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MINIMUM G2-ABERRATION FOR NONREGULAR FRACTIONAL
FACTORIAL DESIGNS

By Boxin Tang1 and Lih-Yuan Deng

University of Memphis

Deng and Tang proposed generalized resolution and minimum aberra-
tion criteria for comparing and assessing nonregular fractional factorials,
of which Plackett–Burman designs are special cases. A relaxed variant
of generalized aberration is proposed and studied in this paper. We show
that a best design according to this criterion minimizes the contamination
of nonnegligible interactions on the estimation of main effects in the order
of importance given by the hierarchical assumption. The new criterion is
defined through a set of B values, a generalization of word length pattern.
We derive some theoretical results that relate the B values of a nonregu-
lar fractional factorial and those of its complementary design. Application
of this theory to the construction of the best designs according to the new
aberration criterion is discussed. The results in this paper generalize those
in Tang and Wu, which characterize a minimum aberration (regular) 2m−k
design through its complementary design.

1. Introduction. This paper is concerned with orthogonal factorial de-
signs of two levels, denoted by + and −, respectively. As usual, a two-level
factorial design is represented by an n ×m matrix with entries + and −, in
which each row corresponds to a run and each column to a factor. Orthogonal-
ity here implies that for every two columns the four level combinations �++�,
�+−�, �−+� and �−−� occur with the same frequency, and thus an orthogonal
design is in fact an orthogonal array of strength two. When such an orthog-
onal design is used to study m factors, it permits uncorrelated estimation of
all the main effects. Very often, we are also interested in some interaction ef-
fects. In this case, it is useful to distinguish regular factorials from nonregular
factorials.

By regular fractional factorials, we mean those designs which are deter-
mined by defining relations. Such designs are often referred to as 2m−k designs
[Box, Hunter and Hunter (1978)]. A 2m−k design has m factors and 2m−k runs.
The defining relation is the complete set of defining words. A word consists of
letters that are labels of factors. Including I, the all + column, a 2m−k design
has 2k defining words. The number of letters in a word is the length of the
word. The defining relation divides the 2m effects into 2m−k mutually exclu-
sive and exhaustive groups of size 2k, such that effects within a group are
confounded with each other and effects from different groups are mutually
orthogonal.
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The resolution of a regular design is given by the length of the shortest
word in the defining relation [Box and Hunter (1961)]. In a resolution R de-
sign, no effect containing r < R factors is confounded with any effect con-
taining fewer than R − r factors. Fries and Hunter (1980) refined the res-
olution criterion by proposing minimum aberration. For a 2m−k design D,
let Ai�D� be the number of words of length i in the defining relation. Then
W�D� = �A1�D�� � � � �Am�D�� is called the word length pattern. Now for two
designs D1 and D2, let r be the smallest integer such that Ar�D1� 	= Ar�D2�.
ThenD1 has less aberration thanD2 ifAr�D1� < Ar�D2�. If no design has less
aberration than D1, then D1 has minimum aberration. Results on minimum
aberration can be found in Franklin (1984), Chen and Wu (1991), Chen (1992),
Tang and Wu (1996), Chen and Hedayat (1996), Suen, Chen and Wu (1997),
Cheng, Steinberg and Sun (1999) and Mukerjee and Wu (1997).

Recall that in a regular factorial, any two effects are either orthogonal
or fully aliased. However, in a nonregular factorial, there exist two effects
that are partially aliased, meaning that they are neither orthogonal nor fully
aliased; see Definition 2 below. Because of this complex aliasing structure,
nonregular factorials were traditionally not advocated when some interac-
tions are potentially important. However, they have been receiving increasing
attention in the past several years. Hamada and Wu (1992) showed that some
interactions could be detected using nonregular factorials. Lin and
Draper (1992) and Wang and Wu (1995) studied the projection properties of
some small Plackett–Burman (1946) and related designs. Cheng (1995) inves-
tigated the projection properties of two level orthogonal arrays. The methods
for constructing supersaturated designs using Hadamard matrices given in
Lin (1993) and Wu (1993) also rely heavily on partial aliasing. This was ana-
lyzed in some detail by Tang and Wu (1997). A Hadamard matrix H of order
n is an n × n orthogonal matrix of ±1, that is HTH = nE, where E is the
identity matrix.

Deng and Tang (1999) recently proposed generalized resolution and mini-
mum aberration, and their use as systematic criteria to compare and assess
the “goodness” of nonregular factorials was justified from projection and from
minimizing bias. The criteria are aimed to capture the projection properties,
in contrast with Webb’s (1964) resolution, which concerns the estimability of
lower order effects. As argued in Deng and Tang (1999), generalized reso-
lution and minimum aberration provide fruitful criteria for ranking different
designs while Webb’s resolution is mainly useful as a classification rule. Previ-
ously, Box and Tyssedal (1996) introduced the notion of projectivity to quantify
the projection properties. The generalized resolution as shown in Deng and
Tang (1999) offers a more precise description of the projection properties than
does projectivity.

In this paper, a new variant of generalized minimum aberration is pro-
posed and studied. Its definition and statistical justification are the subject of
Section 2. The new variant is defined through a set of B values, a generaliza-
tion of word length pattern. Theoretical results that relate the B values of a
fractional factorial and those of its complementary design are derived in Sec-
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tion 3. In Section 4 we discuss the application of the theoretical results to the
construction of the best nonregular factorials according to the new criterion.

2. Criteria for selecting fractional factorials. We first review in
Section 2.1 the generalized resolution and minimum aberration criteria as
proposed in Deng and Tang (1999). Then in Section 2.2, a new variant of the
generalized aberration criterion is proposed and its statistical justification
given.

2.1. Generalized resolution and minimum aberration. A fractional
factorial D is regarded as a set of m columns D = �d1� � � � � dm� or as an
n × m matrix D = �dij�, depending on our convenience. For any k-subset
s = �c1� � � � � ck� of D with 0 ≤ k ≤m, define

Jk�s� = Jk�c1� � � � � ck� =
∣∣∣∣∣
n∑
i=1

ci1 · · · cik
∣∣∣∣∣�(1)

where, for example, ci1 is the ith component of column c1. Note that in (1)
k = 0 corresponds to s = φ, the empty set. We define J0�φ� = n. It is in
fact meaningful to associate φ with the all +1 column. These Jk�s� values
are instrumental in our development of generalized resolution and minimum
aberration criteria. For this reason, we give the following definition.

Definition 1. The Jk�s� values in (1) are called the J-characteristics of
design D.

The concept of J-characteristics is a natural generalization of defining
relation. For a regular fractional factorial, the defining relation consists of
those subsets s of columns such that Jk�s� = n [for all the other subsets s,
Jk�s� = 0].

Definition 2. A fractional factorial D is said to be regular if Jk�s� = 0 or
n for all s ⊆ D. It is said to be nonregular if there exists an s ⊆ D such that
0 < Jk�s� < n.

Such a formal definition is necessary, for classification according to whether
n is a power of 2 is not very useful. First, we would rather regard a design
of 24 runs given by three replicates of a 27−4 design as regular since it has
the same confounding property as the 27−4 design. Second, four of the five
nonequivalent Hadamard matrices of order 16 [Hall (1961)] should be treated
as nonregular because of their complex aliasing structure. Two Hadamard
matrices are said to be equivalent if one can be obtained from the other by
permuting the rows or columns, or switching the signs for each row or column,
or a combination of the above.

For a design D, let r be the smallest integer such that max�s�=r Jr�s� > 0,
where the maximization is taken over all the subsets s of size r. Then its
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generalized resolution is defined as

R�D� = r+ δ where δ = 1 − max
�s�=r

Jr�s�/n�(2)

Deng and Tang (1999) showed that for a regular design, its generalized res-
olution is the same as its traditional resolution. They provided a projection
justification for the generalized resolution criterion.

Note that Jk�s� is a multiple of 4 for orthogonal designs [Deng and Tang
(1999)]. Let D be a design of size n = 4t. Let fkj be the frequency of k column
combinations that give Jk�s� = 4�t+ 1 − j� for j = 1� � � � � t. The confounding
frequency vector of this design is then defined to be the vector of length �m−2�t,

F�D� = ��f31� � � � � f3t�� �f41� � � � � f4t�� � � � � �fm1� � � � � fmt���
This vector retains certain essential information contained in J-charac-
teristics in the same way as the word length pattern does to the defining
relation for a regular design. When D is regular, fkj = 0 for j ≥ 2 and the
reduced vector �f31� f41� � � � � fm1� is exactly the word length pattern.

Let fl�D1� and fl�D2� be the lth entries in the confounding frequency vec-
tors of two designs D1 and D2, l = 1�2� � � � � �m − 2�t. Let l be the smallest
integer such that fl�D1� 	= fl�D2�. If fl�D1� < fl�D2�, then following Deng
and Tang (1999) we say D1 has less G-aberration than D2. If no design has
less G-aberration than D1, then D1 is said to have minimum G-aberration.
This criterion reduces to the usual minimum aberration for regular factorial
designs.

2.2. A new aberration criterion and its statistical justification. Minimum
G-aberration is very stringent and it attempts to control J-characteristics
in a very strict manner. We now propose a relaxed version of minimum G-
aberration. Let

Bk�D� = ∑
�s�=k

β2
k�s�(3)

where βk�s� = Jk�s�/n are normalized J-characteristics. In terms of the con-
founding frequency vector, we have Bk�D� = ∑t

j=1 fkj�1− �j− 1�/t�2. For two
designs D1 and D2, let r be the smallest integer such that Br�D1� 	= Br�D2�.
Then we say that D1 has less G2-aberration than D2 if Br�D1� < Br�D2�. If
no design has less G2-aberration than D1, then D1 is said to have minimum
G2-aberration. If D is regular, then Bk�D� = Ak�D�, where Ak�D� is the num-
ber of defining words of length k, which implies that minimum G2-aberration
is equivalent to minimum aberration for regular designs. This relaxed variant
has an important practical advantage over the original minimumG-aberration
in that it is computationally much easier, a useful property when we deal with
large designs. One can introduce minimum Ge-aberration for any e > 0 by re-
placing β2

k�s� in (3) by βek�s�. The case e = 2 permits some nice mathematical
treatment, and we therefore concentrate on this case in the paper.
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Some comments on the consistency of the two criteria of minimum G-aber-
ration and minimum G2-aberration are in order. For this purpose, we revisit
Deng and Tang (1998) who studied all the designs taken from Hadamard ma-
trices of order 16 under the former criterion. Applying minimumG2-aberration
to the designs identified in Deng and Tang (1998), we have found that min-
imum G-aberration designs also have minimum G2-aberration. (The reverse
is not true and actually we often have more than one minimum G2-aberration
design. See Section 4 for examples.) In general, we expect that rankings of
a list of designs, based on the two aberration criteria, should tend to be con-
sistent with each other. Nevertheless, there are examples for which the two
criteria produce conflicting results. Consider two designs D1 and D2 in Deng
and Tang (1998), denoted by 9.57 and 9.58 in that paper. The two designs
have confounding frequency vectors F�D1� = ��3�0�18�0�3� �5�0�18�0�4� � � ��
and F�D2� = ��4�0�0�0�3� �14�0�0�0�4� � � ��, respectively, where the subscript
k for k = 3�4 denotes the group of frequencies given by k columns. Clearly,
D1 has less G-aberration than D2. However, one can easily check that D2 has
less G2-aberration than D1. Common sense would suggest that D2 is better
than D1 because D2 only has one more combination of three columns having
J3 = 16 than D1 but D1 has 18 more combinations of three columns having
J3 = 8 thanD2. We add that neither design has minimumG- orG2-aberration
among the 74 designs of 9 factors identified in Deng and Tang (1998). Finally,
we note that the ranking of all these 74 designs given by one criterion is
indeed quite consistent with that given by the other.

Deng and Tang (1999) provided a statistical justification for the general-
ized resolution by showing that a design of the highest generalized resolution
minimizes the contamination of nonnegligible two factor interactions on the
estimation of main effects. In the following, we extend that argument to give
a statistical justification for minimum G2-aberration. We refer to Deng and
Tang [(1999), Section 2.4] for a discussion on a number of ways in which a
design can be judged.

Consider the scenario in which main effects are of primary interest and
that although some interactions may not be negligible, we are not interested in
estimating them. The question is, how does the presence of these nonnegligible
interactions affect the estimation of main effects? To estimate the main effects,
we fit the main effect model Y = β0I+X1β1 + ε, where Y denotes the vector
of n observations, β0 is the grand mean and I the all +1 column, X1 is the
original design matrix D and β1 is the vector of all main effects and ε is the
vector of random errors, assumed to have zero mean and constant variance.
The true model is

Y = β0I+X1β1 +X2β2 + · · · +Xmβm + ε�(4)

where for example β2 is the vector of
(
m
2

)
two-factor interactions and X2 is

the corresponding matrix obtained by taking products for all pairs of columns
of X1 = D. In general, βj in (4) denotes the

(
m
j

)
interactions of order j, and

Xj is given by the collection of products of j columns from X1 = D. The least
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square solution β̂1 = �XT
1X1�−1XT

1Y = n−1XT
1Y from the fitted model has

expectation (under the true model),

E�β̂1� = β1 +C2β2 + · · · +Cmβm�

where Cj = n−1XT
1Xj for j ≥ 2. Note that Cjβj is the contribution of βj

to the bias C2β2 + · · · + Cmβm. Let Cβ be a generic term in the sum C2β2 +
· · · + Cmβm. Since β is unknown, one can minimize Cβ through minimizing
�C�2 = trace�CTC� = ∑

i� j c
2
ij as defined, where C = �cij�. Simple algebra

gives

�Cj�2 = �j+ 1�Bj+1 + �m− j+ 1�Bj−1(5)

for 2 ≤ j ≤m− 1 and �Cm�2 = Bm−1, where Bj’s are defined in (3). Note that
�C2�2 = 3B3 and �C3�2 = 4B4, because B1 = B2 = 0. Also note that �Cm�2

is completely determined by �C2�2� � � � � �Cm−1�2, because from (5) we see that
each of the two vectors ��C2�2� � � � � �Cm−1�2� and �B3� � � � �Bm� uniquely deter-
mines the other. Under the hierarchical assumption that lower order effects
are more important than higher order effects, we should then sequentially
minimize �C2�2� � � � � �Cm−1�2. We have thus established the following result.

Theorem 1. Sequentially minimizing �C2�2� � � � � �Cm−1�2 is equivalent to
sequentially minimizing B3� � � � �Bm. This amounts to saying that minimum
G2-aberration is equivalent to a criterion that sequentially minimizes the con-
tamination of nonnegligible interactions on the estimation of main effects, in
the order of importance given by the hierarchical assumption.

If the original design is regular, then �Cj�2 becomes the number of inter-
actions of order j confounded with the main effects. We obtain the following
corollary of Theorem 1.

Corollary 1. A minimum aberration (regular) design sequentially mini-
mizes the number of interactions of order j confounded with the main effects
in the order given by j = 2� � � � �m.

Cheng, Steinberg and Sun (1999) showed that a minimum aberration design
minimizes the number of two-factor interactions confounded with the main
effects. Clearly, Corollary 1 generalizes their result.

3. Theory of minimum G2-aberration. In this section, we derive a re-
lationship between the B values of a design D and those of its complementary
design D̄. Here complementation is with respect to a saturated design. We
first introduce some more notation and provide a preliminary result so that
we will be better prepared for the general theory.

Let H∗ = �h0� h1� � � � � hn−1� be a Hadamard matrix of order n, where h0, h1,
� � � , hn−1 denote its columns. We assume that H∗ is normalized so that h0 = I,
the all + column. Our saturated design is given by H = �h1� � � � � hn−1�. With-
out loss of generality, let D = �h1� � � � � hm� and D̄ =H \D = �hm+1� � � � � hn−1�.
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Our objective is to establish a relationship between the two sets of Bk values,
�Bk�D�� k = 1�2�3� � � �� and �Bk�D̄�� k = 1�2�3� � � ��, where Bk�D� is given
by (3) and Bk�D̄� is defined similarly. For the theoretical development, it is
convenient to define, by generalizing βk�s� in (3),

βj1 ···jk =
1
n

∣∣∣∣∣
n∑
i=1

hij1
· · ·hijk

∣∣∣∣∣�(6)

for any k columns hj1
� � � � � hjk , not necessarily distinct, in H∗ = �h0� h1� � � � �

hn−1�. The following properties of βj1 ···jk are immediate.

Lemma 1. Let βj1 ···jk be defined in (6). Then we have:

(i) βj1 ···jk is invariant under a permutation of j1� � � � � jk.
(ii) βj1 ···jk = βj1 ···jk−1

if jk = 0.
(iii) βj1 ···jk = βj1 ···jk−2

if jk−1 = jk.
(iv)

∑n−1
jk=0 β

2
j1 ···jk = 1.

Parts (i), (ii) and (iii) are obvious. Part (iv) follows by noting that
�h0/

√
n� � � � � hn−1/

√
n� is an orthonormal basis and considering the unit vector

w = �w1� � � � �wn� with wi = hij1
· · ·hijk−1

/
√
n.

Applying Lemma 1(iv), we first have

∑
I

∑
II

n−1∑
jk+1=0

β2
j1 ···jk jk+1

=
(
m

p

)(
n− 1 −m

k− p

)
�(7)

where
∑
I and

∑
II stand for∑

I

= ∑
1≤j1< ···<jp≤m

and
∑
II

= ∑
m+1≤jp+1< ···<jk≤n−1

�

respectively. Now write

n−1∑
jk+1=0

= ∑
jk+1∈S0

+ ∑
jk+1∈S1

+ ∑
jk+1∈S2

+ ∑
jk+1∈S3

+ ∑
jk+1∈S4

�(8)

where S0 = �0�, S1 = �j1� � � � � jp�, S2 = �1� � � � �m� \ �j1� � � � � jp�, S3 =
�jp+1� � � � � jk�, and S4 = �m+1� � � � � n−1�\�jp+1� � � � � jk�. For p = 0�1� � � � � k,
let

Bkp = ∑
�s∩D�=p

β2
k�s��(9)

where the summation is taken over all the subsets of k columns with p
columns from D and k− p columns from D̄. We therefore have

Bkk = ∑
�s∩D�=k

β2
k�s� = Bk�D� and Bk0 = ∑

�s∩D�=0

β2
k�s� = Bk�D̄��

We are now ready to establish the following identity on the Bkp values.
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Theorem 2. Let Bkp be as defined in (9). Then we have
(
m

p

)(
n− 1 −m

k− p

)
=Bkp + �m− p+ 1�B�k−1��p−1� + �p+ 1�B�k+1��p+1�

+��n− 1 −m� − �k− p� + 1�B�k−1�p

+��k− p� + 1�B�k+1�p�

in which Bkp is defined to be zero if k < p.

Proof. By Lemma 1(ii), we have∑
I

∑
II

∑
jk+1∈S0

β2
j1 ···jkjk+1

= ∑
I

∑
II

β2
j1 ···jk = Bkp�(10)

Parts (i) and (iii) of Lemma 1 show that
∑
I

∑
II

∑
jk+1∈S1

β2
j1 ···jkjk+1

is a sum of
terms β2

k−1�s� with �p− 1� columns of s from D and k− p columns of s from
D̄. However, in the above sum, each column combination with �p−1� columns
from D and k − p columns from D̄ is counted �m − p + 1� times. This can
be seen as follows. For each combination 1 ≤ j′1 < · · · < j′p−1 ≤ m and any
1 ≤ j′ ≤ m with j′ 	= j′1� � � � � j

′
p−1, there corresponds a unique assignment of

�j1� � � � � jp� to �j′� j′1� � � � � j′p−1� satisfying 1 ≤ j1 < · · · < jp ≤m, where jk+1
is always assigned to j′. Since there are �m − p + 1� choices of 1 ≤ j′ ≤ m
with j′ 	= j′1� � � � � j

′
p−1, we obtain

∑
I

∑
II

∑
jk+1∈S1

β2
j1 ···jkjk+1

= �m− p+ 1�B�k−1��p−1��(11)

Now consider
∑
I

∑
II

∑
jk+1∈S2

β2
j1 ···jkjk+1

. It is a sum of terms β2
k+1�s� with

�p + 1� columns of s from D and k − p columns of s from D̄. However, each
column combination with �p+ 1� columns from D and k−p columns from D̄
is counted �p+ 1� times in the sum. This is because for each combination 1 ≤
j′1 < · · · < j′p < j′p+1 ≤m, there are �p+ 1� assignments of �j1� � � � � jp� jk+1�
to �j′1� � � � � j′p� j′p+1� satisfying 1 ≤ j1 < · · · < jp ≤m. We thus obtain

∑
I

∑
II

∑
jk+1∈S2

β2
j1 ···jkjk+1

= �p+ 1�B�k+1��p+1��(12)

Similar arguments show that∑
I

∑
II

∑
jk+1∈S3

β2
j1 ···jkjk+1

= ��n− 1 −m� − �k− p� + 1�B�k−1�p�(13)

∑
I

∑
II

∑
jk+1∈S4

β2
j1 ···jkjk+1

= ��k− p� + 1�B�k+1�p�(14)

The theorem then follows by combining (7), (8), (10), (11), (12), (13) and (14).
✷
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Now let

Tkp=
(
m

p

)(
n− 1 −m

k− p

)
−Bkp − �m− p+ 1�B�k−1��p−1�

−��n− 1 −m� − �k− p� + 1��B�k−1�p�
(15)

Then the identity in Theorem 2 can be rewritten as

�p+ 1�B�k+1��p+1� + �k− p+ 1�B�k+1�p = Tkp

with Tkp given in (15). Note that Tkp is determined by Bk′p, with 0 ≤ p ≤ k′

and k′ ≤ k.

Theorem 3. Given the B values of design D̄, �B3�D̄��B4�D̄�� � � �� = �B30�
B40� � � ��, the B�k+1��p+1� values with 0 ≤ p ≤ k for k = 2�3� � � �, can be deter-
mined via

B�k+1��p+1� = �−1�p+1
(
k+ 1
p+ 1

)
B�k+1�0 +T∗

kp for p = 0�1� � � � � k�(16)

where T∗
kp = �p+1�−1

(
k
p

)∑p
j=0�−1�p+jTkj/

(
k
j

)
depends on Bk′p values with k′ ≤

k and 0 ≤ p ≤ k′. For p = k in (16) we have B�k+1��k+1� = �−1�k+1B�k+1�0+T∗
kk.

Applying Theorem 3 successively, we see thatB�k+1��k+1� can be expressed as
a constant plus a linear combination of �B30�B40� � � � �B�k+1�0�. Furthermore,
we can prove that the two leading coefficients have the same value �−1�k+1.
These are summarized in Theorem 4.

Theorem 4. Let Bkp be as defined in (9). Then we have B�k+1��k+1� = a0 +∑k+1
j=3 ajBj0� or equivalently

Bk+1�D� = a0 +
k+1∑
j=3

ajBj�D̄��

where a0� a3� � � � � ak+1 depend on n, m and k. Moreover, we have ak+1 = ak =
�−1�k+1.

Theorems 3 and 4 combine to provide a relationship between the B values,
�B3�D��B4�D�� � � ��, of design D and the B values, �B3�D̄��B4�D̄�� � � ��, of the
complementary design D̄. The corresponding results for regular factorials are
given in Tang and Wu (1996). Theorems 3 and 4 are applicable to both regular
and nonregular factorials. Based on Theorem 2, Theorems 3 and 4 can be
proved by following the same arguments as in Tang and Wu (1996). Suen, Chen
and Wu [(1997), Corollary 2] obtained some more comprehensive results for
two-level regular designs than Tang and Wu (1996) using the theory of linear
codes. Since the results of this paper are formally identical to those in Tang
and Wu (1996), we conclude that Corollary 2 of Suen, Chen and Wu (1997)
is also applicable to nonregular designs. It is possible to prove this result



MINIMUM G2-ABERRATION 1923

directly from the identity in Theorem 2 of this paper. The theory of nonlinear
codes does not seem to help here. As far as we know, there seem to be no
counterparts for B values introduced here in the theory of nonlinear codes.

4. Application. In this section, we discuss the application of the theo-
retical results in searching for minimum G2-aberration designs. We first note
that a minimum G2-aberration design is defined, as given in Section 2, within
the whole class of two-level orthogonal designs. Construction of minimum G2-
aberration designs in this strong sense appears to be a very difficult problem.
So far, we are able to do so for m factors with m ≤ 5. We are in the process
of writing up the results and the paper will be submitted elsewhere. We con-
sider in this paper constructing minimum G2-aberration designs within the
class of orthogonal designs from Hadamard matrices. This is not as restric-
tive as it seems, at least for practical applications. Orthogonal designs from
Hadamard matrices are rich and readily available and almost all orthogonal
designs used in practical experiments or for other purposes are indeed from
Hadamard matrices.

A design having minimum G2-aberration within the class of orthogonal
designs from Hadamard matrices may not have minimum G2-aberration with-
in the whole class of orthogonal designs. This is because it is not true that
every orthogonal design can be embedded into a Hadamard matrix. Vijayan
(1976) showed that any n ×m′ Hadamard submatrix can be embedded into
a Hadamard matrix of order n if m′ ≥ n − 4. By a Hadamard submatrix,
we mean a matrix of +1 and −1 such that its m′ columns are orthogonal.
An orthogonal design of m columns together with the all +1 column gives
a Hadamard submatrix of m + 1 columns, and thus can be embedded into a
Hadamard matrix of order n if m + 1 ≥ n − 4. Therefore, we conclude that
for m ≥ n − 5, a design having minimum G2-aberration within the class of
orthogonal designs from the complete set of nonequivalent Hadamard matrices
(to be discussed below) also has minimum G2-aberration within the whole
class of orthogonal designs.

Another complication is that for given order n, several nonequivalent Hada-
mard matrices may exist. It is known that a Hadamard matrix of order n
is unique up to equivalence for n ≤ 12. However, there are precisely five
nonequivalent Hadamard matrices of order 16 [Hall (1961)] and the corre-
sponding numbers for orders 20 and 24 are 3 [Hall (1965)] and 60 [Kimura
(1989)], respectively. For order 28, there are precisely 487 nonequivalent Hada-
mard matrices [Spence (1995)]. This implies that it is impossible to consider
all nonequivalent Hadamard matrices for n ≥ 32, although one can do so for
n ≤ 28. One way out of this dilemma is to consider only several nonequivalent
Hadamard matrices given by familiar construction methods such as those of
Paley (1933) and Williamson (1944).

In the following, we discuss how to find minimum G2-aberration designs
from a specific Hadamard matrix of order n. For m ≤ n/2, a direct search
can be carried out. The number of designs under consideration is

(
n−1
m

)
. For

�n + 2�/2 ≤ m ≤ n − 1, we can first search for the “worst” designs by se-
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quentially maximizing B3�−B4�B5�−B6 and so on. By Theorem 4 minimum
G2-aberration designs can then be obtained by taking the complementary de-
signs of the “worst” designs. The number of designs under consideration is
also

(
n−1
m

) = (
n−1
m̄

)
where m̄ = n − 1 −m. In particular, we have the following

simple results.

Lemma 2. (i) if m̄ = n−m−1 = �D̄� = 1�2, then any designD has minimum
G2-aberration and (ii) if m̄ = �D̄� = 3 and J3�D̄� is maximized, then D has
minimum G2-aberration.

We now look at some computational issues. For a fixed design, calculation
of the whole vector �B3�B4� � � � �Bm� may be cumbersome for large m since
it involves calculation of 2m − 1 −m − (

m
2

)
J-characteristics. The amount of

computation can be greatly reduced if we use the shortened vector �B3�B4�B5�
to compare different designs. In this case, the number of J-characteristics to
be evaluated is

(
m
3

)+(
m
4

)+(
m
5

)
. The idea of using �B3�B4�B5� as a surrogate of

�B3�B4� � � � �Bm� to compare designs is in line with that of MA-5 classifer in
Deng and Tang (1998). For details on MA-5 classifer, see Deng and Tang (1998).

For �n + 2�/2 ≤ m ≤ n − 1 and thus m > m̄ = n − 1 −m, the method of
complementing brings the number of J-characteristics to be evaluated from
2m − 1 −m − (

m
2

)
down to 2m̄ − 1 − m̄ − (

m̄
2

)
if �B3� � � � �Bm� is used and from(

m
3

)+ (
m
4

)+ (
m
5

)
down to

(
m̄
3

)+ (
m̄
4

)+ (
m̄
5

)
if �B3�B4�B5� is used.

Even though computation can be reduced by using �B3�B4�B5�, we will still
need to compare

(
n−1
m

)
designs if a complete search is desired. The combina-

torial number
(
n−1
m

)
can become exceedingly large and for example for n = 24

and m = 12, it equals 1,352,078. In future research we plan to develop an
efficient computational algorithm without a complete search of all the

(
n−1
m

)

Table 1

The third Hadamard matrix of order 16 given in Hall (1961), where the all +1 column is omitted

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
+ + + + + + + + + + + + + + +
+ + + + + + + − − − − − − − −
+ + + − − − − + + + + − − − −
+ + + − − − − − − − − + + + +
+ − − + + − − + + − − + + − −
+ − − + + − − − − + + − − + +
+ − − − − + + + + − − − − + +
+ − − − − + + − − + + + + − −
− + − + − + − + − + − + − + −
− + − + − + − − + − + − + − +
− + − − + − + + − − + + − − +
− + − − + − + − + + − − + + −
− − + + − − + + − − + − + + −
− − + + − − + − + + − + − − +
− − + − + + − + − + − − + − +
− − + − + + − − + − + + − + −
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Table 2

Minimum G2-aberration designs of 16 runs form = 3�4� � � � �14 factors, constructed from the third
Hadamard matrix of order 16 given in Table 1. If there are more than one minimum G2-aberration

design for a given m, the design given here also has minimum G-aberration

m B3 B4 B5 Design columns
3 0 — — �8 9 10�
4 0 0 — �5 12 14 15�
5 0 0 1 �3 4 6 14 15�
6 0 3 0 �4 5 6 7 12 13�
7 0 7 0 �8 9 10 11 12 13 14�
8 0 14 0 �8 9 10 11 12 13 14 15�
9 4 14 8 �2 8 9 10 11 12 13 14 15�

10 8 18 16 �2 3 6 7 8 9 10 11 12 13�
11 12 26 28 �2 3 4 5 8 9 10 12 13 14 15�
12 16 39 48 �2 3 4 5 8 9 10 11 12 13 14 15�
13 22 55 72 �2 3 4 5 6 8 9 10 11 12 13 14 15�
14 28 77 112 �2 3 4 5 6 7 8 9 10 11 12 13 14 15�

designs. The idea of forward selection and backward elimination from regres-
sion analysis might be useful in this regard.

We conclude the paper with a complete solution to the problem of finding
minimum G2-aberration from the third Hadamard matrix of order 16 given
in Hall (1961). See Table 1 for a display of the matrix.

Based on �B3�B4�B5�, we have obtained minimum G2-aberration designs
for 3 ≤m ≤ 15 and the results are given in Table 2.

We want to mention that, in general, minimum G2-aberration designs are
not unique for given n and m. For example, all the designs of 16 runs and 14
factors have minimum G2-aberration, and the design given in Table 2 also has
minimum G-aberration. Complete ranking and classification of 16 run designs
by considering all the five nonequivalent Hadamard matrices of order 16 is
contained in Deng and Tang (1998).
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