completes the
proof of (2.2).

The proof of (2.3) is also based on converting a minimax risk problem into a
problem considered in Efromovich (1989). Our method of converting the
problem is based on the following result of Golubev and Nussbaum (1990).
There exists a basis {¢(x), j=1,2,...} supported on (0,1) such that
¥(0) = ¢<k>(1) 0 for k= 0,...,a—1, j= o g, ) =85,
<¢<a> ¢<a>> = A ;80021 = 1,2, 0 <A <Ay <o and )\ = (1 + o(D)(mj)2«
as j — . This bas1s is used to create very convenient local bases by appropri-
ate procedures of translation and dilation.

Let s = s(n) be a sufficiently slowly increasing sequence of natural num-
bersas n — «. Set &, = {f: f(x) = 1f(k)(x) fi(x) € &,}, where &, = {f:
f(x) = fo(x)l((k - 1/s<x< k/s) + X lln(n)va,w\/—w((x — s Yk - 1)s);
N AV < s7%°Qg), 1() is the indicator, N(k)=N(n,a,s ZD‘ng)
st = (Q - I, Ay = w(sT R — I(f(s™ Nk — 1))) e

s 17wt N(n, a,Q) is defined in (3.5) and 82 = Q(L + Ajyp(,)) . Then, for
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sufficiently large n, we obtain that &(f,, p, «,®) 2 &, and, due to the
definition of &,,

swp B [(A(0) = () o

re&(fo, p,a, @)

> ?u;j Ef{f (f:(x) —f(x))2 dx}
B 21; k21 f“”{fk/s )/s(f;(x) - f(k)(X))z dx}
s N(k)

= ). sup )y Ef(k){( Uskj — U Skj)z}’

k=1 f1)€& j=IIn(n)|

where

Dy = [ (£ = Fo()Vs ty((x = 57 (k = 1))s) dx

Denote the right-hand side of the last line as Xj_,R,. To estimate R,, we
note that the Fisher information corresponding to parameter v, ; at f=f,
is equal to .7, =E {s¢/2((X —s Yk —-1)s)p (YlfO(X))/p(YlfO(x)) 1’} =
m(s 1k — 1))I(f0(s‘1(k — 1)1 + o(1), where o(1) — 0 uniformly over k €
{1,2,...,s}and j € {lIn(n)],..., N(k)} as n — . This uniform convergence is
valid due to continuity 7(x)I(f;(x)) in x for x € [0, 1]. Hence, .7, ; =7, (1 +
0(1)) and we converted the investigated problem into the problem considered
in the proof of Theorem 1 in Efromovich (1989). This proof was based only on
ULAN with a constant Fisher information for all estimated Fourier coeffi-
cients. A straightforward application of this proof shows that infR, >
P(s729Q )V @t D(pn 7,) 22/Cat (1 + o(1)), where the infimum is over all
possible ﬁ and o(1) - 0 uniformly over 2 € {1,2,..., s} as n — . Note that
for our setting the Fisher information .7, is a function of s and hence these
lower bounds for R, are functions of s as well. Fortunately, after a straight-
forward summation of these lower bounds and recalling the definitions of .7,
and .7 !, we still get the desired lower bound

s
inf Y R,

fr k=1

2a/(2a+1)

(7.1) > PQY@n+D|s ! Z [7(s7 (k= D)I(fo(s™ (R = 1))]
% n—za/(2a+1)(1 + 0(1))
_ (nIg)72a/(2a+1)(1 + 0(1))

The last relation is valid under (2.1). Line (2.3) and therefore Theorem 2.1 are
proved. O
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The following two lemmas will be quite useful.

LEMMA 7.1. Under conditions R1-R3, for all 0, 6 + h € K, the Fisher
information 1(0) satisfies a Lipschitz condition of degree 1 on K, that is,

(7.2) |I(0+h)—I(0)|<hC.
Consider an estimator

0.(Z") = 6,2")

(73) tn-n Y [mX)IAX))] (XU (VIA(X)

I=r+1

for an unknown Fourier coefficient 6, where éj(Z’) =< ﬁ, goj>.

LEMMA 7.2. Let f.(x) be o(n~1/*)-convergent pilot estimator and let regu-
larity conditions R1-R5 hold. Then

(7.4) E {6,227} = 6,+5,,

where 5. = 5(Z") and

(7.5) |5,|<Cf01(ﬂ(x) — f(x)) ds,
qe  EAB-o)}sn fR@lnene
xdx(1+o(1)), Jj=0,
1 2
(7.7) Ef{ (055 — 05,4) } <2n 'F Y(m, f)(1+0(1)), j>O.
i=0

Here o(1) - 0 uniformly over f € &(a, Q) U H(a,Q) and jas n — .

We will first show that the assertion of Theorem 3.1 follows from Lemma
7.2.

ProOF oF THEOREM 3.1. To prove (3.4), we implement the Parseval iden-
tity and see that

1 2 N A 2
(7.8) Ef{fo (£ (2, oo™ = F(x)) dx} - jZOEf{(oj —6) )+ j>EN0j2.

Lemma 7.2 implies that the first term on the right-hand side of this equality
is less than N[F(ar, f)n] (1 + o(1)). The second term is not greater than
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Cn! for any f € H(a, Q). This together with Theorem 2.1 completes the
proof of (3.4).

The proof of (3.6) follows immediately from formula (51) in Pinsker (1980)
and Lemma 7.2.

REMARK 7.1. The proof of Theorem 3.1 is based only on the validity of (7.7)
which is a corollary of (7.6) for the considered trigonometric basis.

Proor or LEMMA 7.1. Using the definition of the Fisher information and
the Cauchy—Schwarz inequality, we obtain that, for all 0, 6 + h € K,

1100+ h) —1(0)[* < 16 [[4( 510 + k) — ¥(¥10)]* n(dy)
X [[w(316+R) + ¢ (316)]” n(dy).

The third factor on the right-hand side of this inequality is not greater than
2[1(6 + h) + I(6)] and hence uniformly bounded away from «. The second
factor is estimated by using condition R3 and the Cauchy—Schwarz inequal-
ity. We obtain that

[Lu(16+R) = w(510)]° u(dy) = f[/:”w(ylt)dt] w(dy)
< h/:Jrhdtf[l//’(ylt)Q] w(dy) < Ch?,
which yields inequality (7.2). O

ProoF oF LEMMA 7.2. Hereafter (Y, X) is a pair of independent of Z~
random variables with joint density p(y, x) = p(y[f(x))7(x). From the defi-
nition of 6, we obtain that

E{6,2M)\z7) = 6,(27) + Ef{[vr(X)I(fr(X))]_lgoj(X)l’(Ylﬁ(X))IZ’}.

It follows from Lemma 7.1 and the regularity conditions that

(7.9) |17 (Fu(x)) = T f(2)| < O Fu(x) = ()],

and from condition R5 that U(ylfix) = U(ylf(x) + (filx) —
fCNl" (y1f(x)) + (1/2)(f,(x) — FC))2"(yl £#(x)), where f*(x) lies between
f.(x) and f(x). Note also that under the regularity conditions we have the
following familiar relations: EA{l'(Y|f(x)|X = x} = 0, E{l"(Y|f(x))|X = x}
= —I(f(x)) and Ef{ll”’(YIf(x))| X = a} < Ef{MS(Y)IX = x} < C [see
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Lehmann (1983)]. Finally, we note that E{¢(X)a (X)X f(X) - f(X)|Z")
= Oj(Z’) — 6,. Hence, we obtain that Ef{Oj(Z”)IZ’} = 0, + §,, where

b= B o(X)m 1 (X)
<|(1 (7)) = 1 (r(x)
x| (7.(X) = )" (Y1£(X))
+(1/2)(F(X) = A (Y1 £(X))|

I A0) (/2700 = (0) (Y172 (0)| |27}

Note that f.(x), f(x) € K and that for some y and I' we have 0 < y < I(6) <
I <, § € K. Thus, we obtain that [5.| < C[}(f.(x) — f(x))* dx. Relations
(7.4) and (7.5) are proved.

To prove (7.6), we note that

(7.10) E (- 0)} - E{(6 - Ef{éj|zr})2} + E,{52).

The observations Z, . ,,..., Z, are iid and independent of Z". Hence,

E,{(6,- Ef{éj|zr})2}

—(n- r)1Ef{[(ﬂ<X>I(ﬁ<X>))lsoj(X)l’(Y'ﬁ(X))

(7.11) +6,(27) - Ef{éj(zr)|z'"}]2}
<(n-r)'(1+ Vz)Ef{[(W(X)I(ﬁ(X)))_I‘PJ(X)Z'(YW(X))]Z}

w2ty -0 B2 - o)) + B8],

where y > 0. The second term on the right-hand side of inequality (7.11) is
equal to o(1)y *n~" due to (3.1), (7.5) and assumptions r = o(1)n. To esti-
mate the first term, we use (3.1) and R5. We obtain that ['(y|f,(x))]* < (1 +
YO (I FC)® + @+ y X fo(x) — ([ (I fF(y, x)]?, where fF(y, x)
lies between f,(x) and f(x) for given y. Using this, condition R5 and (7.9), we
obtain that

Ef<[77’1(X)I*1(f~r(X))(pj(X)l’(Ylfr(X))]Q}
(7.12) = (L+9") [T (o) [m () I(f(x))] " dx

+C(1+ yz)Ef{fol(fr(x) —f(x)) dx}.
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The pilot estimator f:, is o(n~1/*)-convergent and hence there exists a
sequence y = y(n) = o(1) such that the right-hand side of (7.12) is equal to
fo QDjz(x)[ﬂ'(x)I (f(x))] ! dx(1 + o(1)). Substituting the obtained estimates into
the right-hand side of (7.11), we get an estimate for the first addend in the
right-hand side of (7.10). The second addend is estimated by (7.5) and (3.1).
This yields (7.6).

Inequality (7.7) immediately follows from (7.6), elementary trigonometric
identity cos?(x) + sin?(x) = 1 and definition of the factor F(s, ). Lemma 7.2
is proved. O

ProOOF OF THEOREM 4.1. Due to Remark 7.1, to prove the assertion, it
suffices to show that

max N Ef{(éj - Oj)2}

<n [l () I(F(x))] " dx(1+o(1)),
0

where here

n

(114) =0+ (n—r)" ¥ # N X)I(F(X))e (X)) (YIF(X)))

l=r+1
and éj = folf;(x)goj(xldx. From now on we suppress the subscript r in the
notation for 7 and f. Applying the elementary identity # ! = 7! + (7 —
7 )(7w)~ !, we obtain that

=10+ (n=n) L (X)AX)) e (X1 (VIF(X)

t(n-r)" L [m(X) - #(X)][F(X)T(X)I(F(X))]

l=r+1
X@j(Xz)ll(Yﬂf(Xz))
+(n=r)" ¥ (7(X) - 7(X))

l=r+1
<[ x)m ) I(fx)]

x(f(Xz) - f(Xz))QDj(Xl)l”(Yﬂf*(Yl’Xz))
2A+A+A

3j?

where f*(y, x) lies between f(x) and f(x) for given Y = y.
The first addend corresponds to the nonadaptive setting with known
density 7(x) and it was estimated earlier. We saw that

max NEf{[Alj - gj]z} <n’! fol(pjz(x)[w(x)l(f(x))]—ldz(l +0(1)).

Jj=0,1,...,
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To estimate the second addend, we apply the familiar identity

E{l'(Y|f(x)IX =x} =0 and the Cauchy-Schwarz inequality. We obtain
that, for all j = 0,1,..., N,

nE,{A%}} < cy,;ZEf{fOl(w(x) — @ (x))* dx}

< Cyan}/Z{[j:(Tr(x) — #(x))* dxr} = o(1).

To estimate the third addend, we note that Ef{A%,J-} < Cyn_z[n_lEf{[Ol(Tr(x)

— 7 () (Ax) — f(x)* dx} + EA [3(m(x) — 70N Ax) — f(x)) dx]*)]. Recall
that [f(x) — f(x)| < 2 max{lal, |b]} < C and therefore, applying the
Cauchy—Schwarz inequality, we obtain that

E/{A3)

IA

CynznlE}/z{[/Ol(%(x) — (1))’ dxr}
+ CynZE}ﬂ{[fOl(ﬂ'(x) — 7 (x))? dxr}

XE}/Z{UOl(f(x) ~ (%))’ dxr}

o()n"1t.

These relations yield (7.13). Theorem 4.1 is proved. O
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