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By Jürgen Läuter, Ekkehard Glimm and Siegfried Kropf

Otto von Guericke University

In this paper, a method for multivariate testing based on low-
dimensional, data-dependent, linear scores is proposed. The new approach
reduces the dimensionality of observations and increases the stability of
the solutions. The method is reliable, even if there are many redundant
variables. As a key feature, the score coefficients are chosen such that a
left-spherical distribution of the scores is reached under the null hypoth-
esis. Therefore, well-known tests become applicable in high-dimensional
situations, too. The presented strategy is an alternative to least squares
and maximum likelihood approaches. In a natural way, standard problems
of multivariate analysis thus induce the occurrence of left-spherical,
nonnormal distributions. Hence, new fields of application are opened up
to the generalized multivariate analysis. The proposed methodology is not
restricted to normally distributed data, but can also be extended to any
left-spherically distributed observations.

1. Introduction. In recent years, it has been proved [Hsu (1990a, b),
Anderson, Fang and Hsu (1986), Kariya and Sinha (1989), Fang and Zhang
(1990), Anderson (1993)] that the classical multivariate linear model tests are
valid not only for normally distributed data, but remain exact also in the wider
class of spherical and elliptically contoured distributions. This research has
shown the robustness, especially the so-called null robustness, of the classical
methods. However, it also has revealed the limitations of generalized mul-
tivariate analysis because if n independent p-dimensional data vectors are
given, exact tests of this type are available only in the special case of the nor-
mal distribution. Although the rows of an n × p left-spherically distributed
matrix are uncorrelated, they are generally not stochastically independent.

In 1996, the authors of this paper [Läuter (1996), Läuter, Glimm and Kropf
(1996)] proposed a new class of tests for independent, p-dimensional normally
distributed observations. These tests are based on linear scores with coeffi-
cients ensuring a left-spherical score distribution under the null hypothesis.
The score coefficients are determined from the observations via well-defined
sums of products matrices. This approach compresses high-dimensional ob-
servations into low-dimensional scores which are then analyzed instead of the
original data.

Thus, the standard problems of applied multivariate analysis naturally lead
to left-spherical, nonnormal matrix distributions. Hence, the existing theory of
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spherical and elliptically contoured distributions attains relevance for a broad
scope of practical purposes. Moreover, any left-spherically distributed data can
also be analyzed by these tests, which initially were derived for normal data
only.

The new tests offer surprising opportunities. In contrast to the classical
multivariate procedures, exploratory steps of data preprocessing and model
choice can be incorporated into a confirmatory analysis without producing a
bias. Data preprocessing can be tailored for special applications. If, for exam-
ple, the data are presumed to have an underlying factorial structure, the data
reduction should be done using principal component analysis or factor analy-
sis. In case of a time series, methods of smoothing should be used. If there is
reason to believe that valuable and useless variables are both present in the
data, selection of variables based on correlations or covariances is the method
of choice.

To give an introductory example, the comparison of the mean vectors of two
p-dimensional normal distributionsNp���1���� andNp���2���� is considered,
where � is an unknown covariance matrix. The null hypothesis to be tested
is ��1� = ��2�. Two independent samples x�1�

�1�� � � � �x
�1�
�n�1�� and x�2�

�1�� � � � �x
�2�
�n�2�� of

the sizes n�1� and n�2�, respectively, are assumed. Now, if the p-dimensional
coefficient vector d is defined depending on these samples via a given function
d�W� in which the total sums of products matrix

W =
2∑
k=1

n�k�∑
j=1

(
x�k�
�j� − x̄

)(
x�k�
�j� − x̄

)′ with x̄ = 1
n�1� + n�2�

2∑
k=1

n�k�∑
j=1

x�k�
�j�(1)

occurs as the argument, then the statistic of the usual univariate two-sample
t test

t =
√
n�1� + n�2� − 2

√
n�1�n�2�/�n�1� + n�2���z̄�1� − z̄�2��√∑2

k=1
∑n�k�
j=1�z�k��j� − z̄�k��2

with

z̄�k� = 1
n�k�

n�k�∑
j=1

z
�k�
�j�� k = 1�2

(2)

can be calculated for the linear score values

z
�k�
�j� = d′x�k�

�j�� k = 1�2	 j = 1� � � � � n�k��(3)

In this case, one can prove that the statistic t has exactly Student’s t distribu-
tion with n�1�+n�2�−2 degrees of freedom provided the hypothesis ��1� = ��2� is
valid. Therefore the univariate statistic t is suitable for testing the multivari-
ate hypothesis ��1� = ��2�. The used function d = d�W� of the score coefficient
vector [or the more general matrix function D = D�W�] determines a special
method of data preprocessing. It should be chosen from the huge number of
possibilities according to practical points of view, to attain a high power of the
test.
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In contrast to classical multivariate theory, the newly proposed methods no
longer require the sample size n to be larger than the number p of variables.
Redundance in the observed variables will no longer pose a substantial prob-
lem. A certain degree of homogeneity of the data is even a prerequisite for the
sensible application of the presented theory. Our strategy makes it possible to
compensate for small sample sizes by exploiting the large number of variables,
thus avoiding numerical and statistical instability of inference.

As a decisive difference between our approach and the classical analysis, the
method of least squares and the maximum likelihood approach are abandoned.
These latter methods are based on an optimal fit of a model to the data.
Thus, they produce instability in the case of a small sample size n and a
large number of variables p. Instead, we use more equalizing and smoothing
strategies, and we recommend exploiting prior information on models and
parameters as far as possible.

The presented theory refers to n × p left-spherically distributed matrices
X. Such random matrices are characterized by the fact that

X =d CX for every fixed n× n orthogonal matrix C(4)

and by a characteristic function of the form φ�T′T�. The symbol =d denotes
the equality of two distributions [Fang and Zhang (1990)]. This class of dis-
tributions is too wide for the construction of optimal tests according to the
likelihood ratio criterion. Therefore, other authors [Fang and Zhang (1990),
Anderson (1993), Gupta and Varga (1993)] prefer a restricted class of distri-
butions X with a characteristic function ψ�tr�T′TA�� = ψ�tr�TAT′��, where A
is a p×p positive definite symmetric matrix. The matrices X of this class have
the representation X =d YA1/2 with a vector-spherically distributed matrix Y
[Fang and Zhang (1990), page 96]. The notation A1/2 indicates the positive
definite symmetric matrix that satisfies �A1/2�2 = A. In this paper, we do not
intend a mathematically rigorous treatment of the power and optimality of
the tests. Therefore we can admit all left-spherical distributions. This paper
is primarily focussed on the problem of invariance of the null distribution
against different definitions of the score coefficients. However, we would like
to emphasize that the test statistics developed here in general will not have
the property that their values are invariant under arbitrary p-dimensional
affine transformations.

2. The special case of the normal distribution. Consider the n × p
data matrix

X =




x′
�1�
���

x′
�n�


 ∼Nn×p�M� In ⊗ ��(5)

with n independent p-dimensional normally distributed row vectors x′
�j� �j =

1� � � � � n�. Here In is the n × n identity matrix, the symbol ⊗ represents the
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Kronecker product. Classical linear multivariate tests concerning the mean
structure M are based on the two stochastically independent p× p matrices

H = X′QHX� G = X′QGX�(6)

H is the so-called hypothesis sums of products matrix, G is the residual sums
of products matrix, QH and QG are mutually orthogonal n × n projection
matrices, that is,

Q′
H=QH=Q2

H� rk�QH�=fH� Q′
G=QG=Q2

G� rk�QG�=fG�
QHQG = 0� fH + fG ≤ n�

(7)

The null hypothesis is characterized by QHM = 0, QGM = 0, and hence

H ∼Wp��� fH�� G ∼Wp��� fG�(8)

holds under the null hypothesis, where Wp denotes the Wishart distribution.
Under an alternative hypothesis, QHM = 0 would be violated.

These sums of products matrices are the starting point for the development
of score-based multivariate tests. In addition, the following Theorem 1 includes
the p × p matrix L which is independent of H and G. This matrix allows
the incorporation of “neutral information” into the test. The score coefficients
for the dimension reduction are given by a p × q random matrix D which
is a fixed function of the argument H + G + L. In principle, this function
D = D�H + G + L� may be chosen arbitrarily. However, it should be suitable
to the parameter structure conjectured in the data, as far as possible. A more
general function D = D�H + G�L� also could be assumed in the following
theorem, where L is any random variable which is independent of H and G
but does not necessarily have to be a p × p matrix. For most applications,
though, the restricted argument H + G + L consisting of three independent
p× p matrices H�G, and L is adequate (see application (4) of Theorem 1).

Theorem 1. Assume 1 ≤ fH, 1 ≤ fG and 1 ≤ q ≤ fH + fG. Assume a
test statistic F = F�HZ�GZ� as a Borel function defined for all q× q positive
semidefinite symmetric matrices HZ and GZ and satisfying the invariance
condition

F�AHZA�AGZA� = F�HZ�GZ�(9)

for every q× q positive definite symmetric matrix A.
Now, suppose a dimension p with p ≥ q. Let H�G and L be three p×p ran-

dom positive semidefinite symmetric matrices that are mutually stochastically
independent, where H and G have the Wishart distributions

H ∼Wp��� fH�� G ∼Wp��� fG�(10)

for a positive definite �. Let D be a p × q random matrix defined as a Borel
function of H + G + L and having rank q with probability 1.

Then the distribution of F = F�D′HD�D′GD� is the same for each p, each
�, each D function and each suitable L distribution.



1976 J. LÄUTER, E. GLIMM AND S. KROPF

Hints concerning the proof. The basic idea of the proof has been pub-
lished in Läuter, Glimm and Kropf (1996). The justification can also be at-
tained by using the more general Theorem 2 of this paper. One has to take
into account that the matrices H and G have representations

H =d
fH∑
j=1

hjh
′
j� G =d

fG∑
j=1

gjg
′
j�(11)

consisting of f = fH +fG independent vectors h1�h2� � � � �hfH�g1�g2� � � � �gfG
distributed each according to Np�0���. Setting

X′ = (
h1 h2 · · · hfH g1 g2 · · · gfG

)
�(12)

then X ∼Nf×p�0� If ⊗ ��. In this situation, application of Theorem 2 with
n = f, E = If, Q = Q0 = If, and with the test statistic

F

(
Z′
f×q

(
IfH 0
0 0

)
Zf×q� Z′

f×q

(
0 0
0 IfG

)
Zf×q

)
(13)

defined for an arbitrary Zf×q yields the desired result. Indeed, the assumptions
of Theorem 2 are here fulfilled; the test statistic (13) keeps its value if Zf×q is
replaced by Zf×qA, where A is any q× q positive definite symmetric matrix;
for every fixed value of L, the given coefficient matrix D can be considered as
a Borel function of X′X =d H + G. ✷

If the assumptions (5) to (7) and the null hypothesis are true, Theorem 1
provides the distribution of F = F�Z′QHZ�Z′QGZ�, where Z = XD is the n×q
score matrix. In general, Z will no longer be normally distributed, and its row
vectors will not be independent. However, Theorem 2 will show that certain
important sphericity properties of Z are secured.

In any case, F is null distributed as if it were defined by F�X′
HXH� X′

GXG�
in the setting

X =
(

XH
XG

)
∼N�fH+fG�×q�0� IfH+fG ⊗ Iq��(14)

QH =
(

IfH 0
0 0fG

)
� QG =

(
0fH 0
0 IfG

)
� D = Iq�(15)

The null distribution is the same as in the special case of normally distributed
scores. We emphasize that this is true for arbitrarily large dimension p.

For power considerations, Theorem 1 is of no use. In any concrete applica-
tion, it is necessary to achieve a high power by a suitable definition of the D
function. It is self-evident that the definition must not depend on peculiarities
of the given data except H +G +L. At best, the method of score building and
calculation of coefficients is fixed before beginning the measurements. The
multivariate tests described here are “adaptive” in the sense that different
strategies of data analysis can be chosen for every surface H+G+L = const.
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The multivariate analysis thus offers opportunities which are not given for the
univariate parametric inference. Up to now, exact adaptive tests have mostly
been considered in the field of nonparametric inference [Büning (1991)].

Applications (1) One-sample test. The so-called standardized sum test
(SS test) in its one-sample version can be used for testing the hypothesis
H� � = 0, if X ∼Nn×p�1n�′� In ⊗ ��. Here 1n is the n× 1 vector consisting of
ones only. The SS test for this situation is characterized by the “univariate”
F statistic

F = �n− 1�Hz
Gz

= �n− 1�d′X′QHXd
d′X′QGXd

= �n− 1�n�x̄′d�2

d′�X − 1nx̄′�′�X − 1nx̄′�d = n�x̄
′d�2

d′Sd

(16)

with QH = �1/n�1n1′
n, QG = In − �1/n�1n1′

n and d = �Diag�X′X��−1/21p. Addi-
tionally, x̄ and S are the estimators of the mean vector � and the covariance
matrix �, respectively. This special statistic is sensible if the parameters �
and � can be expected to be nearly symmetric with respect to the p variables.
Here symmetry is defined as identity of all means, identity of all variances
and identity of all correlation coefficients. In each case, the statistic (16) fol-
lows an exact F distribution with 1 and n − 1 degrees of freedom under H.
Note that H + G = X′X, L = 0, and q = 1. This multivariate one-sample test
is applicable for arbitrary p and n ≥ 2. For practical purposes, it is convenient
to determine the score vector z = Xd first and to do an ordinary univariate F
or t test subsequently.

An elementary proof that the statistic (16) has exactly the F distribution
with 1 and n − 1 degrees of freedom can also be given in the following way:
if C is a fixed n × n orthogonal matrix, the rotated matrix XC = CX has the
same distribution as the original matrix X under the hypothesis H. Then the
corresponding score vectors zC = XCdC and z = Xd also possess the same
distributions because their coefficients dC and d are uniquely determined by
X′
CXC and X′X, respectively, both following one and the same function. As

X′
CXC = X′X, then dC = d and zC = CXd = Cz, that is, z = �z1 · · · zn�′ is

spherically distributed and, therefore, F = �nz̄2/s2z� = �n�x̄′d�2/d′Sd� is F
distributed according to Fang and Zhang (1990), page 63. The rejection area
of the test for a given level of significance α is a cone in the z space around
the equiangular line z1 = z2 = · · · = zn.

Table 1 provides some power values of the SS test for α = 0�05 and for
symmetric parameters �, �, where � is a diagonal matrix and �2 = �′�−1� =
16, n = 3. The table has been calculated by simulations of 105 replications.

For p = 1, the SS test is identical with the usual univariate F test. For
p = 2, the SS test is obviously much better than Hotelling’s T2 test. For the
larger values of p, a comparison is impossible. Further power considerations
can be found in the papers by Kropf, Hothorn and Läuter (1997a) and Kropf,
Läuter and Glimm (1997b).
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Table 1
Power values of the SS test for α = 0�05 and ���

Number of variables p 1 2 4 10 20
Power of the SS test 0.909 0.904 0.896 0.880 0.876
Power of Hotelling’s test, if possible 0.909 0.274 — — —

(2) Two-sample test. In this special application, the q-fold principal compo-
nent test (PC test) is used for testing H� ��1� = ��2� in a two-sample setup,
where

X =
(

X�1�

X�2�

)
∼N�n�1�+n�2��×p

((
1n�1���1�′

1n�2���2�′

)
� In�1�+n�2� ⊗ �

)
�(17)

This test should be applied when a factorial structure is conjectured in the
data. Here,

H = a�x̄�1� − x̄�2���x̄�1� − x̄�2��′� n = n�1� + n�2��

a = n
�1�n�2�

n
� fH = 1�

G = �X − X̄�′�X − X̄� − H = fGS�

x̄ = 1
n
�n�1�x̄�1� + n�2�x̄�2��� X̄ = 1nx̄

′� fG = n− 2�

(18)

with x̄�1�, x̄�2� and S being the usual estimators of ��1�, ��2� and �, respectively.
For the PC test, the p× q coefficient matrix D = �d1 · · ·dq� is determined as
the solution of the eigenvalue problem

�H + G�D = Diag�H + G�D��(19)

where H+G = �X− X̄�′�X− X̄�, the vectors dj �j = 1� � � � � q� are the eigenvec-
tors corresponding to the q largest eigenvalues, and � is the diagonal matrix of
these eigenvalues. The score matrix is given by Z = XD. The test is performed
using Hotelling’s “q-dimensional” T2,

T2 = tr�HZG−1
Z � = tr��D′HD��D′GD�−1�

= a

n− 2
�z̄�1� − z̄�2��′S−1

Z �z̄�1� − z̄�2��
(20)

with z̄�1� = D′x̄�1�, z̄�2� = D′x̄�2�, SZ = D′SD. The expression ��n− q− 1�/q�T2

is exactlyF distributed with q and n−q−1 degrees of freedom if the hypothesis
H is true. This multivariate two-sample test can be used if p ≥ q ≥ 1 and
n�1� ≥ 1, n�2� ≥ 1, n ≥ q+2. According to Theorem 1, the number q of principal
components is fixed. However, a generalization of Theorem 1 is possible, where
q is determined from H + G.

(3) Model choice, selection of variables. A combination of the PC or the SS
test with a selection of variables is suitable under certain conditions. In case
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of the one-factor structure of data [Läuter (1992), Läuter, Glimm and Kropf
(1996)], for example, the means and covariances are related to each other. This
fact may be exploited by selecting the most highly correlated and thus most
informative variables from the “correlation” matrix

�Diag�H + G��−1/2�H + G��Diag�H + G��−1/2(21)

in the situation of application (2). The PC test then is performed using only
the selected variables. Due to Theorem 1, this procedure does not affect the
test’s α level. Further practical recommendations concerning the selection of
variables can be found in Kropf, Läuter and Glimm (1997b).

(4) Application of the additional matrix L. The incorporation of the addi-
tional matrix L with neutral information in Theorem 1 allows using the same
scores Z = XD for testing different hypotheses in a multivariate model. For
example, consider a multivariate two-way classification with orthogonal de-
sign. In the classical MANOVA approach, tests of hypotheses are performed
by means of various p×p sums of products matrices HA, HB, and HA×B, say,
associated with main effects and interactions. Using Theorem 1, a coefficient
vector d for weighting the p variables may be determined as a function of
HA + HB + HA×B + G, where G is the residual sum of products matrix. The
main effect A may be tested by

F = d′HAd/fA
d′Gd/fG

�(22)

According to Theorem 1, this statistic is F distributed with fA and fG degrees
of freedom under HA, because L = HB + HA×B is stochastically independent
of HA and G, even if the hypotheses HB and HA×B are not true. The same
weight vector d can also be used for testing the effects B and A×B. Of course,
in any practical application, one would also have to consider the power of the
resulting tests.

(5) Tests for correlation of variables. Consider X ∼ Nn×p�M� In ⊗ �� and
the null hypothesis H� M = 1n�′, where � is a p-dimensional vector. Given a
fixed n-dimensional vector k with k′k = 1 and k′1n = 0, the contrast k′M is
investigated. In analogy to application (2), set

H = X′kk′X = �X − X̄�′kk′�X − X̄�� G = �X − X̄�′�X − X̄� − H�(23)

and then use the beta statistic

B = Hz
Hz + Gz

= d′Hd
d′�H + G�d = �k′�X − X̄�d�2

d′�X − X̄�′�X − X̄�d �(24)

Under the null hypothesis, B has a B�1/2� ��n− 2�/2�� distribution. The coef-
ficient vector d is defined as a function of �X − X̄�′�X − X̄�.

In correlation analysis, these statements may be used to derive a test of
independence between a block of Y and a block of X variables. Consider
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the n × �m + p� matrix �Y X�. The matrix X is assumed to have the np-
dimensional normal distribution given above. We do not require any distribu-
tional properties for Y, except that it is independent of X. Now let

k = 1√
e′�Y − Ȳ�′�Y − Ȳ�e

�Y − Ȳ�e�(25)

where e is an m-dimensional vector of coefficients uniquely determined by
�Y − Ȳ�′�Y − Ȳ�. For Y fixed, a conditional B test of the type (24) is given by

B = �e′�Y − Ȳ�′�X − X̄�d�2

e′�Y − Ȳ�′�Y − Ȳ�e · d′�X − X̄�′�X − X̄�d �(26)

This, of course, is also an unconditional test, because B has the same distri-
bution for all possible choices of Y.

In the special case where e and d are the square roots of the inverse diag-
onals of sums of products matrices, that is,

e = �Diag��Y − Ȳ�′�Y − Ȳ���−1/21m�

d = �Diag��X − X̄�′�X − X̄���−1/21p�
(27)

the beta statistic takes the form

B = �1′
mRYX1p�2

1′
mRYY1m · 1′

pRXX1p
= r̄2

YX

r̄YYr̄XX
�(28)

Here, (
RYY RYX
RXY RXX

)
(29)

denotes the �m + p� × �m + p� correlation matrix of Y and X, and r̄YX, r̄YY,
r̄XX denote the averages of the elements of the submatrices RYX, RYY, RXX.
This beta statistic, a ratio of averages of correlation coefficients, follows a
B�1/2� ��n− 2�/2�� distribution if Y and X are independent, regardless of the
dimensions m and p and for every n ≥ 3.

This interesting result motivates the definition of the so-called summary
correlation coefficient of Y and X [Läuter, Glimm and Kropf (1996)],

r = r̄YX√
r̄YYr̄XX

�(30)

Since Y and X are independent, it possesses the same distribution as the ordi-
nary correlation coefficient of two independent, normally distributed variables
and can therefore be tested with the usual t test for zero correlation

t =
√
n− 2

r√
1 − r2

�(31)

Calculation of the summary correlation coefficient can most effectively be done
by forming the “univariate” scores Ye and Xd first and then determining their
mutual bivariate correlation.
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The summary correlation coefficient offers an alternative to the widespread
multiple correlation coefficient. For certain parameter structures and for ap-
propriate directions of the variables, it can be a more effective measure of
association than the multiple correlation coefficient.

The possibilities for the random variable Y are manifold. The matrix Y does
not have to fulfill any distributional conditions except independence of X, and
hence it can be the result of some arbitrarily chosen data transformation. Of
course, the transformations have to be based solely on the Y information. Two
such transformations are of special interest: first, a matrix of Y ranks may be
used instead of the original Y data matrix and second, one may impute missing
values in Y and still test for independence using the proposed procedure.

(6) The invariance and the unbiasedness of the tests. Theorem 1 facilitates
both the construction of scale-invariant and of scale-dependent multivariate
tests. For example, the eigenvalue problem �H + G�D = D� could be used
instead of (19) in application (2). This eigenvalue problem is no longer scale-
invariant. Note that this remark does not contradict the invariance require-
ment (9) for the function F in Theorem 1. Furthermore, the tests constructed
in this paper will not generally be unbiased.

3. The case of more general left-spherical distributions. In this
section, the considerations of the former section are extended to nonnormal
spherical distributions. As a generalization of (5), suppose now an n × p
left-spherically distributed matrix X − M with M being a constant matrix.
Then X is centered around M. We are interested in testing hypotheses of the
form

H� E′M = 0�(32)

where E is a fixed n×f matrix with E′E = If, and Q = EE′ is the correspond-
ing projection matrix of rank f. The setting in Section 2 is a special case of
this situation with f = fH + fG, Q = QH + QG. Condition (32) contains f
restrictions on the means for both the hypothesis and the residuals.

Since the columns of E are mutually orthogonal, there is an n × �n − f�
orthogonal complement E∗ such that �E E∗� becomes an n × n orthogonal
matrix. Under the hypothesis, we thus have(

E′

E′
∗

)
�X − M� =

(
E′X − E′M
E′

∗X − E′
∗M

)
=
(

E′X
E′

∗X − E′
∗M

)
�(33)

This matrix is left-spherically distributed. Furthermore, the conditional dis-
tribution of the submatrix E′X for given E′

∗X − E′
∗M or E′

∗X is left-spherical.
The following theorem is useful for such situations.

Theorem 2. Assume 1 ≤ q ≤ f ≤ n, and let �E E∗� be an n×n orthogonal
matrix consisting of the n × f matrix E and the n × �n − f� complement E∗.
Assume a test statistic F = F�Zn×q� as a Borel function defined for all n × q
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matrices Zn×q and satisfying the invariance condition

F�EUA + B� =d F�EU�(34)

for every fixed q × q positive definite symmetric matrix A and for every fixed
n× q matrix B with E′B = 0, where U is an f× q left-spherically, uniformly
distributed matrix [for the definition, see Fang and Zhang (1990), page 93].

Now, suppose any dimension p with p ≥ q. Let X be an n × p random
matrix such that W = E′X is conditionally left-spherically distributed for given
W∗ = E′

∗X, and let D be a p×q random matrix determined as a Borel function
of X′Q0X, where Q0 is a projection matrix with Q0 ≥ Q = EE′. Assume that
E′XD has rank q with probability 1.

Then E′XD is conditionally left-spherically distributed for given E′
∗XD. The

distribution of F�XD� is the same for each p, each suitable X distribution, each
D function and each projection matrix Q0.

Proof. The inequality Q0 ≥ Q for the idempotent symmetric matrices Q0
and Q denotes that Q0−Q is positive semidefinite. This implies that QQ0 = Q
and that Q0 − Q is also idempotent and symmetric. Hence

E′�Q0 − Q� = E′EE′�Q0 − Q� = E′Q�Q0 − Q� = 0�(35)

Therefore Q0 −Q is in the column space of E∗, that is, Q0 −Q = E∗C for some
C. As a consequence,

X′Q0X = X′QX + X′�Q0 − Q�X
= �E′X�′�E′X� + �C′E′

∗X�′�C′E′
∗X�

= W′W + �C′W∗�′�C′W∗��
(36)

Now, consider the conditional distributions of W and Y = WD given W′W
and W∗. By definition, W given W∗ is conditionally left-spherically distributed.
Fixing W′W additionally preserves the left-sphericity of the conditional dis-
tribution. Hence, the random f× q matrix Y = WD is also conditionally left-
spherically distributed, because D is a constant for fixed X′Q0X and therefore
also for fixed values W′W and W∗.

Modifying the terms in the condition from W′W to Y′Y = D′W′WD and
from W∗ to Y∗ = W∗D still retains the property of left-sphericity of Y = WD,
because the distribution of Y given Y′Y and Y∗ is a mixture of the more spe-
cialized conditional distribution of Y given W′W and W∗. Finally, by the same
argument, the unconditional distribution of Y = WD is also left-spherical. Y
has rank q with probability 1 and therefore, there is a representation

Y =d U�Y′Y�1/2�(37)

where U has the f× q left-spherical uniform distribution and is independent
of Y [Fang and Zhang (1990), page 93].
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Concerning the test statistic F and its conditional distribution for given
Y′Y and Y∗, we have

F�XD� = F��EE′ + E∗E∗
′�XD�

= F�EY + E∗Y∗� =d F�EU�Y′Y�1/2 + E∗Y∗��
(38)

Applying the invariance condition (34) yields

F�XD� =d F�EU��(39)

because of E′E∗ = 0. Obviously, the obtained distribution no longer depends
on the particular values of Y′Y and Y∗, and hence, it is also the unconditional
distribution of F. The distribution is the same for each p, each possible X
distribution, each appropriate D function and each projection matrix Q0. ✷

Remarks. (i) In the special case of f = n in Theorem 2, the matrix E∗
is missing, and E is an n× n orthogonal matrix. Then the conditional distri-
butions of E′X given E′

∗X and E′XD given E′
∗XD should be replaced by the

unconditional distributions of E′X and E′XD, respectively.
(ii) As a consequence of Theorem 2, all applications of Theorem 1 in Sec-

tion 2 can be extended to random variables X, where E′X has a conditional
left-spherical distribution given the complement E′

∗X. In particular, this is
true if X − M is left-spherical with E′M = 0.

(iii) The invariance condition (34) for the test statistic F is fulfilled in the
special case

F�Zn×q� = F0�E′Zn×q��(40)

where the function F0 = F0�Yf×q� satisfies the equation

F0�Uf×qA� = F0�Uf×q�(41)

for every f× q matrix Uf×q with U′
f×qUf×q = Iq and for every q× q positive

definite symmetric matrix A. IfF0�Uf×q� has already been defined for all Uf×q
with U′

f×qUf×q = Iq, then the value of such a functionF0 for an arbitrary Yf×q
of rank q is obtained by F0�Yf×q� = F0�Yf×q�Y′

f×qYf×q�−1/2�. This principle
will be used in application (4) of Theorem 2 [see (48) and (49)].

(iv) The data compression into scores according to Theorem 2 may also be
performed in a multistage procedure. The first step consists of calculating
Z = XD from X, where D is a function of X′Q0X with Q0 ≥ Q = EE′. In
the next step, one may compute scores Z1 = ZD1 by means of a coefficient
matrix D1 derived from Z′Q1Z with Q1 ≥ Q = EE′. In the same way, the data
compression could be continued. In the end, it is imperative that a hypothesis
E′M = 0 must only be tested if EE′ ≤ Q0, EE′ ≤ Q1� � � � are fulfilled. The test
that finally will be performed does not have to be fixed in advance, that is, E
can be chosen after calculation of the scores. However, the matrices Q0�Q1� � � �
have to be chosen “big enough” for the final test. The conditional left-sphericity
of E′X given E′

∗X implies the conditional left-sphericity of E′Z given E′
∗Z; this

implies the conditional left-sphericity of E′Z1 given E′
∗Z1 and so on.
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Further applications (1) One-sided tests. Theorem 2 allows performing
one-sided tests. For example, testing H� � = 0 versus the alternative A� µi > 0
for i = 1� � � � � p with an n×p left-spherically distributed matrix X − 1n�′ can
be done using the t statistic

t�zn×1� =
√
nz̄

sz
(42)

for the score vector z = Xd. The coefficient vector d is determined as a function
of X′X with positive components, for example, in the form of application (1)
of Section 2. Statistic (42) meets requirement (34), because t�zn×1a� = t�zn×1�
is true for each positive scalar a. Under the null hypothesis, (42) has the t
distribution with n− 1 degrees of freedom.

(2) A directed comparison of the mean vectors of several populations. A di-
rected comparison of the means of K independent, p-dimensional normally
distributed populations or of corresponding left-spherically distributed ob-
servations, respectively, is possible on the basis of Theorem 2. Consider, for
example, the hypothesis H� ��1� = · · · = ��K� and the directed alternative
A� µ�1�

i < µ
�2�
i < · · · < µ�K�

i for i = 1� � � � � p. A possible approach is based on
the test of correlation between an n× 1 matrix Y and an n× p matrix X (cf.
application (5) of Section 2). Let

Y′ = �y�1� · · ·y�1�� y�2� · · ·y�2�� � � � � y�K� · · ·y�K��� n=n�1� + · · · +n�K�(43)

with y�k� = �2k−K− 1�/n�k� for k = 1� � � � �K and calculate the weight vector
d for the X variables according to (27). Formulas (30) and (31) then yield an
exact t test with n− 2 degrees of freedom. This test is similar to a univariate
one proposed by Barlow, Bartholomew, Bremner and Brunk (1972).

(3) Dunnett test. The well-known Dunnett procedure for testing K treat-
ments against a control can be transferred to the multivariate case by using
Theorem 2. Of course, this procedure is then also valid for left-spherical obser-
vations. The one-sided Dunnett closure procedure [Dunnett (1955), Marcus,
Peritz and Gabriel (1976), Dunnett and Tamhane (1991)] is based on the t
statistics

t�k��zn×1� =
√
n�0�n�k�

n�0� + n�k�
z̄�k� − z̄�0�
sz

� k = 1� � � � �K�(44)

corresponding to the single hypotheses H�1� to H�K�. These statistics are ar-
ranged in descending order of their values and then tested consecutively. As
soon as the first nonsignificant result is reached, the procedure stops. The
Dunnett procedure requires that the statistic defined by

t�zn×1� = max
k�H�k� is valid

�t�k��zn×1��(45)

does not exceed its critical value with a probability of more than α for arbitrary
parameters.

In the multivariate analogue to the Dunnett procedure proposed here, the
vector d of weights for the p variables is calculated as a function of the ma-
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trix �X − X̄�′�X − X̄�, with X̄ = 1nx̄′ being the matrix of total means of all
1 +K populations. Following Theorem 2, the “multivariate” Dunnett proce-
dure performed with the score values z = Xd and the statistic t�z� according
to (45) exactly keeps the multiple level of significance α in spite of the fact
that d is based on the data from all 1 + K populations and regardless of
whether the single hypotheses H�k� are true or not. At this point, it is cru-
cial that Theorem 2 allows the incorporation of neutral, noncentered parts
of the data into the calculation of d �Q0 > Q is admitted�. Here, we have
Q0 = In − �1/n�1n1′

n, while Q = EE′ corresponds to the subset of valid hy-
potheses H�k�. The test statistic (45) fulfills the invariance condition (34) of
Theorem 2, because t�zn×1a + m� = t�zn×1� for a > 0, E′m = 0. This method
is described in more detail by Kropf, Hothorn and Läuter (1997a).

(4) Test statistics with weakened invariance, repeated measurement analysis.
The test statistic

Fq�Zn×q� =
1
n

1′
nZn×q�Z′

n×qZn×q�−1Z′
n×q1n� q < n�(46)

defined for all n× q matrices Zn×q of rank q, is available for testing H� � = 0
in the case of an n×p left-spherical matrix X − 1n�′. It can be applied to the
score matrix Z = XD, where the coefficient matrix D is a function of X′X. The
statistic (46) fulfills the invariance condition Fq�Zn×qA� = Fq�Zn×q� for any
q×q nonsingular matrix A and hence meets the assumption (34) of Theorem 2.
It can also be written as Pillai’s trace, that is, Fq�Zn×q� = tr�HZ�HZ+GZ�−1�
with q×q matrices HZ and GZ [Seber (1984)]. Therefore Fq�Z� follows a beta
distribution if H is true:

Fq�Z� ∼ B
(
q

2
�
n− q

2

)
�(47)

Furthermore, Fq�Z� also has a representation Fq�Z� = �1/n�1′
nUU′1n based

on the n× q left-spherical uniform distribution U = Z�Z′Z�−1/2.
Now, consider the modified test statistic

Fq�r�Zn×q� =
1
n

1′
nZn×q�Z′

n×qZn×q�−1/2R�Z′
n×qZn×q�−1/2Z′

n×q1n(48)

with a fixed q×q projection matrix R of rank r, where r < q ≤ n. This statis-
tic no longer fulfills the general affine invariance condition Fq�r�Zn×qA� =
Fq�r�Zn×q�, but for U′

n×qUn×q = Iq and a q × q positive definite symmetric
matrix A, we have

Fq�r�Un×qA�

= 1
n

1′
nUn×qA�AU′

n×qUn×qA�−1/2R�AU′
n×qUn×qA�−1/2AU′

n×q1n

= 1
n

1′
nUn×qA�A2�−1/2R�A2�−1/2AU′

n×q1n =
1
n

1′
nUn×qRU′

n×q1n

= Fq�r�Un×q��

(49)
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Hence, the weaker invariance condition (34) of Theorem 2 is still kept. Conse-
quently, the statistic (48) can be used in Theorem 2, even in the case of q = n.
This is a bit surprising in comparison to classical multivariate tests, since the
latter are available for fG ≥ q, that is, for n ≥ f > q, only.

The statisticFq�r�Z� has the same distribution for each n×q left-spherically
distributed matrix Z. Especially, this distribution is reached for an n× q uni-
formly distributed matrix U. If the projection matrix R is represented via a
q× r orthonormal matrix Dr, that is,

R = DrD
′
r with D′

rDr = Ir�(50)

then we have

Fq�r�U� = 1
n

1′
nURU′1n

= 1
n

1′
nUDrD

′
rU

′1n =
1
n

1′
n�UDr��D′

rDr�−1�UDr�′1n

= 1
n

1′
n�UDr��D′

rU
′UDr�−1�UDr�′1n = Fr�UDr��

(51)

Application of (47) then yields

Fq�r�Z� ∼ B
(
r

2
�
n− r

2

)
�(52)

because UDr is an n× r left-spherically distributed matrix which has always
rank r. Thus, the null distribution of the statistic (48) depends on R only via
the rank r.

Using U = Z�Z′Z�−1/2 and u′ = �u1 u2 · · · uq� = 1′
nU yields the com-

putational formula Fq�r�Z� = �1/n�u′Ru. Such a test statistic is suitable for
repeated measurement analysis with q replicated measurements on n sub-
jects.

Some special cases are:

�a� R = 1
q

1q1
′
q� Fq�1�Z� =

q

n
ū2 ∼ B

(
1
2
�
n− 1

2

)

under H, where ū = �1/q�∑qi=1 ui.
This test is sensitive against departures of the mean level of the q repeti-

tions from zero.

�b� R= Iq−
1
q

1q1
′
q� Fq�q−1�Z�=

1
n

q∑
i=1

�ui− ū�2 ∼B
(
q− 1

2
�
n− q+ 1

2

)

under H. This test is sensitive against differences between the q repetitions.

4. Concluding remarks. This work provides tests for high-dimensional
normally distributed and, more generally, for left-spherically distributed data
which are based on calculation of low-dimensional linear scores. The procedure
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works without any additional bias due to model fit or selection. In each case,
the low-dimensional test statistics have the same null distribution, regardless
of the original dimension and the special choice of weights. Traditional the-
oretical optimality criteria (in the sense of the least squares method or the
maximum likelihood method) are abandoned for the sake of a gain in sta-
bility and efficiency in many applications. Thus, this class of tests provides
exact alternatives to the approximate tests for “multiple endpoints” which
were proposed for medical studies by O’Brien (1984), Tang, Geller and Pocock
(1993) and others. We believe that the methods treated here will open up new
opportunities to theoretical and practical statistics.

Acknowledgments. The authors are grateful to the Editors and referees
for advice and helpful comments concerning the paper.

REFERENCES

Anderson, T. W. (1993). Nonnormal multivariate distributions: inference based on elliptically
contoured distributions. In Multivariate Analysis: Future Directions (C. R. Rao, ed.)
1–24. North-Holland, Amsterdam.

Anderson, T. W., Fang, K.-T. and Hsu, H. (1990). Maximum-likelihood estimates and likelihood-
ratio criteria for multivariate elliptically contoured distributions. In Statistical Infer-
ence in Elliptically Contoured and Related Distributions (K.-T. Fang and T. W. Ander-
son, eds.) 217–223. Allerton Press, New York.

Barlow, R. E., Bartholomew, D. J., Bremner, J. M. and Brunk, H. D. (1972). Statistical Infer-
ence Under Order Restrictions. Wiley, New York.
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