The Annals of Statistics
1999, Vol. 27, No. 1, 262-273

LIMITS TO CLASSIFICATION AND REGRESSION
ESTIMATION FROM ERGODIC PROCESSES!

By ANDREW B. NOBEL

University of North Carolina

We answer two open questions concerning the existence of universal
schemes for classification and regression estimation from stationary er-
godic processes. It is shown that no measurable procedure can produce
weakly consistent regression estimates from every bivariate stationary er-
godic process, even if the covariate and response variables are restricted
to take values in the unit interval. It is further shown that no measurable
procedure can produce weakly consistent classification rules from every
bivariate stationary ergodic process for which the response variable is bi-
nary valued. The results of the paper are derived via reduction arguments
and are based in part on recent work concerning density estimaton from
ergodic processes.

1. Introduction. Nonparametric classification and regression estimation
are of fundamental importance in the theory and practice of statistics. Much
of the existing theory for these problems is based on the assumption that the
available data are independent and identically distributed (i.i.d.). The exis-
tence of weakly consistent procedures for classification and regression from
any i.i.d. process was first established by Stone (1977), using nearest neigh-
bor methods. The consistency of standard kernel regression estimators for
i.i.d. processes was shown by Devroye and Wagner (1980) and Spiegelman
and Sacks (1980).

Beginning with the papers of Roussas (1967, 1969) and Rosenblatt (1970),
there has been a great deal of work on regression and density estimation from
stationary, weakly dependent processes satisfying «, B, p and related mixing
conditions. The majority of this work is devoted to central limit theorems
and rates of convergence for kernel and histogram type estimates. References
and discussion can be found in the monographs of Gyorfi, Hardle, Sarda and
Vieu (1989) and Rosenblatt (1991). Masry (1996) has recently analyzed local
polynomial regression from a-mixing processes.

There is also a substantial body of work on regression and density esti-
mation from stationary processes exhibiting long-range (also called strong)
dependence. For such processes one may obtain different asymptotic behav-
ior than in the weakly dependent case. For an overview of these results and
additional references, we refer the reader to Cheng and Robinson (1991), Ho
(1995) and Hidalgo (1997).
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There is, in addition to the above developments, a growing body of literature
devoted to nonparametric estimation from stationary processes that exhibit
very strong dependence, or that are assumed only to be ergodic. This work
focuses primarily on consistency, as rates of convergence and central limit
theorems are typically not available in these general settings.

Strengthening earlier work of Delecroix (1987), Gyorfi, Hardle, Sarda and
Vieu (1989) showed that for a biinfinite stationary ergodic process {X,;}72
such that the conditional density of X, ..., X, given Xy, X_4, ... exists and
is continuous for every r > 1, one can estimate E(X,|X,,..., X_;) for each
r, k > 1 by means of kernel estimates with a suitable choice of bandwidth.
Their estimates, which make use of observations occurring prior to time zero,
converge pointwise with probability one. For related results, see also Delecroix
and Rosa (1996). Yakowitz (1993) proposed an adaptive nearest neighbor es-
timate for the autoregression function A(x) = E(X;|X, = x) of a real-valued
process. For Markov chains satisfying a mild recurrence condition, he estab-
lished in-probability and almost sure consistency of the estimate at continuity
points of A(-).

When suitable constraints are placed on the dependence of the observations,
few assumptions on the unknown regression or density function are required
to ensure the consistency of the method under study. As an alternative, one
may consider general ergodic processes, and place constraints instead on the
family of candidate regression or density functions under study.

Yakowitz, Gyorfi, Kieffer and Morvai (1997) considered a family of trun-
cated histogram regression estimates for processes with vector-valued covari-
ates. For each constant L > 0 they exhibit a sequence of estimates that is
almost surely pointwise consistent for every stationary ergodic process whose
regression function g* satisfies a Lipschitz condition of the form |g*(x) —
g*(y)| < L||x — y||. In practice, the constant L is known and fixed in ad-
vance of the data. Morvai, Kulkarni and Nobel (1997) considered a family of
adaptive histogram regression estimates for processes with real-valued covari-
ates. Given positive constants «, ay, ..., they exhibit a sequence of estimates
that is strongly L,-consistent for every stationary ergodic processes such that
(1) the distribution of the covariate variable is nonatomic, and (2) the vari-
ation of the regression function g* on each interval [—i, ] is less than «;.
In practice, the constants ay, as, ... are known and fixed in advance of the
data. An analogous result for density estimation is given by Nobel, Morvai
and Kulkarni (1997).

The strongest positive results concerning nonparametric estimation from
ergodic processes have been obtained for the problem of estimating the infinite-
order autoregression Z_ = E(Xy|X_;, X_o,...). Extending work of Orn-
stein (1978) for finite alphabet processes, Algoet (1992) defined estimates
Z, =2,(X_4,...,X_,) such that Z, — Z_ with probability one for ev-
ery stationary ergodic process {X;}2 _ taking values in a bounded interval
of the real line. Morvai, Yakowitz and Gyorfi (1996) gave a simple proof of this
result for a different sequence of estimates. Further work along these lines
can be found in Morvai, Yakowitz and Algoet (1997).
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By stationarity, the estimates of Algoet (1992) and Morvai, Yakowitz and
Gyorfi (1996) give in-probability consistent estimates of Z  based on observa-
tions X4, ..., X, extending forward in time. In fact, Bailey (1976) and Ryabko
(1988) showed that, for observations of this sort, no procedure provides almost
surely consistent estimates of Z_ from every ergodic process. Ryabko (1988)
established a similar result concerning estimation of the one-step autoregres-
sion E(X|X, = x) from X,..., X,. See also Gyorfi, Morvai and Yakowitz
(1997) for a discussion and proofs of these results.

In spite of the positive results cited above, there are indications that for
many nonparametric problems even weakly consistent schemes may not exist
when the dependence of the observations is unrestricted. In a result attributed
to Shields, it was shown by Gyorfi, Hardle, Sarda and Vieu (1989) that there
exist histogram density estimates, consistent for every i.i.d. process, that fail
to be consistent for a suitably constructed ergodic process. Gyorfi and Lugosi
(1992) exhibited an ergodic process for which a standard kernel density es-
timate with bandwidths 4, — 0 and nh, — oo fail to be consistent. Gyorfi,
Morvai and Yakowitz (1997) exhibit histogram estimates of the one-step au-
toregression function that are consistent for a family of mixing processes, but
fail to be consistent for a suitably constructed ergodic process.

While these negative results are suggestive, they leave open the possibil-
ity that more elaborate estimates, for example estimates that learn or adapt
to the mixing structure of the observations, might be consistent for every er-
godic process. The positive results for infinite-order auto-regression provide
cause for some optimism in this regard. Thus we are led to the following
question, versions of which appear in Gyorfi (1981) and many of the cited ref-
erences on estimation from ergodic processes: Do there exist procedures for
density estimation, regression, one-step auto-regression, or classification, that
are consistent for every stationary ergodic process?

The answer, in each case, is “No.” The first such result was obtained by
Adams and Nobel (1997), who showed that, for every p > 1, there is no
weakly L ,-consistent density estimation scheme for ergodic processes with
p-integrable marginal densities. Strengthening this result, Adams (1997)
showed that for any density estimation procedure there exists a family of
isomorphic Bernoulli transformations, one of whose invariant densities the
procedure fails to identify consistently. It is shown here that there are no
universal schemes for regression estimation or classification from ergodic
processes. These results are presented in Theorems 1 and 2, respectively. The
common starting point for both conclusions is a simple decision problem for
families of ergodic processes and a modification of the result of Adams and
Nobel (1997).

Adams (1997) independently established that no regression procedure
is consistent for every bivariate ergodic process. Using renewal methods,
Yakowitz and Heyde (1997) have independently shown that there is no
weakly consistent procedure for estimating the one-step autoregression
E(X,|X, = x) from every ergodic process for which EX?% < oo, and they have
also established a negative result for density estimation.
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Preliminary definitions and the statements of Theorems 1 and 2 are given
in the next section. Our method of proof is discussed in Section 2.3. Proofs of
the main results are given in Section 3.

2. Statement of results. In what follows, we restrict our attention to
bivariate processes taking values in the unit square. For the purposes of ex-
hibiting negative results, this restriction entails no loss of generality.

2.1. Regression estimation. In regression estimation one observes the ini-
tial sequence (X{,Y;),...,(X,,Y,) of a stationary bivariate process and
constructs, based on that data, an estimate g, of the regression function
g*(x) = E(Y|X = «x) associated with the marginal distribution of the pro-
cess. Note that g*(-) minimizes the expected squared difference E(g(X)—Y)?
over all measurable functions g(-) and is therefore the optimal predictor of Y
given X for the squared error loss function. The regression estimation problem
and its potential solutions may be formalized as follows.

Let {(X{,Y)};2; be a bivariate stationary ergodic process taking values
in [0, 1] x [0, 1], with regression function g*(x) = E(Y|X = x), and such that
X; has distribution u. A sequence of measurable functions

8,:10,1] x ([0,1] x [0,1])* —» R, n=1,2,...
is a weakly consistent regression scheme for {(X;, Y;)}2, if for each ¢ > 0,
(D ,LL{.?C |§n(x X17Y13’XnaYn)_g*(x)| >8}_)O

in probability as n tends to infinity. A scheme {g,} is weakly consistent for
a family 2 of bivariate ergodic processes if it is weakly consistent for every
member of 2. When no confusion will arise, reference to the data will be
omitted in expressions involving estimates such as g,,.

REMARK. A regression scheme is said to be weakly L ,-consistent for a
process {(X;, Y;)} if, as n tends to infinity,

@) [18u(x: X0, Y0, X, Y,) = 8°(2) 1P dia(x) > O

in probability and strongly L ,-consistent if the convergence is with probability

one. It follows from Chebyshev’s inequality that weak L ,-consistency implies
(D if p > 1.

THEOREM 1. There is no weakly consistent regression scheme for the family
2, of bivariate stationary ergodic processes {(X;, Y )}, such that X;, Y, €
[0, 1].

Adams (1997) has independently established a similar result. Our proof
shows that it is enough to consider processes for which Y, € {0, 1} is binary
valued, and the distribution of X, is equivalent to Lebesgue measure.
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COROLLARY 1. If p > 1, then there is no weakly L ,-consistent regression
scheme for the family of stationary ergodic processes {(X;, Y;)}2, such that
E|Y|P < co.

PROOF. For each p > 1, the given family contains 2,. Thus any L ,-
consistent procedure for the family would be weakly consistent for 9, contra-
dicting Theorem 1. O

Yakowitz and Heyde (1997) have independently considered estimation of
the one-step autoregression function A*(x) = E(X{|X, = x) from ergodic
processes. Using a Markov chain construction, they have shown that there
is no estimation procedure for one-step autoregression that is L,-consistent
for every ergodic processes {X;} such that EX? < co. As autoregression is a
special case of regression, their result also implies Corollary 1 for values of
p <2

2.2. Classification. In classification, the underlying object of interest is a
jointly distributed pair (X, Y) in which the response variable Y takes values
in the two-point set {0, 1}. A classification rule is a map ¢: [0,1] — {0, 1}
that assigns a fixed class label to each possible value of X. Each classification
rule has probability of error P{¢(X) # Y }. The minimum probability of error
over all classification rules is achieved by the Bayes rule

0, ifP(Y=1X=x)<1/2,
1, ifP(Y=1X=x)>1/2

The value of ¢*(x) when P(Y = 1|X = x) = 1/2 does not affect its probability
of error; here such “ties” are broken arbitrarily in favor of class zero. For
a comprehensive treatment of classification and pattern recognition in the
context of i.i.d. processes, we refer the reader to the text of Devroye, Gyorfi
and Lugosi (1996).

Let {(X;,Y;)}2; be a stationary ergodic process taking values in [0, 1] x
{0, 1} such that (X, Y ;) has Bayes rule ¢*(x), and X is distributed according
to u. A sequence of measurable functions

$,:[0,1] x ([0,1] x {0,1})" - {0,1}, n=1,2,...

(3) ¢*(x) = {

is a weakly consistent classification scheme for {(X;, Y )} if
(4) }L{.’)C qgn(x X17Y17---1Xn7Yn)7ég*(x)} -0

in probability as n tends to infinity. A scheme {q,’;n} is weakly consistent for
a family 2 of ergodic processes with binary response variables if it is weakly
consistent for every member of 2.

THEOREM 2. There is no weakly consistent classification scheme for the fam-
ily 2, of bivariate stationary ergodic processes {(X;, Y ;)}:;2; taking values in
[0,1] x {0, 1}.
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REMARK. It follows from (3) that a consistent regression scheme {g,} for
9, can be converted into a consistent classification scheme for 2, simply by
setting ¢, (x) = I{4,(x) > 1/2}. Thus Theorem 2 implies Theorem 1. Separate
arguments are given below in order to simplify the proofs.

The negative results presented here and in the work of Adams (1997) and
Yakowitz and Heyde (1997) lead to several open questions. The following ques-
tion is posed in several of the references cited above: What is the largest family
of bivariate stationary ergodic processes for which there exists a consistent re-
gression scheme?

It seems likely that no unique maximal family exists, but that there are
many such families, no two of which are comparable. To be more concrete,
one may ask the following: Is there a consistent regression procedure for the
family of all stationary a-mixing processes, where we make no assumptions
regarding the rate at which the mixing coefficients go to zero?

Naturally, one may ask analogous questions for other types of mixing. An-
swers to these questions might shed new light on the comparative strengths
of different mixing conditions, and on the necessity of assumptions concerning
mixing rates in order to obtain positive results.

2.3. Method of proof. Let &% and & be two disjoint families of station-
ary ergodic processes taking values in [0, 1], where different processes may
be defined on different underlying probability spaces. The decision problem
for (%), #) is described as follows. At the outset, Player I is given complete
information regarding the joint distributions of each process in %%, U &4. Then
Player II selects a process {W;} € & U & that is unknown to Player I. For
each n > 1, Player I is presented with the initial sequence W, ..., W, of the
process chosen by Player II and asked to decide whether {W,} belongs to %,
or to &.

A decision procedure ¥ is a sequence of measurable functions i ,: [0, 1)" —
{0, 1} for n > 1. Then V¥ is consistent for (£, &) if for each j € {0, 1} and
each {W;} ¢ &,

P{J,(Wy,...,W,)=j}—>1 asn— oo.

Here P is the probability measure governing the process {W;}. One may show
[cf. Barron (1985) and Adams and Nobel (1997)] that if & and & are count-
able, and if any two processes in their union differ in some k-dimensional
distribution, then there is a consistent decision procedure V¥ for (%, &).

For k > 11et m, be the partition of [0, 1) whose cells C; |, = [j27%, (j+1)27F),

j=0,...,2F — 1, are dyadic intervals of order k. Define sets
20k-D_1 2= 1
A= U Cyjs By= U Cyjirn
j=0 Jj=0

containing alternating even and odd cells of 77;,. Note that A,NB;, = & and that
A(A}) = AM(B;) = 1/2, where A denotes Lebesgue measure on [0, 1) equipped
with its Borel subsets #. Let P, = 1 be the uniform distribution on [0, 1),
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and for each s > 12 let P, be the distribution on [0, 1) having density 274,
if s = 2k and density 2131e if s = 2k + 1. (The indexing ensures that £ > 6.)
Let & be the family of all stationary ergodic processes {W;} taking values
in [0, 1) such that W; ~ P,. Let &% be the family of all stationary ergodic
processes {W;} taking values in [0, 1) such that W, ~ P, for some s > 12.

Using a cutting and stacking argument, Adams and Nobel (1997) showed
that there is no weakly consistent density estimation scheme for the family
Zy U . By a routine modification of their argument, one may establish the
following basic result. As the essential features of the proof are unchanged,
we omit the details and refer the interested reader to Theorem 1 of Adams
and Nobel (1997).

THEOREM A. There is no consistent decision procedure for (5, ).

Many consistency results rely, in a direct or indirect way, on information
about the rate at which the average of a function, applied to the given ob-
servations, converges to its expected value. The ergodic theorem ensures the
asymptotic convergence of averages to expected values under very weak condi-
tions. However, without assumptions about the observations, one cannot say,
even for bounded functions, how fast this convergence takes place. This possi-
bility of arbitrarily slow convergence lies behind the failure of any procedure to
distinguish between & and &4'. In particular, if ¥ = {¢s,: n > 1} succeeds in
identifying each process in &%, then one may construct a “misleading” process
{W;} € & that cannot be consistently identified by ¥. When applied to {W},
the procedure decides, infinitely often, that it is viewing different processes
in &' In fact, these processes look more and more like a process in &, but
{W,} reveals its marginal distribution more slowly than ¥ makes decisions.

The proof of Theorem 1 shows that any weakly consistent regression scheme
for the family 2, can be converted into a consistent decision procedure for
(%5, #). This is accomplished in part by converting the observed sequence
W1,..., W, into the initial sequence (X{,Y;),...,(X,,Y,) of a process in
9y. It then follows from Theorem A that there can be no weakly consistent
regression scheme for 9,. Theorem 2 is proved in a similar fashion.

3. Proofs of theorems. Let X be a random variable defined on ([0, 1), £)
that maps each of the intervals [0, 1/2), [1/2, 3/4), [3/4,7/8), ... onto [0, 1)
in an affine fashion,

> 2k -1\ [2F -1 2kl 1
X(W)Z;Jzk-i-l(w— 2k )I{ 2k SLU<W}

For constants o, 3 € R and A C [0, 1), define o + BA = {a+ Bx: x € A}. It
follows from the definition of X that for every A C [0, 1),

X 1A= G (1-277)4+2°UtDA)
(5) =1

1 1 1 3 1
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Let u, be the distribution of X under P, so that u,(A) = P(X 1A). Let A
denote Lebesgue measure on [0, 1). One may readily verify X is uniformly
distributed under P, so that u, = A.

LEMMA 1. For s =0,12,13, ... each of the following hold:
(a) n(A) <2A(A) for each A € %,
(b) p, dominates A, that is, for each A € B, u,(A) =0 implies A\(A) = 0.

PrOOF. Both statements are clear if s = 0, so let s > 12. Note that P,(A) <
2A(A) for every A € % since the density of P, is at most 2. Therefore (5)
implies that

1 1 1 3 1
uo(4) = Py(54) + 25+ 74) + PG4 34 )+

8
1 1 1 3 1
cnn(3a) o} e 2a) wma(2 4 Ba) s

= A(A) + %)\(A) + %/\(A) 4. = 20(A),

which establishes (a). Suppose that s > 12 is even, so that P, has density
21,,. Then since X maps the last interval of A, onto [0, 1), one has u,(A) >
2~ (k=D )(A) for each Borel set A, and (b) follows. A similar inequality holds if
s> 12is odd. O

PrOOF OF THEOREM 1. Define the random variable Y(w)=I{0<w <1/2}
on ([0, 1), #). For each s =0,12,13,..., let g,(x) = P,(Y =1| X = x) be the
conditional expectation of Y given X under P,. By definition, g (x) satisfies

®) [, Y(@dP(w)= [ g(x)du,()

for every set A € &% [cf. Ash (1972)]. Using (6) and (5), one may verify that
[4 8o(x)dx = %)\(A) for every A € %, which implies that gy(x) = % for A-
almost every x € [0, 1).

Fix s > 12 and assume for the moment that s is even, so that u, has density
21,, for some k > 6. As Y is nonnegative, (6) with A = {g, < 0} shows that

g(x) > 0 for u,-almost every x € [0, 1). Since X 'B,,_; C (B, N[0, %)) U [%, 1),

[ gdu, < YdP,+ [ YdP,=P,(B,n[0,})) =0,
B 1 [

B,N[0,1/2) 1/2,1)

and therefore g ,(x) = 0 for u,-almost every x € B;,_;. Lemma 1(b) implies
that g,(x) = 0 for A-almost every x € B;,_;, which in turn implies that

) Mg, =0} > AMB, 1) = 3.

The same inequality can be established when s is odd by reversing the roles
of A, and B;.
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Let 2 = 4 U & and let 2 be the family of processes {(X;, Y;)}2; such
that X; = X(W;) and Y; = Y(W,) for some {W;} € &. Note that each
element of 2 is ergodic and that 2 C 2,. Assume by way of contradiction
that {g,} is a weakly consistent regression scheme for 2. Using {g,}, one
may construct a decision procedure for (%, &) as follows. Given the initial
sequence Wq,..., W, of a process in &, form X, = X(W;) and Y, = Y(W,)
fori=1,...,n, and let

0, ifa{x: g,(x: X1,Yq,...,X,,Y,) <1/4} <1/4,

l,[fn(Wl’ ey Wn) = { 1’ otherwise.

Note that the necessity of considering Lebesgue measure arises from the fact
that the distribution u, of X, is not known when implementing the rule i,.

Let {W;} be an element of & with W; ~ P, and let {(X;,Y;)} be the
process it generates in 2. The weak consistency of {g,,} implies that w {|g, —
8gs| = 1/4} tends to zero in probability as n — oo, and by Lemma 1(b) the
same is true of A{|S, — g,| > 1/4}. Thus when s =0,

Mé, =1/4} < M18, — 1/2| = 1/4} = M8, — 8ol = 1/4},
which tends in probability to zero. On the other hand, when s > 12, the
inequality (7) implies that

which tends in probability to one half. Thus {¢,} is a consistent decision
procedure for (%), &). This contradicts Theorem A and completes the proof. O

PrROOF OF THEOREM 2. Let X be defined on ([0, 1), %) as above and define
Y(w) = I{1/2 < o < 31/32}. Note that for £ > 6, each of the intervals
[1/2,3/4), [3/4,7/8), [7/8,15/16), and [15/16, 31/32) comprising the support
of Y is a disjoint union of two or more cells of ;. For each s = 0,12,13,...
let ny(x) = P4(Y = 1| X = x) be the regression function of (X, Y) under P,
with associated Bayes rule
0, ifn,x)=<1/2,

s(x) = {1, if n,(x) > 1/2.

As P, = pg = A, (6) implies that for every Borel set A,

/ no(x)dx=/ Y(w)dw
A X-1(A)

1 1 15 1
=/\<§+ZA>+"'+)\(E+§A>
1 1 1 1 15
(34555 53) = 3 1A

Therefore ny(x) = 15/32, and ¢;(x) = 0 for A-almost every x € [0, 1).
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For s > 12 each of the intervals [1/2, 3/4), ...,[15/16, 31/32) has the same
probability under P.(-) and A(-), and consequently,

(®) PAY = 1) = [ n.(x) diny(x) = 50,

Suppose that s is even, so that P, = 21, for some k > 6. We seek a subset
of [0,1) whose measure is relatively large, but over which the integral of
1, is relatively small compared to 1/2. It is readily verified that 27"B; =
B, ,.N[0,277) for each r > 1, and that A(CN B,) = %/\(C) if Cemwithl <r.
Consider B;_,. By (5),

s(Bis) = P(X € By5) =) P((1-277)+2 UVBy ,).
j=0

The j = 0 term in the above sum is
1/2 1
Py(Byan[0.1/2)=2 " Iy Iy, dx= [ IsIs,  dx

= (1/2)M(Bj—1) = 1/4.

The j = 1 term is P(B, N[1/2, 1)), which is zero as A, N B, = &. The
J = 2 term can be evaluated as follows:

Py(3/4+ Byy1N[0,1/8)) = Py(Byy1 N[3/4,7/8))
7/8
- 2/3/4 I4,Ip,  dx

=2 Y I{CC A,N[3/4, 7/8)}./101% dx

Cemy,

= ¥ I{C C A, N[3/4,7/8)} - A(C)

Cem,
= (1/2)\([3/4,7/8)) = 1/16.

Similar arguments show that the remaining terms in the sum are 1/32,
1/64, ... and therefore u,(B;_5) = 3/8. In conjunction with (6) these calcula-
tions also show that

[ n@du@= [ Yw)dP,w) = ¥ P(1-2 )42 VB, )
B, , X-1B,_,

k- j=1
= (1/16) + (1/32) = (3/32).

Combining these calculations with equation (8) gives
15/32 = [ n,(x) dpsy(x)

= [ m@du)+ [ 0@ dp()
By By,
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< [, M@ dpg(@) + §uo(B] o) + my{n, > 1/2)

= (13/32) + po{n, > 1/2}.
By the above and Lemma 1(a),

) 1/32 < (1/2)n,{n, > 1/2} < A{n, > 1/2} = A{¢] = 1}.

A similar argument shows that the same inequality holds when s > 12 is odd.

Now we proceed as in the proof of Theorem 1. Let & and 2 be defined as
before using Y (w) = I{w € [1/2,31/32)}, and assume that {¢,} is a weakly
consistent classification scheme for 2. Given the initial sequence W, ..., W,
of a process in &, form X, = X(W,) and Y; = Y(W,), and define

b (W W)= (1), if A .qgn(x: X,,Y,,...,X,,Y,)=1} < 1/64,
, otherwise.

If {W,} € 2, then the consistency of {$,} implies that A{¢, =1}= wold, #

¢4} tends to zero in probability, so that the same is true of ,. If {W;} € &

with W, ~ P, then the consistency of {$,} implies that u{d, # ¢*} — 0

in probability. Consequently /\{(ﬁn # ¢t} — 0 by Lemma 1(a), and J, - 1in

probability by virtue of (9). This completes the proof. O
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