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CONSTRUCTIONS OF RANDOM DISTRIBUTIONS
VIA SEQUENTIAL BARYCENTERS

By Theodore Hill1 and Michael Monticino

Georgia Institute of Technology and University of North Texas

This article introduces and develops a constructive method for gener-
ating random probability measures with a prescribed mean or distribution
of the means. The method involves sequentially generating an array of
barycenters which uniquely defines a probability measure. Basic proper-
ties of the generated measures are presented, including conditions under
which almost all the generated measures are continuous or almost all are
purely discrete or almost all have finite support. Applications are given to
models for average-optimal control problems and to experimental approx-
imation of universal constants.

1. Introduction. The purpose of this note is to introduce a general and
natural method for constructing random probability measures with any pre-
scribed mean or distribution of the means. This method complements classical
and recent constructions [e.g., Dubins and Freedman (1967), Ferguson (1973,
1974), Graf, Mauldin and Williams (1986), Mauldin, Sudderth and Williams
(1992) and Monticino (1996)], none of which generates random measures with
a priori specified means. In fact, even the calculation of the distribution of the
means for those constructions is difficult [cf. Cifarelli and Regazzani (1990)
and Monticino (1995)].

The new method presented here, which is based on sequential barycenters,
satisfies Ferguson’s (1974) two basic requirements that such constructions
have large support and be analytically manageable. The construction is easy to
implement and is robust, allowing generation of random measures which are
either (almost surely) discrete or continuous, as desired. Since many problems
in probability and analysis involve distributions with given means, the new
construction will perhaps prove a useful tool in a variety of applications.

2. Sequential Barycenter Arrays. This section introduces the notion of
a sequential barycenter array (SBA) and develops some basic properties of the
probability measures defined by the arrays. These SBA’s, although not named
as such, are used in standard proofs of Skorohod’s embedding theorems [e.g.,
Billingsley (1986), Section 37], and it is the reversal of this standard procedure
which is the foundation for the construction of the random measures given in
the next section.
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Throughout this section, let X be a real-valued random variable with dis-
tribution function F, such that E��X�� < ∞.

Definition 2.1. The F-barycenter of �a� c�, bF�a� c�, is given by

bF�a� c� =



E�X�X ∈ �a� c�� =

∫
�a� c� xdF�x�
F�c� −F�a� � if F�c� > F�a��

a� if F�c� = F�a��

Some elementary properties of F-barycenters are recorded in the next
lemma.

Lemma 2.2. Fix a < c such that P�X ∈ �a� c�� > 0 and let b = bF�a� c�.
Then:

(i) F�c� > F�a� if and only if b > a;
(ii) �F�c� −F�a��b = �F�b� −F�a��bF�a� b� + �F�c� −F�b��bF�b� c�;

(iii) bF�a� b� = b if and only if bF�b� c� = b;
(iv) b ≥ bF�a� x�, for all x ∈ �a� c�.

Definition 2.3. The sequential barycenter array (SBA) of F is the trian-
gular array �mn�k
∞ 2n−1

n=1 k=1 = �mn�k�F�
 = M�F� defined inductively by

m1�1 = E�X� =
∫
xdF�x� = bF�−∞�∞��(2.1)

mn�2j = mn−1� j� for n ≥ 1 and j = 1� � � � �2n−1 − 1,(2.2)

mn�2j−1 = bF�mn−1� j−1�mn−1� j�� for j = 1� � � � �2n−1,(2.3)

with the convention that mn�0 = −∞ and mn�2n = ∞.

Example 2.4. Suppose X is uniformly distributed over �0�1�. Then

�mn�k�F�
 =
{
k

2n

}∞ 2n−1

n=1 k=1
�

Example 2.5. Suppose X is binomially distributed with n = 2 and p =
1/2. Then m1�1 = 1, m2�1 = 2/3, m2�3 = 2 and, for n ≥ 3,

mn�k =




0� for k = 1� � � � �2n−2 − 1�
2
3 � for k = 2n−2�

1� for k = 2n−2 + 1� � � � �2n−1�

2� for k = 2n−1 + 1� � � � �2n − 1�

As seen in Example 2.5, it may happen that the sequential barycenters of
a given distribution are not distinct (i.e., mn�k+1 = mn�k for some n and k).
Monotonicity alone (mn�k ≤ mn�k+1) is not enough to guarantee that an array
is the SBA for some distribution; the additional condition needed—(2.6) in
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Theorem 2.9 below—is a martingale property. First, several useful properties
of SBA’s are noted, followed by an inversion formula (Theorem 2.7) to recover
F from its SBA.

Notation. For SBA �mn�k
, let In�k = �mn�k−1�mn�k� ⊂ R.

Lemma 2.6. Let �mn�k
∞ 2n−1
n=1 k=1 = �mn�k�F�
 be the SBA for distribution

function F. Then:

(i) If F�c� > F�a�, then there exist n and j with mn�j ∈ �a� c�.
(ii) �mn�k�F�
 is dense in the support of F.

(iii) For each n ≥ 1, �In�k
2n
k=1 is a partition of R and �In+1� k
2n+1

k=1 is a re-

finement of �In�k
2n
k=1.

(iv) P�X ∈ �mn�k−1�mn�k�� > 0, for all n ≥ 1 and k = 1� � � � �2n.

Parts (i) and (iii) are routine; (ii) is straightforward from (i); and (iv) follows
by induction on n and Definition 2.1.

Theorem 2.7. F is completely determined by the values �mn�k�F�
∞ 2n−1
n=1 k=1.

In particular, F�mn�k� is given inductively by F�mn�0� = 0, F�mn�2n� = 1 by
(2.2) for even k and, for k = 2j− 1,

�2�4�
F�mn�2j−1� = F�mn−1� j−1�

+ (
F�mn−1� j� −F�mn−1� j−1�

)mn+1�4j−1 −mn+1�4j−2

mn+1�4j−1 −mn+1�4j−3

(with 0/0 = 1).

Proof. By Lemma 2.6(ii) and (2.4), F is determined by �mn�k�F�
. To see
(2.4), note that Lemma 2.2(ii) gives

F�mn�2j−1� = F�mn�2j−2� +
(
F�mn�2j� −F�mn�2j−2�

)

× bF�mn�2j−1�mn�2j� −mn�2j−1

bF�mn�2j−1�mn�2j� − bF�mn�2j−2�mn�2j−1�
�

In addition, by (2.2) and (2.3), mn−1� j−1 = mn�2j−2, mn−1� j = mn�2j,
mn+1�4j−1 = bF�mn�2j−1�mn�2j�, and mn+1�4j−3 = bF�mn�2j−2�mn�2j−1�. ✷

Corollary 2.8. F1 = F2 if and only if mn�k�F1� = mn�k�F2� for all n ≥ 1
and 1 ≤ k ≤ 2n − 1.

Note. It is well known that certain other collections of barycenters—for
example, �bF�−∞� t�
t∈R—also determine F.

Theorem 2.9. A triangular array M = �mn�k
∞ 2n−1
n=1 k=1 is a SBA for some

distribution function F if and only if M satisfies (2.2),

�2�5� mn�k−1 ≤ mn�k� for all n ≥ 1 and k = 1� � � � �2n,
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and

�2�6� mn�4k−3 = mn�4k−2 if and only if mn�4k−1 = mn�4k−2�

for all n ≥ 2 and k = 1� � � � �2n−2.

Proof. Given that M is a SBA for some distribution function F, the neces-
sity of (2.2) follows from Definition 2.3. Similarly, the necessity of (2.5) follows
easily using induction on n and Definition 2.3. For the necessity of (2.6), note
that by (2.2) and (2.3),

mn�4k−2 = mn−1�2k−1 = bF�mn−1�2k−2�mn−1�2k� = bF�mn�4k−4�mn�4k��
mn�4k−3 = bF�mn�4k−4�mn�4k−2�

and

mn�4k−1 = bF�mn−1�2k−1�mn−1�2k� = bF�mn�4k−2�mn�4k��
Letting a=mn�4k−4, b=mn�4k−2 and c=mn�4k, (2.6) follows by Lemma 2.2(iii).

For the sufficiency portion of the proof, let �mn�k
∞ 2n−1
n=1 k=1 be a triangular

array satisfying (2.2), (2.5) and (2.6). Define a discrete martingale, X1�X2� � � �,
inductively as follows. X1 ≡ m1�1. For n ≥ 2, Xn takes values in �mn�2j−1
2n−1

j=1
with

P�Xn = mn�4j−3�Xn−1 = mn�4j−2�

=




1 −P�Xn = mn�4j−1�Xn−1 = mn�4j−2�

= mn�4j−2 −mn�4j−3

mn�4j−1 −mn�4j−3
� if mn�4j−3 �= mn�4j−2�

1� if mn�4j−3 = mn�4j−2�

(2.7)

Note that (2.5) ensures that (2.7) defines probabilities, and (2.6) yields
E�Xn+1�Xn� = Xn. By (2.7), for all n ≥ N and j = 1� � � � �2n−1,

�2�8� bFn
�mN�2j−2�mN�2j� = mN�2j−1�

To see that Xn → X a.s., where X is a random variable with the desired
barycenters, first note that by the construction of �Xn
 above, with probabil-
ity 1, {

X2 > m1�1
} = {

Xn > m1�1
}

for all n > 1.
Next observe that conditioned on the set �X2 > m1�1
, �Xn
n≥2 is a martin-

gale which is bounded below by m1�1. Thus it converges (on �X2 > m1�1
) to
a random variable X+ which, by (2.8), has the correct barycenters. A similar
argument for the set �Xn ≤ m1�1
 completes the proof. ✷

Corollary 2.10. If F is continuous, then

�2�9� mn�k−1�F� < mn�k�F� for all n ≥ 1 and k = 1� � � � �2n.
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Corollary 2.11. If M = �mn�k
∞ 2n−1
n=1 k=1 satisfies (2.2) and (2.9), then M =

M�F� for some distribution function F.

Neither the converse of Corollary 2.10 nor 2.11 holds. The following propo-
sition, whose proof here is left to the interested reader and may be found in
Hill and Monticino (1997), gives conditions under which continuity of F can
be inferred from M�F�.

Proposition 2.12. Let F be a distribution function with SBA M�F� =
�mn�k
∞ 2n−1

n=1 k=1 and let dn�x� = �In�kn�x��� where In�kn�x� is the unique in-
terval �mn�k−1�F��mn�k�F�� = �mn�kn�x�−1�mn�kn�x�� containing x ∈ R [cf.
Lemma 2.6(iii)].

(i) If x /∈ M�F� and dn�x� = dn+1�x� for some n ≥ 1, then F is continuous
at x.

(ii) If, for some ε > 0, there exist infinitely many n such that

�2�10� ε <
dn+1�x�
dn�x�

�
dn+2�x�
dn+1�x�

< 1 − ε�

then F is continuous at x.

3. Random SBA distributions. This section describes the new method
for generating random probability measures using sequential barycenter ar-
rays. The description is given explicitly for random probability measures on
�0�1�, but it is easy to extend this method to other supports.

Let µ0 and µ be probability measures with support on �0�1� and �0�1�, re-
spectively. Denote by � ��0�1�� the set of all Borel probability measures on
�0�1�. Let �Xn�2j−1
∞�2n−1

n=1� j=1 be an array of independent random variables de-
fined on a probability space ���� �P� such that X1�1 has distribution µ0 and,
for n ≥ 2, each Xn�k has distribution µ.

Define a random array M = �mn�k
∞�2n−1
n=1� k=1 inductively by

m1�1 = X1�1�

mn�2j = mn−1� j for n > 1 and j = 1� � � � �2n−1 − 1�

mn�4j−3 =



mn−1�2j−1� if mn−1�2j−1 = mn−1�2j� mn−1�2j−2 = mn−1�2j−1�

Xn�4j−3 = 0 or Xn�4j−1 = 0�

mn−1�2j−1 −Xn�4j−3�mn−1�2j−1 −mn−1�2j−2�� otherwise�

and

mn�4j−1 =



mn−1�2j−1� if mn�4j−3 = mn−1�2j−1

mn−1�2j−1

+Xn�4j−1�mn−1�2j −mn−1�2j−1�� otherwise

(for all n ≥ 1, mn�0 = 0 and mn�2n = 1).



RANDOM DISTRIBUTIONS VIA BARYCENTERS 1247

Endow the set of triangular arrays � = �0�1�×�0�1�3 ×· · ·×�0�1�2n−1 × · · ·
with the standard product topology. Let A ⊂ � be the Borel subset of arrays
which satisfy (2.2), (2.5) and (2.6). Notice that M�ω� ∈ A for all ω ∈ �. Let
Q�µ0� µ� be the distribution of M on � . By Theorems 2.7 and 2.9, the map-
ping, T [induced by (2.2) and (2.4)], which sends an array �mn�k
 ∈ A to its
associated distribution, T�m�, is Borel from A to � ��0�1�� given the weak-∗
topology.

Definition 3.1. The sequential barycenter array random probability mea-
sure (SBA rpm) B�µ0� µ� is the Borel measure Q�µ0� µ�T

−1 on � ��0�1��.

(Note. This particular method constructs successive barycenters symmetri-
cally to the right and left of the previous barycenters. Natural nonsymmetric
constructions are done in the same manner, and details are left to the inter-
ested reader.)

Proposition 3.2. The distribution on the mean under B�µ0� µ� is µ0. That is,

B�µ0� µ�

({
F�

∫ 1

0
xdF�x� ≤ a

})
= µ0��0� a���

The proof is immediate by the definitions of Q�µ0� µ�, T and B�µ0� µ�.
The SBA random probability measure construction thus provides a straight-

forward way to produce rpm’s with any prescribed mean or distribution on the
mean, whereas classical rpm constructions do not.

Example 3.3. Suppose µ0 = µ = δ1/2. Then, Q�µ0� µ� gives probability 1
to the array �k/2n
∞ 2n−1

n=1 k=1. Hence, by Example 2.4 and Theorem 2.7, B�µ0� µ�
gives probability 1 to the uniform distribution on �0�1�.

Remark. It is easy to construct [cf. Hill and Monticino (1997)] sequential
barycenter rpm’s which cannot be realized with a Dubins–Freedman construc-
tion. Moreover, the authors conjecture that unless µ0 and µ both give unit
mass to 1/2, then B�µ0� µ� is never a Dubins–Freedman rpm.

What types of measures are in the support of B�µ0� µ�? If µ0��0�1
� = 0 =
µ��0
�, then a straightforward argument using Proposition 2.12(ii) and Borel-
Cantelli shows that, for every x ∈ �0�1�, B�µ0� µ�-almost all distribution func-
tions are continuous at x. Moreover, the stronger result, that B�µ0� µ�-almost
all measures are continuous on �0�1�, also holds. This is similar to Dubins
and Freedman [(1967), Theorem 4.1], and contrasts to Dirichlet rpm’s [Fergu-
son (1973)], which are almost surely discrete. Conversely, Theorem 3.6 below
shows that if µ��0
� > 0, then B�µ0� µ�-almost all measures are discrete.

Theorem 3.4. B�µ0� µ�-almost all measures are continuous on �0�1� if and
only if µ0��0�1
� = 0 = µ��0
�.
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Proof. The condition is clearly necessary from the definition of B�µ0� µ�.
The sufficiency portion of the proof adapts a technique initiated by Dubins
and Freedman [(1967), Theorem 4.1]. In particular, by Mauldin, Sudderth
and Williams [(1992), Lemma 5.2], it is enough to show that

�3�1�
∫ (∫

D
d�F×F��x�y�

)
dB�µ0� µ��F� = 0

for D = ��x�y� ∈ �0�1� × �0�1�� x = y
.
For notational convenience, let FM denote the distribution function associ-

ated with the SBA M = �mn�k
 and, for a distribution function F with SBA
�mn�k�F�
, let F�mn�k� = F�mn�k�F��. Then (3.1) is obtained if

En =
∫ ( 2n∑

k=1

�F�mn�k� −F�mn�k−1��2
)
dB�µ0� µ��F�

converges to 0 as n → ∞. By Theorem 2.7 and Definition 3.1,

En =
∫ [ 2n∑

k=1

�FM�mn�k� −FM�mn�k−1��2
]
dQ�µ0� µ��M�

=
∫ [ 2n−1∑

j=1

�FM�ω��mn−1� j�ω��−FM�ω��mn−1� j−1�ω���2f�xn�2j−1�ω��
]
dP�ω��

where

f�xn�2j−1�=




∫
�0�1�

∫
�0�1�

(
zxn�2j−1

zxn�2j−1 + y�1 − xn�2j−1�
)2

+
(

y�1 − xn�2j−1�
zxn�2j−1 + y�1 − xn�2j−1�

)2

dµ�y�dµ�z�� for j odd�

∫
�0�1�

∫
�0�1�

(
z�1 − xn�2j−1�

z�1 − xn�2j−1� + yxn�2j−1

)2

+
(

yxn�2j−1

z�1 − xn�2j−1� + yxn�2j−1

)2

dµ�y�dµ�z�� for j even�

The last equality holds by Definition 3.1 and the assumption that µ0��0�1
� =
0 = µ��0
�. Furthermore, by µ0��0�1
� = 0 = µ��0
� and Lemma 3.5 below,
for a fixed ε < 1/2, there exists a K < 1 and an interval �α�β� ⊂ �0�1� for
which µ0��α�β�C�� µ��α�β�C� < ε, such that for all n ≥ 2,

∫ [ 2n−1∑
j=1

�FM�ω��mn−1� j�ω�� −FM�ω��mn−1� j−1�ω���2f�xn�2j−1�ω��
]
dP�ω�

≤
2n−1∑
j=1

K
∫ [�FM�ω��mn−1� j�ω�� −FM�ω��mn−1� j−1�ω���2]dP�ω�
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+
2n−1∑
j=1

�1 −K�
∫
�ω�xn�2j−1�ω�∈�α�β�C


[
�FM�ω��mn−1� j�ω��

−FM�ω��mn−1� j−1�ω���2
]
dP�ω�

≤ KEn−1 + �1 −K�
2n−2∑
j=1

[∫ (
FM�ω��mn−2� j�ω��

−FM�ω��mn−2� j−1�ω��
)2
�ε+ ε�dP�ω�

]

= KEn−1 + 2ε�1 −K�En−2�

Thus, letting E0 = 1, we get En → 0. ✷

Lemma 3.5. Let

f�x� =
∫
�0�1�

∫
�0�1�

(
xz

xz+ �1 − x�y
)2

+
( �1 − x�y
xz+ �1 − x�y

)2

dµ�y�dµ�z��

If µ��0�1
� = 0, then for all intervals �α�1−α� ⊂ �0�1� there exists a K < 1 such
that f�x� ≤ K for all x ∈ �α�1−α�. The same result holds for g�x� = f�1−x�.

The proof is routine; see Hill and Monticino (1997).

Theorem 3.6. Let ρ = µ��0
� and let N�F� be the number of jumps of F.

(i) If ρ > 0, then for all µ0, B�µ0� µ�-almost all measures are discrete.

(ii) If ρ ≥ 1− 1/
√

2, then for all µ0, B�µ0� µ�-almost all measures have finite
support.

(iii) If ρ > 1 − 1/
√

2, then for all µ0, EB�µ0� µ�
�N� < ∞.

Proof. (i) Let S�F� denote the sum of the jumps of a distribution function
F. Let

J�m� =
∫
S�F�dB�δm�µ��F�

and set

J =
∫
S�F�dB�µ0� µ��F� =

∫
J�m�dµ0�m��

To prove (i), it is enough to show that J = 1, and this obviously follows if
J�m� = 1 for all 0 ≤ m ≤ 1.

Clearly, J�0� = 1 = J�1�. Suppose 0 < m < 1 and let

pm�x�y� =
�1 −m�y

�1 −m�y+m�1 − x� = 1 − qm�x�y��



1250 T. HILL AND M. MONTICINO

Then, by Definition 3.1, Theorem 2.7 and the self-similarity of the sequential
barycenter rpm construction,

J�m� = ρ+ ρ�1 − ρ� +
∫
�0�1�

∫
�0�1�

[
J�1 − x�pm�1 − x�y�

+J�y�qm�1 − x�y�]dµ�x�dµ�y��
Now set R = ρ+ ρ�1 − ρ� and use induction to show that

J�m� ≥ R+R�1 − ρ�2 +R�1 − ρ�4 + · · · +R�1 − ρ�2n

for all n ≥ 1. Thus, J�m� ≥ R/�1 − �1 − ρ�2� = 1. However, J�m� ≤ 1, and so
J�m� = 1 for all 0 ≤ m ≤ 1.

(ii) Note that if mn�2j−2 < mn�2j−1 < mn�2j and either Xn+1�4j−3 = 0 or
Xn+1�4j−1 = 0, then the B�µ0� µ� rpm gives positive probability to the point
mn�2j−1 and probability zero to the set �m2j−2�m2j−1� ∪ �m2j−1�m2j�. The
idea is to use this fact in constructing a branching process whose extinction
corresponds to the generation of a sequential barycenter measure with finite
support. Specifically, let �Zi�n
 be iid random variables such that

P�Zi�n = 0� = ρ+ ρ�1 − ρ� = 1 −P�Zi�n = 2��
Set Y1 ≡ 1 and, for n ≥ 1, let

Yn+1 =
Yn∑
i=1

Zi�n�

Then, Y1�Y2� � � � is a branching process and, by the sequential barycenter rpm
construction,

B�µ0� µ�
(�measures with finite support
)

= µ0��0�1
� + �1 − µ0��0�1
�� lim
n→∞P�Yn = 0��

Standard results [Ross (1970), Theorem 4.12] for branching processes yield
limn→∞P�Yn = 0� = 1, if ρ ≥ 1 − 1/

√
2.

(iii) As indicated by the branching process constructed above, the number
of points in the support of a generated sequential barycenter measure does
not depend on the mean m of the measure, as long as 0 < m < 1. That is, for
any 0 < m1�m2 < 1,

EB�δm1 � µ�
�N� = EB�δm2 � µ�

�N��
Denote this common value by E�N�. Then

E�N� = 1 · �ρ+ ρ�1 − ρ�� + �1 − ρ�22E�N��
Thus, for ρ > 1 − 1/

√
2 and R = ρ+ ρ�1 − ρ�, E�N� = R/�2R− 1�. Hence,

EB�µ0� µ�
�N� = 1 · [µ0��0�1
� +R�1 − µ0��0�1
��]

+ �1 − µ0��0�1
���1 − ρ�2 · 2E�N� < ∞�

if ρ > 1 − 1/
√

2. ✷



RANDOM DISTRIBUTIONS VIA BARYCENTERS 1251

Often, a desirable property for random probability measures is that they
have large or full support. Recall that a probability ν defined on a compact
Hausdorff space � has full support if every nonempty open subset of � has
positive ν measure. Note that this is equivalent to � being the smallest com-
pact set which has ν measure 1. The next theorem gives conditions on µ0 and
µ which ensure that Bµ0� µ

has full support. Let supp�ν� denote the support of
measure ν.

Theorem 3.7. If µ0 and µ have full support on �0�1�, then B�µ0� µ� has full
support on � ��0�1��.

The basic idea of the proof is that if µ0 and µ have full support on �0�1�, then
each consecutive barycenter constructed will have full support in its possible
range of values. For a formal proof, see Hill and Monticino (1997).

It is straightforward to modify the proof of the above theorem to show the
following.

Proposition 3.8. If µ has full support on �0�1�, then supp�Bδm�µ
� = �σ ∈

� ��0�1��� ∫
xdσ = m
 for 0 ≤ m ≤ 1.

A distribution function is strictly singular if it has a finite positive derivative
nowhere. The final theorem in this section is an analog of Theorem 5.1 of
Dubins and Freedman (1967).

Theorem 3.9. If µ��1/2
� �= 1, then B�µ0� µ�-almost all distribution func-
tions are strictly singular.

Sketch of Proof. The result is immediate from Theorem 3.6 if µ��0
� > 0
[whether or not µ��1/2
� �= 1]. Assume not. Then the proof follows the same
basic outline as the demonstration of Theorem 5.1 of Dubins and Freed-
man (1967). The central idea is that under the given condition, for any x ∈
�0�1�, the sequence of chords with endpoints �mn�kn�x�−1�F�M��mn�kn�x�−1��
and �mn�kn�x��F�M��mn�kn�x��� whose slopes should converge if the distribu-
tion function F�M� had a derivative at x, do not have converging slopes. This
can be shown by first establishing conditions under which the ratios of the
slopes of successive chords do not converge to 1 for fixed x ∈ �0�1� and the
distribution function defined by a fixed (nonrandom) SBA. Then show that
these conditions are met for all x ∈ �0�1� and B�µ0� µ�-almost all distribution
functions, if µ��1/2
� �= 1, via a branching process type argument similar to
that given in Lemmas 5.18 and 5.23 of Dubins and Freedman (1967). For more
details, see Hill and Monticino (1997). ✷

Remark. If the base measure µ is allowed to change at successive stages
of the construction, then absolutely continuous measures (with respect to
Lebesgue measure) may be generated a.s., as is also the case for random
rescaling rpm constructions [cf. Kraft (1964)].
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4. Applications.

Experimental approximation of universal constants. Given a continuous
function f� � �0�1� → R, suppose the universal bound

φ�f�m� �= sup�f�F�� F ∈ � �0�1�� bF = m

is to be determined. By the continuity of f (convergence in distribution) and
Proposition 3.8, the following proposition gives an experimental method to
approximate φ. Let λ denote Lebesgue measure on �0�1�.

Proposition 4.1. Fix m ∈ �0�1� and let F1�F2� � � � be iid Bδm�λ
. Then

�4�1� max
1≤i≤n

f�Fi� ↗ φ�f�m� a.s.

Example 4.2. Suppose the sharp bound cm�h is desired for the inequality

E�h�X−m�� ≤ cm�h for all 0 ≤ X ≤ 1 with E�X� = m

for some continuous h� R → R [e.g., if h�x� = x2, then cm�h = m−m2, which is
simply the familiar inequality VarX ≤ m−m2 if 0 ≤ X ≤ 1 and E�X� = m].

Letting f�F� = ∫
h�x − m�dF�x�, it follows from Proposition 4.1 that if

F1�F2� � � � are constructed independently with distribution Bδm�λ
, then

max
1≤i≤n

∫
h�x−m�dFi�x� ↗ cm�h a.s.

Average-optimal control problems. Suppose a function g� � ��0�1�� × R →
R is given and the objective is to choose c (the control parameter) so as to
make g�F� c� as large as possible, on the average, over all distributions F on
�0�1� with given mean m. The SBA rpm Bδm�λ

is a natural prior for randomly
choosing elements of � ��0�1�� with mean m, since it chooses the successive
barycenters uniformly at each stage. Under this prior, the above average-
optimal control problem simply becomes

choose c∗ to maximize
c

∫
g�F� c�dBδm�λ

�F��
Typical control problem objectives of this type include picking the control

to keep a process (or random variable) within a certain range with high prob-
ability, for example, find c∗ to make P�a ≤ X+ c∗ ≤ b� as large as possible, on
the average, over all distributions in P��0�1�� with mean m, and the following
control problem from optimal stopping theory.

Example 4.3. Suppose a stopping rule t is to be chosen for stopping a
sequence of three random variables X1�X2�X3, knowing only that the �Xi

are independent, take values in �0�1� and have identical means m. What
stopping rule will make EXt as large as possible, on the average, over all
such �Xi
? By standard backward induction [Chow, Robbins and Siegmund
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(1971)], it is clear that there is an optimal stopping rule tc of the form �tc =
2
⇔�tc >1
∩�Xi >m
 and �tc=1
 ⇔ �X1 >c
� In the present setting where
only the means and bounds for the �Xi
 are known, the optimal c depends on
the prior for X1�X2�X3, which in the case of Bδm�µ

would mean the optimal
value of c is

c∗ =
∫ [∫

x>m
xdF�x� +mF�m�

]
dBδm�µ

�F��

Using the definition of Bδm�µ
, it can be seen that in this case

c∗ = c∗m = m+m�1 −m�
∫ 1

0

∫ 1

0

xy

�1 −m�y+mx
dµ�x�dµ�y��
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