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BAYESIAN ANALYSIS OF MIXTURE MODELS WITH AN
UNKNOWN NUMBER OF COMPONENTS—AN

ALTERNATIVE TO REVERSIBLE JUMP METHODS1

By Matthew Stephens

University of Oxford

Richardson and Green present a method of performing a Bayesian
analysis of data from a finite mixture distribution with an unknown num-
ber of components. Their method is a Markov Chain Monte Carlo (MCMC)
approach, which makes use of the “reversible jump” methodology described
by Green. We describe an alternative MCMC method which views the pa-
rameters of the model as a (marked) point process, extending methods
suggested by Ripley to create a Markov birth-death process with an appro-
priate stationary distribution. Our method is easy to implement, even in
the case of data in more than one dimension, and we illustrate it on both
univariate and bivariate data. There appears to be considerable potential
for applying these ideas to other contexts, as an alternative to more gen-
eral reversible jump methods, and we conclude with a brief discussion of
how this might be achieved.

1. Introduction. Finite mixture models are typically used to model data
where each observation is assumed to have arisen from one of k groups, each
group being suitably modeled by a density from some parametric family. The
density of each group is referred to as a component of the mixture, and is
weighted by the relative frequency of the group in the population. This model
provides a framework by which observations may be clustered together into
groups for discrimination or classification [see, e.g., McLachlan and Basford
(1988)]. For a comprehensive list of such applications, see Titterington, Smith
and Makov (1985). Mixture models also provide a convenient and flexible fam-
ily of distributions for estimating or approximating distributions which are not
well modeled by any standard parametric family, and provide a parametric
alternative to non-parametric methods of density estimation, such as kernel
density estimation. See, for example, Roeder (1990), West (1993) and Priebe
(1994).
This paper is principally concerned with the analysis of mixture models in

which the number of components k is unknown. In applications where the
components have a physical interpretation, inference for k may be of interest
in itself. Where the mixture model is being used purely as a parametric alter-
native to non-parametric density estimation, the value of k chosen affects the
flexibility of the model and thus the smoothness of the resulting density esti-
mate. Inference for k may then be seen as analogous to bandwidth selection
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in kernel density estimation. Procedures which allow k to vary may therefore
be of interest whether or not k has a physical interpretation.
Inference for k may be seen as a specific example of the very common

problem of choosing a model from a given set of competing models. Taking
a Bayesian approach to this problem, as we do here, has the advantage that
it provides not only a way of selecting a single “best” model, but also a co-
herent way of combining results over different models. In the mixture model
context this might include performing density estimation by taking an appro-
priate average of density estimates obtained using different values of k. While
model choice (and model averaging) within the Bayesian framework are both
theoretically straightforward, they often provide a computational challenge,
particularly when (as here) the competing models are of differing dimension.
The use of Markov Chain Monte Carlo (MCMC) methods [see for an introduc-
tion Gilks, Richardson and Spiegelhalter (1996)] to perform Bayesian analysis
is now very common, but MCMC methods which are able to jump between
models of differing dimension have become popular only recently, in particu-
lar through the use of the “reversible jump” methodology developed by Green
(1995). Reversible jump methods allow the construction of an ergodic Markov
chain with the joint posterior distribution of the parameters and the model
as its stationary distribution. Moves between models are achieved by periodi-
cally proposing a move to a different model, and rejecting it with appropriate
probability to ensure that the chain possesses the required stationary distri-
bution. Ideally these proposed moves are designed to have a high probability
of acceptance so that the algorithm explores the different models adequately,
though this is not always easy to achieve in practice. As usual in MCMC
methods, quantities of interest may be estimated by forming sample path av-
erages over simulated realizations of this Markov chain. The reversible jump
methodology has now been applied to a wide range of model choice problems,
including change point analysis [Green (1995)], Quantitative Trait Locus anal-
ysis [Stephens and Fisch (1998)] and mixture models [Richardson and Green
(1997)].
In this paper we present an alternative method of constructing an ergodic

Markov chain with appropriate stationary distribution, when the number of
components k is considered unknown. The method is based on the construc-
tion of a continuous time Markov birth-death process as described by Preston
(1976) with the appropriate stationary distribution. MCMC methods based
on these (and related) processes have been used extensively in the point pro-
cess literature to simulate realizations of point processes which are difficult
to simulate from directly; an idea which originated with Kelly and Ripley
(1976) and Ripley (1977) [see also Glotzl (1981), Stoyan, Kendall and Mecke
(1987)]. These realizations can then be used for significance testing [as in Rip-
ley (1977)], or likelihood inference for the parameters of the model [see, e.g.,
Geyer and Møller (1994) and references therein]. More recently such MCMC
methods have been used to perform Bayesian inference for the parameters of
a point process model, where the parameters themselves are (modeled by) a
point process [see, e.g., Baddeley and van Lieshout (1993), Lawson (1996)].
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In order to apply these MCMC methods to the mixture model context, we
view the parameters of the model as a (marked) point process, with each
point representing a component of the mixture. The MCMC scheme allows
the number of components to vary by allowing new components to be “born”
and existing components to “die.” These births and deaths occur in continu-
ous time, and the relative rates at which they occur determine the stationary
distribution of the process. The relationship between these rates and the sta-
tionary distribution is formalized in Section 3 (Theorem 3.1). We then use this
to construct an easily simulated process, in which births occur at a constant
rate from the prior, and deaths occur at a rate which is very low for compo-
nents which are critical in explaining the data, and very high for components
which do not help explain the data. The accept-reject mechanism of reversible
jump is thus replaced by a mechanism which allows both “good” and “bad”
births to occur, but reverses bad births very quickly through a very quick
death.
Our method is illustrated in Section 4, by fitting mixtures of normal (and t)

distributions to univariate and bivariate data. We found that the posterior dis-
tribution of the number of components for a given data set typically depends
heavily on modeling assumptions such as the form of the distribution for the
components (normals or ts) and the priors used for the parameters of these
distributions. In contrast, predictive density estimates tend to be relatively in-
sensitive to these modeling assumptions. Our method appears to have similar
computational expense to that of Richardson and Green (1997) in the context
of mixtures of univariate normal distributions, though direct comparisons are
difficult. Both methods certainly give computationally tractable solutions to
the problem, with rough results available in a matter of minutes. However,
our approach appears the more natural and elegant in this context, exploiting
the natural nested structure of the models and exchangeability of the mixture
components. As a result we remove the need for calculation of a complicated
Jacobian, reducing the potential for making algebraic errors. In addition, the
changes necessary to explore alternative models for the mixture components
(replacing normals with t distributions, e.g.) are trivial.
We conclude with a discussion of the potential for extending the birth-death

methodology (BDMCMC) to other contexts, as an alternative to more general
reversible jump (RJMCMC) methods. One interpretation of BDMCMC is as
a continuous-time version of RJMCMC, with a limit on the types of moves
which are permitted in order to simplify implementation. BDMCMC is eas-
ily applied to any context where the parameters of interest may be viewed
as a point process, and where the likelihood of these parameters may be
explicitly calculated (this latter rules out Hidden Markov Models for exam-
ple). We consider briefly some examples (a multiple change-point problem,
and variable selection in regression models) where these conditions are ful-
filled, and discuss the difficulties of designing suitable birth-death moves.
Where such moves are sufficient to achieve adequate mixing BDMCMC pro-
vides an attractive easily-implemented alternative to more general RJMCMC
schemes.
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2. Bayesian methods for mixtures.

2.1. Notation and missing data formulation. We consider a finite mixture
model in which data xn = x1� � � � � xn are assumed to be independent observa-
tions from a mixture density with k (k possibly unknown but finite) compo-
nents,

p�x ����� η� = π1f�x�φ1� η� + · · · + πkf�x�φk�η��(1)

where � = �π1� � � � � πk� are the mixture proportions which are constrained to
be non-negative and sum to unity; � = �φ1� � � � � φk� are the (possibly vector)
component specific parameters, with φi being specific to component i; and η
is a (possibly vector) common parameter which is common to all components.
Throughout this paper p�· � ·� will be used to denote both conditional densities
and distributions.
It is convenient to introduce the missing data formulation of the model, in

which each observation xj is assumed to arise from a specific but unknown
component zj of the mixture. The model (1) can be written in terms of the
missing data, with z1� � � � � zn assumed to be realizations of independent and
identically distributed discrete random variables Z1� � � � �Zn with probability
mass function

Pr�Zj = i ����� η� = πi �j = 1� � � � � n� i = 1� � � � � k��(2)

Conditional on the Zs, x1� � � � � xn are assumed to be independent observations
from the densities

p�xj �Zj = i����� η� = f�xj�φi�η� �j = 1� � � � � n��(3)

Integrating out the missing data Z1� � � � �Zn then yields the model (1).

2.2. Hierarchical model. We assume a hierarchical model for the prior on
the parameters �k����� η�, with �π1� φ1�� � � � � �πk�φk� being exchangeable.
[For an alternative approach see Escobar and West (1995) who use a prior
structure based on the Dirichlet process.] Specifically we assume that the
prior distribution for �k����� given hyperparameters ω, and common compo-
nent parameters η, has Radon–Nikodym derivative (“density”) r�k���� �ω�η�
with respect to an underlying symmetric measure � (defined below). For no-
tational convenience we drop for the rest of the paper the explicit dependence
of r�· �ω�η� on ω and η. To ensure exchangeability we require that, for any
given k, r�·� is invariant under relabeling of the components, in that

r
(
k� �π1� � � � � πk�� �φ1� � � � � φk�

) = r
(
k� �πε�1�� � � � � πε�k��� �φε�1�� � � � � φε�k��

)
(4)

for all permutations ε of 1� � � � � k.
In order to define the symmetric measure � we introduce some notation.

Let �k−1 denote the Uniform distribution on the simplex

� k−1 = {�π1� � � � � πk−1� 	 π1� � � � � πk−1 ≥ 0 ∩ π1 + · · · + πk−1 ≤ 1
}
�
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Let � denote the parameter space for the φi (so φi ∈ � for all i), let ν be some
measure on �, and let νk be the induced product measure on �k. (For most
of this paper � will be Rm for some m, and ν can be assumed to be Lebesgue
measure.) Now let �k be the product measure νk ×�k−1 on �k ×� k−1, and
finally define � to be the induced measure on the disjoint union

⋃∞
k=1��k ×

� k−1).
A special case. Given ω and η, let k have prior probability mass distri-

bution p�k �ω�η�. Suppose � and � are a priori independent given k�ω and
η, with φ1� � � � � φk being independent and identically distributed from a dis-
tribution with density p̃�φ �ω�η� with respect to ν, and � having a uniform
distribution on the simplex � k−1. Then

r�k����� = p�k �ω�η�p̃�φ1 �ω�η� · · · p̃�φk �ω�η��(5)

Note that this special case includes the specific models used by Diebolt and
Robert (1994) and Richardson and Green (1997) in the context of mixtures of
univariate normal distributions.

2.3. Bayesian inference via MCMC. Given data xn, Bayesian inference
may be performed using MCMC methods, which involve the construction of
a Markov chain ���t�� with the posterior distribution p�θ �xn� of the param-
eters θ = �k����� η� as its stationary distribution. Given suitable regularity
conditions [see, e.g., Tierney (1996), page 65], quantities of interest may be
consistently estimated by sample path averages. For example, if θ�0�� θ�1�� � � �
is a sampled realization of such a Markov chain, then inference for k may be
based on an estimate of the marginal posterior distribution

Pr�k = i �xn� = lim
N→∞

1
N
#�t 	 k�t� = i�

≈ 1
N
#�t 	 k�t� = i� (N large),

(6)

and similarly the predictive density for a future observation may be estimated
by

p�xn+1 �xn� ≈ 1
N

N∑
t=1

p�xn+1 � θ�t���(7)

More details, including details of the construction of a suitable Markov
chain when k is fixed, can be found in the paper by Diebolt and Robert (1994),
chapters of the books by Robert (1994) and Gelman et al. (1995), and the
article by Robert (1996). Richardson and Green (1997) describe the construc-
tion of a suitable Markov chain when k is allowed to vary using the reversible
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jump methodology developed by Green (1995). We now describe an alternative
approach.

3. Constructing a Markov chain via simulation of point processes.

3.1. The parameters as a point process. Our strategy is to view each com-
ponent of the mixture as a point in parameter space, and adapt theory from
the simulation of point processes to help construct a Markov chain with the
posterior distribution of the parameters as its stationary distribution. Since,
for given k, the prior distribution for ����� defined at (4) does not depend on
the labeling of the components, and the likelihood

L�k����� η� = p�xn �k����� η�

=
n∏

j=1

[
π1f�xj�φ1� η� + · · · + πkf�xj�φk�η�

](8)

is also invariant under permutations of the components labels, the posterior
distribution

p�k���� �xn�ω�η� ∝ L�k����� η�r�k�����(9)

will be similarly invariant. Fixing ω and η, we can thus ignore the labeling of
the components and can consider any set of k parameter values

{�π1� φ1�� � � � �
�πk�φk�

}
as a set of k points in �0�1�×�, with the constraint that π1+· · ·+πk =

1 (see, e.g., Figure 1a.) The posterior distribution p�k���� �xn�ω�η� can then
be seen as a (suitably constrained) distribution of points in �0�1�×�, or in other
words a point process on �0�1�×�. Equivalently the posterior distribution can
be seen as amarked point process in�, with each point φi having an associated
mark πi ∈ �0�1�, with the marks being constrained to sum to unity.
This view of the parameters as a marked point process [which is also out-

lined by Dawid (1997)] allows us to use methods similar to those in Ripley
(1977) to construct a continuous time Markov birth-death process with sta-
tionary distribution p�k���� �xn�ω�η�, with ω and η kept fixed. Details of
this construction are given in the next section. In Section 3.4 we combine
this process with standard (fixed-dimension) MCMC update steps which al-
low ω and η to vary, to create a Markov chain with stationary distribution
p�k�����ω�η �xn�.

3.2. Birth-death processes for the components of a mixture model. Let �k

denote the parameter space of the mixture model with k components, ignoring
the labeling of the components, and let� = ⋃

k≥1�k. We will use set notation to
refer to members of �, writing y = {�π1� φ1�� � � � � �πk�φk�

} ∈ �k to represent
the parameters of the model (1) keeping η fixed, and so we may write �πi�φi� ∈
y for i = 1� � � � � k. Note that (for given ω and η) the invariance of L�·� and
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Fig. 1. Illustration of births and deaths as defined by (10) and (11). (a) Representation of
0�2� �−1�1�+0�6� �1�2�+0�2� �1�3� as a set of points in parameter space.� �µ�σ2� denotes the
univariate normal distribution with mean µ and variance σ2. (b) Resulting model after death of
component 0�6� �1�2� in (a). (c) Resulting model after birth of component at 0�2� �0�5�2� in (b).

r�·� under permutation of the component labels allows us to define L�y� and
r�y� in an obvious way.
We define births and deaths on � as follows:

Births: If at time t our process is at y = {�π1� φ1�� � � � � �πk�φk�
} ∈ �k and a

birth is said to occur at �π�φ� ∈ �0�1� ×�, then the process jumps to

y ∪ �π�φ� 	=
{(
π1�1− π�� φ1

)
� � � � �

(
πk�1− π�� φk

)
�
(
π�φ

)} ∈ �k+1�(10)

Deaths: If at time t our process is at y = {�π1� φ1�� � � � � �πk�φk�
} ∈ �k and a

death is said to occur at �πi�φi� ∈ y, then the process jumps to

y\�πi�φi� 	=
{(

π1

1− πi

�φ1

)
� � � � �

(
πi−1
1− πi

�φi−1

)
�

(
πi+1
1− πi

�φi+1

)
� � � � �

(
πk

1− πi

�φk

)}
∈ �k−1�

(11)

Thus a birth increases the number of components by one, while a death de-
creases the number of components by one. These definitions have been chosen
so that births and deaths are inverse operations to each other, and the con-
straint π1 + · · · + πk = 1 remains satisfied after a birth or death; they are
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illustrated in Figure 1. With births and deaths thus defined, we consider the
following continuous time Markov birth-death process:
When the process is at y ∈ �k, let births and deaths occur as independent

Poisson processes as follows:

Births: Births occur at overall rate β�y�, and when a birth occurs it occurs
at a point �π�φ� ∈ �0�1� ×�, chosen according to density b�y� �π�φ�� with
respect to the product measure �1× ν, where �1 is the uniform (Lebesgue)
measure on �0�1�.

Deaths: When the process is at y = {�π1� φ1�� � � � � �πk�φk�
}
, each point �πj�φj�

dies independently of the others as a Poisson process with rate

δj�y� = d
(
y\�πj�φj�� �πj�φj�

)
(12)

for some d 	 �× ��0�1� ×�� → R+. The overall death rate is then given by
δ�y� = ∑

j δj�y�.
The time to the next birth/death event is then exponentially distributed,

with mean 1/
(
β�y�+δ�y�), and it will be a birth with probability β�y�/�β�y�+

δ�y��, and a death of component j with probability δj�y�/�β�y� + δ�y��. In
order to ensure that the birth-death process doesn’t jump to an area with zero
“density” we impose the following conditions on b and d:

b
(
y� �π�φ�) = 0 whenever r

(
y ∪ �π�φ�)L(

y ∪ �π�φ�) = 0�(13)

d
(
y� �π�φ�) = 0 whenever r�y�L�y� = 0�(14)

The following theorem then gives sufficient conditions on b and d for this
process to have stationary distribution p�k���� �xn�ω�η�.

Theorem 3.1. Assuming the general hierarchical prior on �k����� given
in Section 2.2, and keeping ω and η fixed, the birth-death process defined above
has stationary distribution p�k���� �xn�ω�η�, provided b and d satisfy

�k+ 1�d(y� �π�φ�)r(y ∪ �π�φ�)L(
y ∪ �π�φ�)k�1− π�k−1

= β�y�b(y� �π�φ�)r�y�L�y�
(15)

for all y ∈ �k and �π�φ� ∈ �0�1� ×�.

Proof. The proof is deferred to the Appendix.

3.3. Naive algorithm for a special case. We now consider the special case
described at (5), where

r�y� = p�k �ω�η�p̃�φ1 �ω�η� · · · p̃�φk �ω�η��(16)

Suppose that we can simulate from p̃�· �ω�η�, and consider the process
obtained by setting β�y� = λb (a constant), with

b�y� �π�φ�� = k�1− π�k−1 · p̃�φ �ω�η��
Applying Theorem 3.1 we find that the process has the correct stationary
distribution, provided that when the process is at y = ��π1� φ1�� � � � � �πk�φk��,
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each point �πj�φj� dies independently of the others as a Poisson process with
rate

d
(
y\�πj�φj�� �πj�φj�

)=λb
L
(
y\�πj�φj�

)
L�y�

p�k−1 �ω�η�
kp�k �ω�η� �j = 1� � � � � k��(17)

Algorithm 3.1 below simulates this process. We note that the algorithm is
very straightforward to implement, requiring only the ability to simulate from
p̃�· �ω�η�, and to calculate the model likelihood for any given model. The main
computational burden is in calculating the likelihood, and it is important that
calculations of densities are stored and reused where possible.

Algorithm 3.1. To simulate a process with appropriate stationary distri-
bution.
Starting with initial model y = {�π1� φ1�� � � � � �πk�φk�

} ∈ �k, iterate the
following steps:

1. Let the birth rate β�y� = λb.
2. Calculate the death rate for each component, the death rate for component

j being given by (17):

δj�y� = λb
L
(
y\�πj�φj�

)
L�y�

p�k− 1 �ω�η�
kp�k �ω�η� �j = 1� � � � � k��(18)

3. Calculate the total death rate δ�y� = ∑
j δj�y�.

4. Simulate the time to the next jump from an exponential distribution with
mean 1/

(
β�y� + δ�y�).

5. Simulate the type of jump: birth or death with respective probabilities

Pr�birth� = β�y�
β�y� + δ�y� � Pr�death� = δ�y�

β�y� + δ�y� �

6. Adjust y to reflect the birth or death [as defined by (10) and (11)]:

Birth: Simulate the point �π�φ� at which a birth takes place from the den-
sity b

(
y� �π�φ�) = k�1 − π�k−1p̃�φ �ω�η� by simulating π and φ indepen-

dently from densities k�1−π�k−1 and p̃�φ �ω�η� respectively. We note that
the former is the Beta distribution with parameters �1� k�, which is easily
simulated from by simulating Y1 ∼ &�1�1� and Y2 ∼ &�k�1� and setting
π = Y1/�Y1 + Y2�, where &�n� λ� denotes the Gamma distribution with
mean n/λ.

Death: Select a component to die: �πj�φj� ∈ y being selected with probability
δj�y�/δ�y� for j = 1� � � � � k�

7. Return to step 2.

Remark 3.2. Algorithm 3.1 seems rather naive in that births occur (in
some sense) from the prior, which may lead to many births of components
which do not help to explain the data. Such components will have a high
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death rate (17) and so will die very quickly, which is inefficient in the same
way as an accept-reject simulation algorithm is inefficient if many samples
are rejected. However, in the examples we consider in the next section this
naive algorithm performs reasonably well, and so we have not considered any
cleverer choices of b

(
y� �π�φ�) which may allow births to occur in a less naive

way (see Section 5.2 for further discussion).

3.4. Constructing a Markov Chain. If we fix ω and η then Algorithm 3.1
simulates a birth-death process with stationary distribution p�k���� �xn�
ω�η�. This can be combined with MCMC update steps which allow ω and
η to vary to create a Markov chain with stationary distribution p�k�����ω�
η �xn�. By augmenting the data xn by the missing data zn = �z1� � � � � zn� de-
scribed in Section 2.1, and assuming the existence and use of the necessary
conjugate priors, we can use Gibbs sampling steps to achieve this as in Algo-
rithm 3.2 below; Metropolis–Hastings updates could also be used, removing
the need to introduce the missing data or use conjugate priors.

Algorithm 3.2. To simulate a Markov chain with appropriate stationary
distribution.
Given the state ��t� = θ�t� at time t, simulate a value for ��t+1� = θ�t+1� as

follows:

Step 1. Sample �k�t�′���t�′���t�′ � by running the birth-death process for a fixed
time t0, starting from �k�t����t����t�� and fixing �ω�η� to be �ω�t�� η�t��.
Set k�t+1� = k�t�′ .

Step 2. Sample �zn��t+1� from p�zn �k�t+1����t�′���t�′� η�t��ω�t�� xn��
Step 3. Sample η�t+1��ω�t+1� from p�η�ω �k�t+1����t�′���t�′� xn� zn�.
Step 4. Sample ��t+1����t+1� from p���� �k�t+1�� η�t+1��ω�t+1�� xn� zn�.

Provided the full conditional posterior distributions for each parameter give
support to all parts of the parameter space, this will define an irreducible
Markov chain with stationary distribution p�k�����ω�η� zn �xn� suitable for
estimating quantities of interest by forming sample path averages as in (6)
and (7). The proof is straightforward and is omitted here [see Stephens (1997),
page 84]. Step 1 of the algorithm involves movements between different values
of k by allowing new components to be “born,” and existing components to “die.”
Steps 2, 3 and 4 allow the parameters to vary with k kept fixed. Step 4 is not
strictly necessary to ensure convergence of the Markov chain to the correct
stationary distribution, but is included to improve mixing. Note that (as usual
in Gibbs sampling) the algorithm remains valid if any or all of ω�η and � are
partitioned into separate components which are updated one at a time by a
Gibbs sampling step, as will be the case in our examples.

4. Examples. Our examples demonstrate the use of Algorithm 3.2 to per-
form inference in the context of both univariate and bivariate data xn, which
are assumed to be independent observations from a mixture of an unknown
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(finite) number of normal distributions:

p�x ������� = π1�r�x�µ1� '1� + · · · + πk�r�x�µk�'k��(19)

Here �r�x�µi� 'i� denotes the density function of the r-dimensional multi-
variate normal distribution with mean µi and variance-covariance matrix 'i.
In the univariate case (r = 1) we may write σ2 for '.
Prior distributions. We assume a truncated Poisson prior on the number

of components k:

p�k� ∝ λk

k!
�k = 1� � � � � kmax = 100��(20)

where λ is a constant; we will perform analyses with several different values
of λ. Conditional on k we base our prior for the model parameters on the
hierarchical prior suggested by Richardson and Green (1997) in the context of
mixtures of univariate normal distributions. A natural generalization of their
prior to r dimensions is obtained by replacing univariate normal distributions
with multivariate normal distributions, and replacing gamma distributions
with Wishart distributions, to give

µi ∼ �r�ξ� κ−1� �i = 1� � � � � k��(21)

'−1
i �β ∼ �r�2α� �2β�−1� �i = 1� � � � � k��(22)

β ∼ �r�2g� �2h�−1��(23)

� ∼ � �γ��(24)

where β is a hyperparameter; κ�β and h are r×rmatrices; ξ is an r×1 vector;
α� γ and g are scalars; � �γ� denotes the symmetric Dirichlet distribution with
parameter γ and density

&�kγ�
&�γ�k π

γ−1
1 · · ·πγ−1

k−1�1− π1 − · · · − πk−1�γ−1�

and �r�m�A� denotes the Wishart distribution in r dimensions with parame-
tersm and A. This last is usually introduced as the distribution of the sample
covariance matrix, for a sample of sizem from a multivariate normal distribu-
tion in r dimensions with covariance matrix A. Because of this interpretation
m is usually taken as an integer, and for m ≥ r �r�m�A� has density

�r�V�m�A� = K�A�−m/2�V�m−r−1/2

× exp
{− 1

2 tr�A−1V�}I�V positive definite�
(25)

on the space of all symmetric matrices (≡ Rr�r+1�/2), where I�·� denotes an
indicator function and

K−1 = 2mr/2πr�r−1�/4
r∏

s=1
&

(
m+ 1− s

2

)
�
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However, (25) also defines a density for non-integer m provided m > r − 1.
Methods of simulating from the Wishart distribution (which work for non-
integer m > r − 1) may be found in Ripley (1987). For m ≤ r − 1 we will use
�r�m�A� to represent the improper distribution with density proportional to
(25). (This is not the usual definition of �r�m�A� for m ≤ r − 1, which is a
singular distribution confined to a subspace of symmetric matrices.) Where an
improper prior distribution is used, it is important to check the integrability
of the posterior.
For univariate data we follow Richardson and Green (1997), who take �ξ� κ�

α�g�h� γ� to be (data-dependent) constants with the following values:

ξ = ξ1� κ = 1

R2
1

� α = 2�

g = 0�2� h = 100g

αR2
1

� γ = 1�

where ξ1 is the midpoint of the observed interval of variation of the data, and
R1 is the length of this interval. The value α = 2 was chosen to express the
belief that the variances of the components are similar, without restricting
them to be equal. For bivariate data (r = 2) we felt that a slightly stronger
constraint would be appropriate, and so increased α to 3, making a corre-
sponding change in g and obvious generalizations for the other constants to
give

ξ = �ξ1� ξ2�� κ =


1

R2
1

0

0
1

R2
2

 � α = 3�

g = 0�3� h =


100g

αR2
1

0

0
100g

αR2
2

 � γ = 1�

where ξ1 and ξ2 are the midpoints of the observed intervals of variation of
the data in the first and second dimension respectively, and R1 and R2 are
the respective lengths of these intervals. We note that the prior on β in the
bivariate case

β ∼ �2�0�6� �2h�−1�
is an improper distribution, but careful checking of the necessary integrals
shows that the posterior distributions are proper.
In our examples we consider the following priors:

1. The Fixed-κ prior, which is the name we give to the prior given above. The
full conditional posterior distributions required for the Gibbs sampling up-
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dates (Steps 2–4 in Algorithm 3.2) are then (using � · · · to denote condition-
ing on all other variables)

p�zj = i � · · ·� ∝ πi�r�xj�µi� 'i��(26)

β � · · · ∼ �r

(
2g + 2kα�

[
2h+ 2

∑
i

'−1
i

]−1)
�(27)

� � · · · ∼ � �γ + n1� � � � � γ + nk��(28)

µi � · · · ∼ �r

(
�ni'

−1
i + κ�−1�ni'

−1
i x̄i + κξ�� �ni'

−1
i + κ�−1

)
�(29)

'−1
i � · · · ∼ �r

(
2α+ ni�

[
2β+ ∑

j	zj=i
�xj − µi��xj − µi�T

]−1)
�(30)

for i = 1� � � � � k and j = 1� � � � � n, where ni is the number of observations
allocated to class i (ni = #�j 	 zj = i�) and x̄i is the mean of the observa-
tions allocated to class i (x̄i =

∑
j	zj=i xj/ni�) The Gibbs sampling updates

were performed in the order β�������
2. The Variable-κ prior, in which ξ and κ are also treated as hyperparameters

on which we place “vague” priors. This is an attempt to represent the belief
that the means will be close together when viewed on some scale, without
being informative about their actual location. It is also an attempt to ad-
dress some of the objections to the Fixed-κ prior discussed in Section 5.1.
We chose to place an improper uniform prior distribution on ξ and a “vague”
�r�l� �lIr�−1� distribution on κ where Ir is the r× r identity matrix. In or-
der to ensure the posterior distribution for κ is proper, this distribution is
required to be proper, and so we require l > r−1. We used l = r−1+0�001
as our default value for l. (In general, fixing a distribution to be proper in
this way is not a good idea. However, in this case it can be shown that if
l = r− 1+ ε then inference for µ�' and k is not sensitive to ε for small ε,
although numerical problems may occur for very small ε.)
The full conditional posteriors are then as for the Fixed-κ prior, with the

addition of

ξ � · · · ∼ �r�µ̄� �kκ�−1��(31)

κ � · · · ∼ �r�l+ k� �lIr +SS�−1��(32)

where µ̄ = ∑
i µi/k and SS = ∑

i�µi − ξ��µi − ξ�T. The Gibbs sampling
updates in Algorithm 3.2 were performed in the order β� κ� ξ� �� �� ��

These priors are both examples of the special case considered in Section
3.3, and so Algorithm 3.1 can be used. They may be viewed as convenient for
the purposes of illustration, and we warn against considering them as “non-
informative” or “weakly” informative. In particular we will see that inference
for k can be highly sensitive to the priors used. Further discussion is deferred
to Section 5.1.
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Values for �t0� λb�. Algorithm 3.1 requires the specification of a birth-rate
λb, and Algorithm 3.2 requires the specification of a (virtual) time t0 for which
the birth-death process is run. Doubling λb is mathematically equivalent to
doubling t0, and so we are free to fix t0 = 1, and specify a value for λb. In
all our examples we used λb = λ [the parameter of the Poisson prior in (20)],
which gives a convenient form of the death rates (18) as a likelihood ratio
which does not depend on λ. Larger values of λb will result in better mixing
over k, at the cost of more computation time per iteration of Algorithm 3.2,
and it is not clear how an optimal balance between these factors should be
achieved.

4.1. Example 1: Galaxy data. As our first example we consider the galaxy
data first presented by Postman, Huchra and Geller (1986) consisting of the
velocities (in 103 km/s) of distant galaxies diverging from our own, from six
well-separated conic sections of the Corona Borealis. The original data con-
sists of 83 observations, but one of these observations (a velocity of 5�607×103

km/s) does not appear in the version of the data given by Roeder (1990),
which has since been analyzed under a variety of mixture models by a number
of authors, including Crawford (1994), Chib (1995), Carlin and Chib (1995),
Escobar and West (1995), Phillips and Smith (1996) and Richardson and
Green (1997). In order to make our analysis comparable with these we have
chosen to ignore the missing observation. A histogram of the data overlaid with
a Gaussian kernel density estimate is shown in Figure 2. The multimodality
of the velocities may indicate the presence of super clusters of galaxies sur-
rounded by large voids, each mode representing a cluster as it moves away at
its own speed [Roeder (1990) gives more background].

Fig. 2. Histogram of the galaxy data, with bin-widths chosen by eye. Since histograms are rather
unreliable density estimation devices [see� e.g.� Roeder (1990)] we have overlaid the histogram
with a non-parametric density estimate using Gaussian kernel density estimation� with bandwidth
chosen automatically according to a rule given by Sheather and Jones (1991), calculated using the
S function width.SJ from Venables and Ripley (1997).
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We use Algorithm 3.2 to fit the following mixture models to the galaxy data:

(a) A mixture of normal distributions using the Fixed-κ prior described in
Section 4.
(b) A mixture of normal distributions using the Variable-κ prior described

in Section 4.
(c) A mixture of t distributions on p = 4 degrees of freedom:

p�x ������2� = π1tp�x�µ1� σ
2
1 � + · · · + πktp�x�µk� σ

2
k��(33)

where tp�x�µi� σ
2
i � is the density of the t-distribution with p degrees of free-

dom, with mean µi and variance pσ2
i /�p− 2� [see, e.g., Gelman et al. (1995),

page 476]. The value p = 4 was chosen to give a distribution similar to the
normal distribution with slightly “fatter tails,” since there was some evidence
when fitting the normal distributions that extra components were being used
to create longer tails. We used the Fixed-κ prior for ������2�. Adjusting the
birth-death algorithm to fit t distributions is simply a matter of replacing the
normal density with the t density when calculating the likelihood. The Gibbs
sampling steps are performed as explained in Stephens (1997).

We will refer to these three models as “Normal, Fixed-κ,” “Normal, Variable-
κ” and “t4, Fixed-κ” respectively. For each of the three models we performed
the analysis with four different values of the parameter λ (the parameter of
the truncated Poisson prior on k): 1,3,6 and 25. The choice of λ = 25 was
considered in order to give some idea of how the method would behave as λ
was allowed to get very large.
Starting points, computational expense and mixing behavior. For each prior

we performed 20,000 iterations of Algorithm 3.2, with the starting point be-
ing chosen by setting k = 1, setting �ξ� κ� to the values chosen for the Fixed-κ
prior, and sampling the other parameters from their joint prior distribution.
In each case the sampler moved quickly from the low likelihood of the starting
point to an area of parameter space with higher likelihood. The computational
expense was not great. For example, the runs for λ = 3 took 150–250 seconds
(CPU times on a Sun UltraSparc 200 workstation, 1997), which corresponds
to about 80–130 iterations per second. Roughly the same amount of time was
spent performing the Gibbs sampling steps as performing the birth-death cal-
culations. The main expense of the birth-death process calculations is in cal-
culating the model likelihood, and a significant saving could be made by using
a look-up table for the normal density (this was not done).
In assessing the convergence and mixing properties of our algorithm we

follow Richardson and Green (1997) in examining firstly the mixing over k,
and then the mixing over the other parameters within k. Figure 3a shows the
sampled values of k for the runs with λ = 3. A rough idea of how well the
algorithm is exploring the space may be obtained from the percentages of iter-
ations which changed k, which in this case were 36%, 52% and 38% for models
a)–c) respectively. More information can be obtained from the autocorrelation
of the sampled values of k (Figure 3b) which show that successive samples
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Fig. 3. Results from using Algorithm 3.2 to fit the three different models to the galaxy data using
λ = 3. The columns show results for Left: Normals, Fixed-κ; Middle: Normals, Variable-κ; Right:
t4s, Fixed-κ.

have a high autocorrelation. This is due to the fact that k tends to change by
at most one in each iteration, and so many iterations are required to move
between small and large values of k.
In order to obtain a comparison with the performance of the reversible jump

sampler of Richardson and Green (1997) we also performed runs with the prior
they used for this data; namely a uniform prior on k = 1� � � � �30 and the Fixed-
κ prior on the parameters. For this prior our sampler took 170 seconds and
changed k in 34% of iterations, which compares favorably with the 11–18% of
iterations obtained by Richardson and Green (1997) using the reversible jump
sampler (their Table 1). We also tried applying the convergence diagnostic
suggested by Gelman and Rubin (1992) which requires more than one chain
to be run from over-dispersed starting points (see the reviews by Cowles and
Carlin (1996) or Brooks and Roberts (1998) for alternative diagnostics). Based
on four chains of length 20,000, with two started from k = 1 and two started
from k = 30, convergence was diagnosed for the output of Algorithm 3.2 within
2500 iterations.
Richardson and Green (1997) note that allowing k to vary can result in

much improved mixing behavior of the sampler over the mixture model pa-
rameters within k. For example, if we fix k and use Gibbs sampling to fit
k = 3 t4 distributions to the galaxy data with the Fixed-κ prior, there are two
well-separated modes (a major mode with means near 10, 20 and 23 and a
minor mode with means near 10, 21 and 34). Our Gibbs sampler with fixed
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k struggled to move between these modes, moving from major mode to minor
mode and back only once in 10,000 iterations (results not shown). We applied
Algorithm 3.2 to this problem, using λ = 1. Of the 10,000 points sampled,
there were 1913 visits to k = 3, during which the minor mode was visited on
at least 6 different occasions (Figure 4). In this case the improved mixing be-
havior results from the ability to move between the modes for k = 3 via states
with k = 4: that is (roughly speaking), from the major mode to the minor mode
via a four component model with means near 10, 20, 23 and 34. If we are gen-
uinely only interested in the case k = 3 then the improved mixing behavior of
the variable k sampler must be balanced against its increased computational
cost, particularly as we generated only 1913 samples from k = 3 in 10�000
iterations of the sampler. By truncating the prior on k to allow only k = 3 and
k = 4, and using λ = 0�1 to favor the 3 component model strongly, we were
able to increase this to 7371 samples with k = 3 in 10�000 iterations, with
about 6 separate visits to the minor mode. Alternative strategies for obtaining
a sample from the birth-death process conditional on a fixed value of k are
given by Ripley (1977).
Inference. The results in this section are based on runs of length 20�000

with the first 10�000 iterations being discarded as burn-in — numbers we be-
lieve to be large enough to give meaningful results based on our investigations
of the mixing properties of our chain. Estimates of the posterior distribution
of k (Figure 5) show that it is highly sensitive to the prior used, both in terms
of choice of λ and the prior (Variable-κ or Fixed-κ) used on the parameters
����2�. Corresponding estimates of the predictive density (Figure 6) show
that this is less sensitive to choice of model. Although the density estimates
become less smooth as λ increases, even the density estimates for (the unrea-
sonably large value of) λ = 25 do not appear to be over-fitting badly.
The large number of normal components being fitted to the data suggests

that the data is not well modeled by a mixture of normal distributions. Further
investigation shows that many of these components have small weight and are
being used to effectively “fatten the tails” of the normal distributions, which
explains why fewer t4 components are required to model the data. Parsimony
suggests that we should prefer the t4 model, and we can formalize this as

Fig. 4. Sampled values of means for three components, sampled using Algorithm 3.2 when fitting
a variable number of t4 components to the galaxy data, with Fixed-κ prior, λ = 1, and conditioning
the resulting output on k = 3. The output is essentially “unlabeled,” and so labeling of the points
was achieved by applying Algorithm 3�3 of Stephens (1997). The variable k sampler visits the
minor mode at least 6 separate times in 1913 iterations, compared with once in 10�000 iterations
for a fixed k sampler.
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Fig. 5. Graphs showing estimates (6) of Pr�k = i� for i = 1�2� � � �, for the galaxy data. These
estimates are based on the values of k sampled using Algorithm 3.2 when fitting the three different
models to the galaxy data with λ = 1�3�6, with in each case the first 10�000 samples having been
discarded as burn-in. The three columns show results for Left: Normals, Fixed-κ;Middle: Normals,
Variable-κ; Right: t4s, Fixed-κ. The posterior distribution of k can be seen to depend on the type
of mixture used (normal or t4), the prior distribution for k (value of λ), and the prior distribution
for ����2� (Variable-κ or Fixed-κ).
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Fig. 6. Predictive density estimates (7) for the galaxy data. These are based on the output of
Algorithm 3.2 when fitting the three different models to the galaxy data with λ = 1�3�6�25.
The three columns show results for Left: Normals, Fixed-κ; Middle: Normals, Variable-κ; Right:
t4s, Fixed-κ. The density estimates become less smooth as λ increases, corresponding to a prior
distribution which favors a larger number of components. However, the method appears to perform
acceptably for even unreasonably large values of λ.
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follows. Suppose we assume that the data has arisen from either a mixture
of normals or a mixture of t4s, with p�t4� = p�normal� = 0�5. For the Fixed-
κ prior with λ = 1 we can estimate p�k � t4� xn� and p�k �normal� xn� using
Algorithm 3.2 (Table 1). By Bayes’ theorem we have

p�k � t4� xn� = p�k� t4 �xn�
p�t4 �xn� for all k(34)

and so

p�t4 �xn� = p�k� t4 �xn�
p�k � t4� xn� = p�xn �k� t4�p�k� t4�

p�k � t4� xn�p�xn� for all k,(35)

and similarly

p�normal �xn� = p�xn �k�normal�p�k�normal�
p�k �normal� xn�p�xn� for all k.(36)

Thus if we can estimate p�xn �k� t4� for some k and p�xn �k�normal� for some k
then we can estimate p�t4 �xn� and p�normal �xn�. Mathieson (1997) describes
a method [a type of importance sampling which he refers to as Truncated Har-
monic Mean (THM) and which is similar to the method described by DiCiccio,
Kass, Raftery and Wasserman (1997)] of obtaining estimates for p�xn �k� t4�
and p�xn �k�normal�, and uses this method to obtain the estimates

− logp�xn �k = 3� t4� ≈ 227�64
and

− logp�xn �k = 3�normal� ≈ 229�08�

giving [using equations (35) and (36)]

p�t4 �xn� ≈ 0�916 and p�normal �xn� ≈ 0�084�

from which we can estimate p�t4� k �xn� = p�t4 �xn�p�k � t4� xn�, and simi-
larly for normals—the results are shown in Table 2. We conclude that for the
prior distributions used, mixtures of t4 distributions are heavily favored over
mixtures of normal distributions, with four t4 components having the highest

Table 1

Estimates of the posterior probabilities p�k � t4� xn� and p�k �normal� xn� for the galaxy data
(Fixed-κ prior, λ = 1). These are the means of the estimates from five separate runs of Algorithm
3.2, each run consisting of 20�000 iterations with the first 10�000 iterations being discarded as

burn-in; the standard errors of these estimates are shown in brackets

k= 2 3 4 5 6 > 6

p̂�k � t4� xn� 0.056 0.214 0.601 0.115 0.012 0.001
(0.014) (0.009) (0.011) (0.005) (0.001) (0.000)

p̂�k �normal� xn� 0.000 0.554 0.338 0.093 0.013 0.001
(0.014) (0.011) (0.004) (0.001) (0.000)
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Table 2

Estimates of the posterior probabilities p�t4� k �xn� and p�normal� k �xn� for the galaxy data
(Fixed-κ prior, λ = 1). See text for details of how these were obtained

k= 2 3 4 5 6 > 6

p̂�t4� k �xn� 0.051 0.196 0.551 0.105 0.011 0.000
p̂�normal� k �xn� 0.000 0.047 0.028 0.008 0.001 0.000

posterior probability. It would be relatively straightforward to modify our al-
gorithm to fit t distributions with an unknown number of degrees of freedom,
thus automating the above model choice procedure. It would also be straight-
forward to allow each component of the mixture to have a different number of
degrees of freedom.

4.2. Example 2: Old Faithful data. For our second example, we consider
the Old Faithful data [the version from Härdle (1991) also considered by Ven-
ables and Ripley (1994)] which consists of data on 272 eruptions of the Old
Faithful geyser in the Yellowstone National Park. Each observation consists
of two observations: the duration (in minutes) of the eruption, and the wait-
ing time (in minutes) before the next eruption. A scatter plot of the data in
two dimensions shows two moderately separated groups (Figure 7). We used
Algorithm 3.2 to fit a mixture of an unknown number of bivariate normal
distributions to the data, using λ = 1�3 and both the Fixed-κ and Variable-κ
priors detailed in Section 4.
Each run consisted of 20�000 iterations of Algorithm 3.2, with the starting

point being chosen by setting k = 1, setting �ξ� κ� to the values chosen for
the Fixed-κ prior, and sampling the other parameters from their joint prior

Fig. 7. Scatter plot of the Old Faithful data �from Härdle (1991)]. The x axis shows the duration
�in minutes� of the eruption, and the y axis shows the waiting time �in minutes� before the next
eruption.
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distribution. In each case the sampler moved quickly from the low likelihood
of the starting point to an area of parameter space with higher likelihood.
The runs for λ = 3 took about 7-8 minutes. Figure 8a shows the resulting
sampled values of the number of components k, which can be seen to vary more
rapidly for the Variable-κ model, due in part to its greater permissiveness
of extra components. For the runs with λ = 3 the proportion of iterations
which resulted in a change in k were 9% (Fixed-κ) and 39% (Variable-κ). For
λ = 1 the corresponding figures were 3% and 10% respectively. Graphs of the
autocorrelations (Figure 8b) suggest that the mixing is slightly poorer than
for the galaxy data, presumably due to births of reasonable components being
less likely in the two-dimensional case. This poorer mixing means that longer
runs may be necessary to obtain accurate estimates of p�k �xn�. The method
of Gelman and Rubin (1992) applied to two runs of length 20,000 starting
from k = 1 and k = 30 diagnosed convergence within 10,000 iterations for the
Fixed-κ prior with λ = 1�3.
Estimates of the posterior distribution for k (Figure 8c) show that it depends

heavily on the prior used, while estimates of the predictive density (Figure 8d))
are less sensitive to changes in the prior. Where more than two components
are fitted to the data the extra components appear to be modeling deviations
from normality in the two obvious groups, rather than interpretable extra
groups.

4.3. Example 3: Iris Virginica data. We now briefly consider the famous
Iris data, collected by Anderson (1935) which consists of four measurements
(petal and sepal length and width) for 50 specimens of each of three species
(setosa, versicolor, and virginica) of iris. Wilson (1982) suggests that the vir-
ginica and versicolor species may each be split into subspecies, though analysis
by McLachlan (1992) using maximum likelihood methods suggests that this
is not justified by the data. We investigated this question for the virginica
species by fitting a mixture of an unknown number of bivariate normal distri-
butions to the 50 observations of sepal length and petal length for this species,
which are shown in Figure 9.
Our analysis was performed with λ = 1�3 and with both Fixed-κ and

Variable-κ priors. We applied Algorithm 3.2 to obtain a sample of size 20,000
from a random starting point, and discarded the first 10,000 observations as
burn-in. The mixing behavior of the chain over k was reasonable, with the
percentages of sample points for which k changed being 6% (λ = 1) and 21%
(λ = 3) for the Fixed-κ prior, and 5% (λ = 1) and 36% (λ = 3) for the Variable-
κ prior. The mode of the resulting estimates for the posterior distribution of
k is at k = 1 for at least three of the four priors used (Figure 10a) and the
results seem to support the conclusion of McLachlan (1992) that the data does
not support a division into subspecies (though we note that in our analysis
we used only two of the four measurements available for each specimen). The
full predictive density estimates in Figure 10b indicate that where more than
one component is fitted to the data they are again being used to model lack of
normality in the data, rather than interpretable groups in the data.
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Fig. 8. Results for using Algorithm 3.2 to fit a mixture of normal distributions to the Old Faithful
data. The columns show results for Left: Fixed-κ prior, λ = 1; Left-middle: Variable-κ prior, λ = 1;
Right-middle: Fixed-κ prior, λ = 3; Right: Variable-κ prior, λ = 3. The posterior distribution of k
can be seen to depend on both the prior distribution for k (value of λ), and the prior distribution
for ����� (Variable-κ or Fixed-κ). The density estimates appear to be less sensitive to choice of
prior.
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Fig. 9. Scatter plot of petal length against sepal length for the Iris Virginica data.

Fig. 10. Results for using Algorithm 3.2 to fit a mixture of normal distributions to the Iris Vir-
ginica data. The columns show results for Left: Fixed-κ prior, λ = 1; Left-middle: Variable-κ prior,
λ = 1� Right-middle: Fixed-κ prior, λ = 3; Right: Variable-κ prior, λ = 3. The mode of the estimates
of Pr�k = i� is k = 1 for at least three of the four priors used, and seems to indicate that the data
does not support splitting the species into sub-species.
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5. Discussion.

5.1. Density estimation, inference for k and priors. Our examples demon-
strate that a Bayesian approach to density estimation using mixtures of (uni-
variate or bivariate) normal distributions with an unknown number of com-
ponents is computationally feasible, and that the resulting density estimates
are reasonably robust to modeling assumptions and priors used. Extension to
higher dimensions is likely to provide computational challenges, but might be
possible with suitable constraints on the covariance matrices (requiring them
all to be equal or all to be diagonal for example).
Our examples also highlight the fact that while inference for the number

of components k in the mixture is also computationally feasible, the posterior
distribution for k can be highly dependent on not just the prior chosen for
k, but also the prior chosen for the other parameters of the mixture model.
Richardson and Green (1997), in their investigation of one-dimensional data,
note that when using the Fixed-κ prior, the value chosen for κ in the prior
� �ξ� κ−1� for the means µ1� � � � � µk has a subtle effect on the posterior distri-
bution of k. A very large value of κ, representing a strong belief that the means
lie at ξ (chosen to be the midpoint of the range of the data) will favor models
with a small number of components and larger variances. Decreasing κ to rep-
resent vaguer prior knowledge about the means will initially encourage the
fitting of more components with means spread across the range of the data.
However, continuing to decrease κ, to represent vaguer and vaguer knowledge
on the location of the means, eventually favors fitting fewer components. In
the limit, as κ → 0, the posterior distribution of k becomes independent of
the data, and depends only on the number of observations, heavily favoring a
one component model for reasonable number of observations [Stephens (1997),
Jennison (1997)]. Priors which appear to be only “weakly” informative for the
parameters of the mixture components may thus be highly informative for the
number of components in the mixture. Since very large and very small values
of κ in the Fixed-κ prior both lead to priors which are highly informative for
k, it might be interesting to search for a value of κ (probably depending on the
observed data) which leads to a Fixed-κ prior which is “minimally informative”
for k in some well-defined way.
Where the main aim of the analysis is to define groups for discrimina-

tion (as in taxonomic applications such as the iris data, e.g.) it seems natural
that the priors should reflect our belief that this is a reasonable aim, and
thus avoid fitting several similar components where one will suffice. This idea
is certainly not captured by the priors we used here, which Richardson and
Green (1997) suggest are more appropriate for “exploring heterogeneity.” In-
hibition priors from spatial point processes [as used by, e.g., Baddeley and
van Lieshout (1993)] provide one way of expressing a prior belief that the
components present will be somewhat distinct. Alternatively we might try dis-
tinguishing between the number of components in the model, and the number
of “groups” in the data, by allowing each group to be modeled by several “sim-
ilar” components. For example, group means might be a priori distributed on
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the scale of the data, and each group might consist of an unknown number
of normal components, with means distributed around the group mean on a
smaller scale than the data. The discussion following Richardson and Green
(1997) provides a number of other avenues for further investigation of suitable
priors, and we hope that the computational tools described in this paper will
help make such further investigation possible.

5.2. Choice of birth distribution. The choice of birth distribution we made
in Algorithm 3.1 is rather naive, and indeed we were rather surprised that
we were able to make much progress with this approach. Its success in the
Fixed-κ model appears to stem from the fact that the (data-dependent) inde-
pendent priors on the parameters � are not so vague as to never produce a
reasonable birth event, and yet not so tight as to always propose components
which are very similar to those already present. In the Variable-κ model the
success of the naive algorithm seems to be due to the way in which the hyper-
parameters κ and ξ “adapt” the birth distribution to make the birth of better
components more likely. Here we may have been lucky, since the priors were
not chosen with these properties in mind. In general then it may be neces-
sary to spend more effort designing sensible birth-death schemes to achieve
adequate mixing. Our results suggest that a strategy of allowing the birth
distribution b�y� �π�φ�� to be independent of y, but depend on the data, may
result in a simple algorithm with reasonable mixing properties. An ad hoc
approach to improving mixing might involve simply investigating mixing be-
havior for more or less “vague” choices of b. A more principled approach would
be to choose a birth distribution which can be both easily calculated and simu-
lated from directly, and which roughly approximates the (marginal) posterior
distribution of a randomly chosen element of �. Such an approximation might
be obtained from a preliminary analysis with a naive birth mechanism, or
perhaps standard fixed-dimension MCMC with large k.
A more sophisticated approach might allow the birth distribution b�y�

�π�φ�� to depend on y. Indeed, the opposite extreme to our naive approach
would be to allow all points to die at a constant rate, and find the corresponding
birth distribution using (15) [as in, e.g., Ripley (1977)]. However, much effort
may then be required to calculate the birth rate β�·� (perhaps by Monte-Carlo
integration), which limits the appeal of this approach. [This problem did not
arise in Ripley (1977) where simulations were performed conditional on a fixed
value of k by alternating births and deaths.] For this reason we believe that
it is easier to concentrate on designing efficient birth distributions which can
be simulated from directly and whose densities can be calculated explicitly so
that the death rates (15) are easily computed.

5.3. Extension to other contexts. It appears from our results that, for finite
mixture problems, our birth-death algorithm provides an attractive alterna-
tive to the algorithm used by Richardson and Green (1997). There seems to
be considerable potential for applying similar birth-death schemes in other
contexts as an alternative to more general reversible jump methods. We now
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attempt to give some insight into for which problems such an approach is
likely to be feasible. We begin our discussion by highlighting the main differ-
ences between our Algorithm 3.1 and the algorithm used by Richardson and
Green (1997).

A. Our algorithm operates in continuous time, replacing the accept-reject
scheme by allowing events to occur at differing rates.

B. Our dimension-changing birth and death moves do not make use of the
missing data zn, effectively integrating out over them when calculating
the likelihood.

C. Our birth and death moves take advantage of the natural nested struc-
ture of the models, removing the need for the calculation of a complicated
Jacobian, and making implementation more straightforward.

D. Our birth and death moves treat the parameters as a point process, and do
not make use of any constraint such as µ1 < · · · < µk [used by Richardson
and Green (1997) in defining their split and combine moves].

We consider A to be the least important distinction. Indeed, a discrete time
version of our birth-death process using an accept-reject step could be designed
along the lines of Geyer and Møller (1994), or using the general reversible-
jump formulation of Green (1995). (Similarly one can envision a continuous
time version of the general reversible jump formulation.) We have no good
intuition for whether discrete time or continuous time versions are likely to
be more efficient in general, although Geyer and Møller (1994) suggests that
it is easier to obtain analytical results relating to mixing for the discrete time
version.
Point B raises an important requirement for application of our algorithm:

we must be able to calculate the likelihood for any given parameters. This
requirement makes the method difficult to apply to Hidden Markov Models,
or other missing data problems where calculation of the likelihood requires
knowledge of the missing data. One solution to this problem would be to intro-
duce the missing data into the MCMC scheme, and perform births and deaths
while keeping the missing data fixed [along the lines of the births and deaths
of “empty” components in Richardson and Green (1997)]. However, where the
missing data is highly informative for k this seems likely to lead to poor mix-
ing, and reversible jump methods which propose joint updates to the missing
data and the dimension of the model appear more sensible here.
In order to take advantage of the simplicity of the birth-death methodology,

we must be able to view the parameters of our model as a point process, and in
particular we must be able to express our prior in terms of a Radon–Nikodym
derivative, r�·�, with respect to a symmetric measure, as in Section 2.2. This is
not a particularly restrictive requirement, and we give two concrete examples
below. These examples are in many ways simpler than the mixture problem
since there are no mixture proportions, and the marked point process becomes
a point process on a space �. The analogue of Theorem 3.1 for this simpler
case [which essentially follows directly from Preston (1976) and Ripley (1977)]
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may be obtained by replacing condition (15) with

�k+ 1�d�y�φ�r�y ∪φ�L�y ∪φ� = β�y�b�y�φ�r�y�L�y��(37)

Provided we can calculate the likelihood L�y�, the viability of the birth-death
methodology will depend on being able to find a birth distribution which gives
adequate mixing. The comments in Section 5.2 provide some guidance here. It
is clear that in some applications the use of birth and death moves alone will
make it difficult to achieve adequate mixing. However, the ease with which
different birth distributions may be tried, and the success of our algorithm in
the mixture context with minimal effort in designing efficient birth distribu-
tions, suggests that this type of algorithm is worth trying before more complex
reversible jump proposal distributions are implemented.
Example 1: Change point analysis. Consider the change-point problem

from Green (1995). The parameters of this model are the number of change
points k, the positions 0 < s1 < · · · < sk < L of the change points, and
the heights hi �i = 0� � � � � k� associated with the intervals �si� si+1�, where
s0 and sk+1 are defined to be 0 and L respectively. In order to treat the
parameters of the model as a point process, we drop the requirement that
s1 < · · · < sk, and define the likelihood of the model in terms of the order
statistics s�1� < · · · < s�k�, and the corresponding heights h�i� �i = 0� � � � � k�
associated with the intervals �s�i�� s�i+1��, where s�0� and s�k+1� are defined to
be 0 and L respectively.
Consider initially a prior in which k has prior probability mass distribution

p�k�, and conditional on k, the si and hi are assumed to be independent, with
si uniformly distributed on [0,L], and hi ∼ &�α�β�. In the notation of previous
sections we take η = h�0�, φi = �s�i�� h�i��,ω = �α�β�, ν to be Lebesgue measure
on � = �0�L� × �0�∞�,

r�k� s� h� = p�k�
k∏

i=1

1
L
I�si ∈ �0�L��&�hi�α�β��(38)

and π is ignored. With births and deaths on � defined in an obvious way, it is
then straightforward to use condition (37) to create a birth-death process on
� = �0�L� × �0�∞� with the posterior distribution of � given η as its station-
ary distribution. This can then be alternated with standard fixed-dimension
MCMC steps (which allow h�0�, and perhaps α and β to vary) to create an
ergodic Markov chain with the posterior distribution of the parameters as
its stationary distribution. The analogue of our naive algorithm for this prior
would have birth distribution

b
(
y� �s� h�) = 1

L
I�s ∈ �0�L��&�h�α�β��(39)

A more sophisticated approach would be to allow the birth of new change
points to be concentrated on areas which, based on the data, seem good candi-
dates for change points (e.g., by looking at the marginal posterior distribution
of the distribution of change points in a preliminary analyses using the naive
birth mechanism, or fixed-dimension MCMC), and allow the birth distribution
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for the new h to depend on the new s, again being centered on regions which
appear to be good candidates based on the data.
Now suppose that [as in Green (1995)] s�1�� � � � � s�k� are, given k, a priori dis-

tributed as the even-numbered order statistics of 2k+ 1 points independently
and uniformly distributed on �0�L�:

p�s�1�� � � � � s�k�� =
�2k+ 1�!
L2k+1 �s�1� − 0��s�2� − s�1��

· · · �s�k� − s�k−1���L− s�k��I�0 < s�1� < · · · < s�k� < L��
(40)

This corresponds to s1� � � � � sk (which must be exchangeable) being a priori
distributed as a random permutation of these order statistics:

p�s1� � � � � sk� =
1
k!

�2k+ 1�!
L2k+1 �s�1� − 0��s�2� − s�1��

· · · �s�k� − s�k−1���L− s�k��
k∏

i=1
I�si ∈ �0�L��

(41)

giving a prior which corresponds to

r′�k� s� h� = �2k+ 1�!
k!L2k+1 �s�1� − 0��s�2� − s�1��

· · · �s�k� − s�k−1���L− s�k��
k∏

i=1
I�si ∈ �0�L��&�hi�α�β��

(42)

Given a birth-death scheme using the prior (39), it would be straightforward
to modify this scheme to use this second prior (42), for example, by keeping
the birth distribution fixed, and modifying the calculation of the death rates
by replacing r with r′. The way in which priors are so easily experimented
with is one major attraction of the birth-death methodology.
Variable selection for regression models. Consider now the problem of se-

lecting a subset of a given collection of variables to be included in a regression
model [see, e.g., George and McCulloch (1996)]. (Similar problems include de-
ciding which terms to include in an autoregression, or which links to include
in a Bayesian Belief Network.) Let there be K possible variables to include,
and let variable i be associated with a parameter βi ∈ R (i = 1� � � � �K). A
model which contains k of the variables can then be represented by a set of
k points ��i1� βi1

�� · · · � �ik� βik
�� in � = �1� � � � �K� × R, where i1� � � � � ik are

distinct integers in �1� � � � �K�. The birth of a point �i� βi� then corresponds to
adding variable i to the regression. Note that the points are exchangeable in
that the order in which they are listed is irrelevant. A suitable choice for ν in
the definition of the symmetric measure � (Section 2.2) would be the product
measure of counting measure on �1� � � � �K� and Lebesgue measure on R.
Suppose our prior is that variable i is present with probability pi, inde-

pendently for all i, and conditional on variable i being present, βi has prior
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p�βi�, again independent for all i. Then we have

r
(
k� �i1� βi1

�� � � � � �ik� βik
�)

=
{
0� if ia = ib for some a� b,

pi1
p�βi1

� · · ·pik
p�βik

�� otherwise.

(43)

The choice of birth distribution b
(
y� �i� βi�

)
must in this case depend on y, in

order to avoid adding variables which are already present. A naive suggestion
would be to set

b
(
y� �i� βi�

) = bip�βi�(44)

with bi ∝ pi for the variables i not already present in y. Again, more efficient
schemes could be devised by letting the births be data-dependent, possibly
through examining the marginal posterior distributions of the βi in prelimi-
nary analyses.

APPENDIX: PROOF OF THEOREM 3.1

Proof. Our proof draws heavily on the theory derived by Preston (1976),
Section 5, for general Markov birth-death processes on state space � = ⋃

k �k

where the �k are disjoint. The process evolves by jumps, of which only a fi-
nite number can occur in a finite time. The jumps are of two types: “births,”
which are jumps from a point in �k to �k+1, and “deaths,” which are jumps
from a point in �k to a point in �k−1. When the process is at y ∈ �k the
behavior of the process is defined by the birth rate β�y�, the death rate δ�y�,
and the birth and death transition kernels K�k�

β �y� ·� and K
�k�
δ �y� ·� which are

probability measures on �k+1 and �k−1 respectively. Births and deaths occur
as independent Poisson processes, with rates β�y� and δ�y� respectively. If a
birth occurs then the process jumps to a point in �k+1, with the probability

that this point is in any particular set F ⊂ �k+1 being given by K
�k�
β �y�F�. If

a death occurs then the process jumps to a point in �k−1, with the probability
that this point is in any particular set G ⊂ �k−1 being given by K

�k�
δ �y�G�.

Preston (1976) showed that for such a process to possess stationary distribu-
tion µ̃ it is sufficient that the following detailed balance conditions hold:

Definition 1 (Detailed balance conditions). µ̃ is said to satisfy detailed
balance conditions if∫

F
β�y�dµ̃k�y� =

∫
�k+1

δ�z�K�k+1�
δ �z�F�dµ̃k+1�z� for k ≥ 0, F ⊂ �k(45)

and ∫
G
δ�z�dµ̃k+1�z� =

∫
�k

β�y�K�k�
β �y�G�dµ̃k�y� for k ≥ 0, G ⊂ �k+1.(46)

These have the intuitive meaning that the rate at which the process leaves
any set through the occurrence of a birth is exactly matched by the rate at
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which the process enters that set through the occurrence of a death, and vice-
versa. ✷

We therefore check that p�k���� �xn�ω�η� satisfies the detailed balance
conditions for our process, which corresponds to the general Markov birth-
death process with birth rate β�y�, death rate δ�y�, and birth and death tran-
sition kernels K�k�

β �y� ·� and K
�k�
δ �y� ·� which satisfy

K
�k�
β �y�F� =

∫
�π�φ�	y∪�π�φ�∈F

b
(
y� �π�φ�)dπ ν�dφ�(47)

and

δ�y�K�k�
δ �y�F� = ∑

�π�φ�∈y	y\�π�φ�∈F
d
(
y\�π�φ�� �π�φ�)�(48)

We begin by introducing some notation. Let ;k represent the parameter
space for the k-component model, with the labeling of the parameters taken
into account, and let �k be the corresponding space obtained by ignoring the
labeling of the components. If ����� ∈ ;k, then we will write ����� for the
corresponding member of �k. With ; = ⋃

k≥1;k, let P�·� and P̃�·� be the
prior and posterior probability measures on ;, and let Pk�·� and P̃k�·� denote
their respective restrictions to ;k. The prior distribution has Radon–Nikodym
derivative r�k����� with respect to �k−1 × νk. Thus for ����� ∈ ;k we have

dPk������� = r�k������k− 1�!dπ1 · · ·dπk−1 ν�dφ1� · · · ν�dφk��(49)

Also, by Bayes theorem we have

dP̃������� ∝ L�������dP�������
and so we will write

dP̃������� = f�������dP�������
for some f������� ∝ L�������.
Now let µ�·� and µ̃�·� be the probability measures induced on � by P�·� and

P̃�·� respectively, and let µk�·� and µ̃k�·� denote their respective restrictions
to �k. Then for any function g 	 � → R we have∫

�k

g�y�dµk�y� =
∫
;k

g�������dPk

{�����}(50)

and ∫
�k

g�y�dµ̃k�y� =
∫
;k

g�������dP̃k

{�����}
=

∫
g�������f�������dPk

{�����}(51)

=
∫
�k

g�y�f�y�dµk�y��
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We define births on ; by

����� ∪ �π�φ� 	= ((
π1�1− π�� φ1

)
� � � � �

(
πk�1− π�� φk

)
�
(
π�φ

))
(52)

and will require the following Lemma (which is essentially a simple change
of variable formula).

Lemma 5.1. If ����� ∈ ;k and �π�φ� ∈ �0�1� ×� then

r�k�����dPk+1
{����� ∪ �π�φ�}

= r
(
k+ 1� ����� ∪ �π�φ�)k�1− π�k−1 dπ ν�dφ�dPk

{�����}�
Proof.

LHS = r�k�����dPk+1
{����� ∪ �π�φ�}

= r�k�����dPk+1
{(�π1�1− π�� φ1�� � � � � �πk�1− π�� φk�� �π�φ�

)}
[equation (52)]

= r�k�����r(k+ 1� ����� ∪ �π�φ�)k!�1− π�k−1 dπ1

· · · dπk dπ ν�dφ1� · · · ν�dφk� ν�dφ�
[equation (49) and change of variable]

= r
(
k+ 1� ����� ∪ �π�φ�)k�1− π�k−1 dπ ν�dφ�dPk

{�����}
[equation (49)]

= RHS�

Assume for the moment that r�y�L�y� > 0 for all y. Let I�·� denote the
generic indicator function, so I�x ∈ A� = 1 if x ∈ A and 0 otherwise. We check
the first part of the detailed balance conditions (45) as follows:

LHS =
∫
F
β�y�dµ̃k�y�

=
∫
�k

I�y ∈ F�β�y�f�y�dµk�y� [equation (51)]

=
∫
�k

I�y ∈ F�β�y�f�y�
∫
�0�1�

∫
�
b
(
y� �π�φ�)dπ ν�dφ�dµk�y�

[b must integrate to 1.]

RHS =
∫
�k+1

δ�z�K�k+1�
δ �z�F�dµ̃k+1�z�

=
∫
�k+1

δ�z�K�k+1�
δ �z�F�f�z�dµk+1�z� [equation (51)]

=
∫
�k+1

∑
�π�φ�∈z	z\�π�φ�∈F

d
(
z\�π�φ�� �π�φ�)f�z�dµk+1�z� [equation (48)]
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=
∫
;k+1

k+1∑
i=1

I������\�πi�φi� ∈ F�d(�����\�πi�φi�� �πi�φi�
)

× f�������dPk+1
{�����} [equation (50)]

=
∫
;k+1

�k+ 1�I������\�πk+1� φk+1� ∈ F�

× d
(�����\�πk+1� φk+1�� �πk+1� φk+1�

)
× f�������dPk+1

{�����} [by symmetry of Pk+1�·�]

=
∫
;k+1

�k+ 1�I���′��′� ∈ F�d(��′��′�� �π�φ�)f(��′��′� ∪ �π�φ�)
× dPk+1

{��′��′� ∪ �π�φ�} [��′��′� ∪ �π�φ� = �����]
=

∫
;k

∫
�0�1�

∫
�
I���′��′� ∈ F��k+ 1�d(��′��′�� �π�φ�)f(��′��′� ∪ �π�φ�)

× r
(
k+ 1� ��′��′� ∪ �π�φ�)

r�k��′��′� k�1− π�k−1

× dπ ν�dφ�dPk

{��′��′�} [Lemma 5.1]

=
∫
�k

∫
�0�1�

∫
�
I�y ∈ F��k+ 1�d(y� �π�φ�)f(y ∪ �π�φ�)

× r
(
y ∪ �π�φ�)
r�y� k�1− π�k−1 dπ ν�dφ�dµk�y� [equation (50)]

and so LHS = RHS provided

�k+1�d(y� �π�φ�)f(y∪�π�φ�)r(y ∪ �π�φ�)
r�y� k�1−π�k−1 = β�y�b(y� �π�φ�)f�y�

which is equivalent to the conditions (15) stated in the Theorem as f�y� ∝
L�y�. The remaining detailed balance conditions (46) can be shown to hold in
a similar way.
The condition that r�y�L�y� = 0 for all y can now be relaxed by applying

the conditions (13) and (14), and restricting the spaces ;k and �k to �y 	
r�y�L�y� > 0�. ✷
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