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ON THE ASYMPTOTICS OF CONSTRAINED
LOCAL M-ESTIMATORS1

By Alexander Shapiro

Georgia Institute of Technology

We discuss in this paper asymptotics of locally optimal solutions of
maximum likelihood and, more generally,M-estimation procedures in cases
where the true value of the parameter vector lies on the boundary of
the parameter set S. We give a counterexample showing that regular-
ity of S in the sense of Clarke is not sufficient for asymptotic equiva-
lence of

√
n-consistent locally optimalM-estimators. We argue further that

stronger properties, such as so-called near convexity or prox-regularity of S
are required in order to ensure that any two

√
n-consistent locally optimal

M-estimators have the same asymptotics.

1. Introduction. We discuss in this paper asymptotics of maximum like-
lihood and, more generally, of M-estimation procedures in situations where
the population (true) value of the parameter vector lies on the boundary of
the corresponding parameter set S. Starting with pioneering work of Chernoff
(1954), this problem was considered by several authors [see, e.g., recent papers
by Self and Liang (1987), Shapiro (1989), Geyer (1994) and references therein].

We concentrate on asymptotics of locally optimal solutions of an M-
estimation procedure, to which we refer as local M-estimators in order to
distinguish them from global M-estimators. Typically M-estimators are cal-
culated by an iterative optimization routine which can be trapped in a locally
optimal solution if the corresponding problem is nonconvex. Therefore it is
desirable to have an insurance that local and global M-estimators do coincide
or, at least, are asymptotically equivalent.

An important condition in deriving asymptotics of global M-estimators is
that the parameter set S should be approximated, in a certain sense, at the
true value of the parameter vector by a cone. We refer to that condition as
regularity in the sense of Chernoff. Geyer (1994) gave simple examples show-
ing that regularity of the parameter set S in the sense of Chernoff is not
sufficient for asymptotic equivalence of

√
n-consistent local M-estimators to

hold. It was argued further in Geyer (1994) that regularity of S in the sense
of Clarke (1983) will fix the problem. That is, if S is regular, at the true
value of the parameter vector, in the sense of Clarke, and certain “stochas-
tic” assumptions are satisfied, then any two

√
n-consistent localM-estimators

are asymptotically equivalent and have the same asymptotic distribution. It
appears, however, that this assertion is incorrect. In the next section we give a

Received April 1999; revised May 2000.
1Supported in part by NSF Grant DMI-97-13878.
AMS 1991 subject classification. 62F12.
Key words and phrases. Maximum likelihood, constrained M-estimation, asymptotic distribu-

tion, tangent cones, Clarke regularity, prox-regularity, metric projection.

948



ASYMPTOTICS OF LOCAL M-ESTIMATORS 949

counterexample (Example 2.1) where the set S is Clarke regular and yet local
M-estimators are not asymptotically equivalent.

We discuss further two stronger regularity concepts, called near convexity
and prox-regularity, which were recently introduced in optimization literature.
We argue that “near convexity” is the regularity property which is required in
order to ensure asymptotic equivalence of

√
n-consistent local M-estimators.

We also show that “near convexity” and “prox-regularity” properties typi-
cally hold for sets defined by smooth constraints. This gives a reassurance
that indeed, except for somewhat pathological cases,

√
n-consistent local M-

estimators have the same asymptotic distribution as global M-estimators.
Throughout the paper we use the following notation and terminology. We

denote by �x�y� the standard scalar product of two vectors x�y ∈ �d, and by
�x� = �x� x�1/2 the Euclidean norm of x. By dist�x�S� 	= inf z∈S �x − z� we
denote the distance from a point x ∈ �d to the set S, and by PS�x� a closest
point of S to the point x. That is, PS�x� is an orthogonal projection of x onto S.
Note that if the set S is closed, then PS�x� always exists although it may not
be unique. By “⇒” we denote convergence in distribution.

Let y �→ A�y� be a multifunction mapping y ∈ �k into set A�y� ⊂ �m. The
upper and lower set limits in the sense of Painlevé–Kuratowski are defined as

lim sup
y→y0

A�y� 	=
{
z ∈ �m	 lim inf

y→y0
dist�z�A�y�� = 0

}
and

lim inf
y→y0

A�y� 	=
{
z ∈ �m	 lim sup

y→y0

dist�z�A�y�� = 0
}
�

respectively. In other words the above upper limit is formed by points z for
which there exists a sequence yn → y0 such that zn → z for some zn ∈ A�yn�,
and the lower limit is formed by points z such that for every sequence yn → y0
it is possible to find zn ∈ A�yn� such that zn → z.

The set limits

TS�x� 	=lim sup
t↓0

S − x

t
� TS�x� 	=lim inf

t↓0
S − x

t

and

T̂S�x� 	= lim inf
t↓0

S�x′→x

S − x′

t

are called contingent (Bouligand), inner and Clarke tangent cones to S at
x ∈ S, respectively. It is not difficult to show that indeed these sets are cones.
These cones are closed, the cone T̂S�x� is always convex, and the inclusions
T̂S�x� ⊂ TS�x� ⊂ TS�x� always hold. It is said that S is Clarke regular at a
point x ∈ S if TS�x� = T̂S�x�. For a thorough discussion of these concepts we
refer to Aubin and Frankowska (1990) and Rockafellar and Wets (1998). By
NS�x� we denote the polar of the cone TS�x�, that is,

NS�x� 	= {
y	 �y� z� ≤ 0� for all z ∈ TS�x�}�
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Clearly, it follows from the above inclusions that if S is Clarke regular at
a point x ∈ S, then �TS�x� = TS�x�. This in turn is equivalent to the condition
that the set S is approximated at the point x by the cone TS�x� in the sense
of Chernoff (1954) [e.g., Geyer (1994)]. Therefore, Clarke regularity implies
regularity in the sense of Chernoff.

2. Nearly convex and prox-regular sets. Let X1� � � � �Xn be an i.i.d.
sequence of random vectors having a normal distribution with the identity
covariance matrix Id and mean vector µ, which is restricted to a parameter
set S ⊂ �d. (We assume throughout the paper that the parameter set S is
closed and nonempty.) Let �X = n−1∑n

i=1Xi be the sample mean vector. The
maximum likelihood estimator µ̂n of the mean vector is given by a (globally)
optimal solution of the optimization problem

min
µ∈S

∥∥ �X − µ
∥∥2�(2.1)

that is, µ̂n = PS� �X�. Let µ0 ∈ S be the true value of the mean vector and set
Z 	= n1/2� �X−µ0�. Note that Z ∼ N�0� Id�. If the set S is Chernoff regular at
µ0, then

n1/2�µ̂n − µ0� ⇒ PTS�µ0��Z��(2.2)

This result goes back to Chernoff (1954). Recall that, as was discussed in the
introduction, Clarke regularity implies Chernoff regularity.

The following example shows that it can happen that the parameter set
S is Clarke regular at µ0 ∈ S and yet there exists an infinite number of
local optima of the problem (2.1) in any neighborhood of µ0. In that case the
asymptotic distributions of global and local solutions of (2.1) can be completely
different.

Example 2.1. Let us construct the following parameter set S in �2. Con-
sider the sequencesAi 	= �21−i�0� and Bi 	= �21−i�41−i/2�, i = 1� � � � , of points
in �2. Define S to be set of points in the positive orthant

�2
+ 	= {�x1� x2�	 x1 ≥ 0� x2 ≥ 0

}
which lie above or on the segments �Bi�Ai+1�, i = 1� � � � (see Figure 1). Suppose
that µ0 = �0�0�. Clearly, the set S is closed and TS�µ0� = �2

+. Moreover, the
set S is Clarke regular at µ0. Indeed, it is known that

T̂S�µ0� = lim inf
S�µ→µ0

TS�µ�(2.3)

[Rockafellar and Wets (1998)]. Clearly, at every point µ ∈ S, the contingent
cone TS�µ� contains vector (0, 1). It follows that �0�1� ∈ T̂S�µ0�. Also, since the
slope of the line Bi� Ai+1 is 21−i, and hence tends to zero as i → ∞, we have
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Fig. 1. Parameter set which is Clarke regular, but is not nearly convex, at �0�0�.

that the distance from vector (1, 0) to TS�µ� tends to zero as S � µ → µ0.
It follows that �1�0� ∈ T̂S�µ0�. Since T̂S�µ0� is a convex closed cone and is
contained in TS�µ0�, it follows that T̂S�µ0� = �2

+. Therefore T̂S�µ0� = TS�µ0�
and hence S is Clarke regular at µ0.

On the other hand if the components of the sample mean vector �X are both
negative, then every point Ai, i = 1� � � �, is a locally optimal solution of the
problem (2.1), while µ0 = �0�0� is the only globally optimal solution of (2.1).
Since the probability of the event �X ∈ −�2

+ is 0�25 > 0, the asymptotics of
globally and locally optimal solutions of (2.1) can be different. It can be noted
that the above set S is not Clarke regular at the points B1�B2� � � �, which
accumulate to (0, 0). Therefore it is natural to ask whether the situation can be
saved by requiring the parameter set to be Clarke regular in a neighborhood
of the point µ0. This, however, is not the case. For example, one can make
an arbitrarily small perturbation of the set S by smoothing it at the points
B1�B2� � � � . This will make it Clarke regular at all points, and yet for such a
sufficiently small perturbation again the pointsA1�A2� � � �, are locally optimal
solutions of (2.1) if the components of �X are both negative.

Let us also mention that since S is Clarke regular at µ0, it is Chernoff
regular at µ0. Therefore, the asymptotic result (2.2) about global minimizers
follows. On the other hand we have here that with positive probability there
is an infinite number of local minimizers accumulating to µ0. Therefore one
can choose (say

√
n-consistent) local minimizers µ̃n such that n1/2�µ̃n − µ0�

does not have a limiting distribution.
Of course, if the set S is convex, then problem (2.1) has a unique locally

and globally optimal solution for any �X ∈ �d. So we address now the question
of how much convexity of S can be relaxed while retaining this property, at
least locally, We approach this question from the following point of view.

Definition 2.1. We say that the set S is nearly convex, at a point x0 ∈ S,
if there exist a neighborhood V of x0 and a function k�x� x′� tending to zero
as x → x0, x′ → x0, such that

dist
(
x′ − x�TS�x�) ≤ k�x� x′��x′ − x� for all x� x′ ∈ S ∩ V�(2.4)
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Definition 2.2. We say that the set S is prox-regular, at a point x0 ∈ S,
if there exist a neighborhood V of x0 and a positive constant K such that

dist
(
x′ − x�TS�x�) ≤ K�x′ − x�2 for all x� x′ ∈ S ∩ V�(2.5)

If S is convex, then for any points x� x′ ∈ S it follows that x′ − x ∈ TS�x�.
Consequently if S is convex, then it is nearly convex and prox-regular. It is
also not difficult to see that if S is prox-regular at x0, then it is nearly convex
at every point of S in a neighborhood of x0 [take, for example, k�x� x′� 	=
K�x′ − x�]. The concept of “near convexity” was introduced in Shapiro and
Al-Khayyal (1993). Property (2.5) was discussed in Shapiro (1994) under the
name “O(2)-convexity.” The term “prox-regularity” was suggested in Poliquin
and Rockafellar (1996) (whose terminology we follow), where this concept was
defined in a somewhat different, although equivalent, form. It was devel-
oped further in Rockafellar and Wets (1998) and Poliquin, Rockafellar and
Thibault (2000).

Another property which characterizes convex sets is monotonicity of nor-
mals. That is, if S is convex, then for any x1� x2 ∈ S and Y1 ∈ NS�x1�,
y2 ∈ NS�x2�, the inequality �y1 − y2� x1 − x2� ≥ 0 holds. Let us consider
the following condition, which can be viewed as a relaxation of the above
monotonicity property.

Condition (A). There exist a neighborhood V of x0 and a function k�x� x′�
tending to zero as x → x0, x′ → x0, such that〈

y1 − y2� x1 − x2
〉 ≥ −{

k�x1� x2��y1� + k�x2� x1��y2�
}�x1 − x2�(2.6)

for all x1� x2 ∈ S ∩ V and all y1 ∈ NS�x1�, y2 ∈ NS�x2�.

Proposition 2.1. Let x0 ∈ S. Then the following hold:

(i) If the set S is nearly convex at x0, then condition (A) holds.
(ii) If condition (A) holds and TS�x� is convex for all x ∈ S in a neighbor-

hood of x0, then S is nearly convex at x0.
(iii) If condition (A) holds, then S is Clarke regular at x0.

Proof. Implication (i) is proved in Shapiro and Al-Khayyal [(1993),
Lemma 2.1]. Conversely, suppose that condition (A) holds and TS�x� is convex
for all x ∈ S in a neighborhood of x0. By taking x1 = x, x2 = x′, y1 = h and
y2 = 0 in (2.6), we obtain

�h�x′ − x� ≤ k�x� x′��h��x′ − x� for h ∈ NS�x��(2.7)

Since the cone TS�x� is closed and convex, we can represent x′ −x in the form
x′ − x = a + b, where a ∈ TS�x�, b ∈ NS�x� and �a� b� = 0. By taking h = b
in (2.7) and noting that �b� = dist�x′ − x�TS�x��, we obtain (2.4). This proves
assertion (ii).



ASYMPTOTICS OF LOCAL M-ESTIMATORS 953

Suppose now that Condition (A) holds. It is known that S is Clarke regular
at x0 iff

lim sup
S�x→x0

NS�x� ⊂ NS�x0�(2.8)

[Rockafellar and Wets (1998), Corollary 6.29]. Consider a sequence �xn� ⊂ S
converging to x0, and suppose that hn ∈ NS�xn� and hn → h. It follows then
from (2.6), by taking x1 = xn, y2 = 0, y1 = hn and x2 = x, that for any
x ∈ S ∩ V and n large enough,

�hn� xn − x� ≥ −k�xn� x��hn��xn − x��(2.9)

Since k�x′� x� tends to zero as �x′� x� → �x0� x0�, we have that for any ε > 0
there exists a neighborhood of x0 such that k�xn� x� < ε for all xn and x in
that neighborhood. By passing to the limit as n → ∞, it follows then from
(2.9) that

�h�x − x0� ≤ ε�h��x − x0�(2.10)

for all x ∈ S sufficiently close to x0. This implies that h ∈ NS�x0�, and hence
(2.8) follows. This completes the proof. ✷

Note that it follows from assertions (i) and (iii) of the above proposition
that if the set S is nearly convex at x0, then S is Clarke regular at x0. Recall
that Clarke regularity at a point x ∈ S implies that the cone TS�x� is convex.
Therefore if we assume that condition (A) holds for all points of the set S in
a neighborhood of the point x0, then the assumption of convexity of TS�x� in
the assertion (ii) of the above proposition holds automatically.

The set S constructed in Example 2.1 is Clarke regular at the point (0, 0). It
is not difficult to see, however, that this set is not nearly convex at (0, 0). There-
fore the concepts of near convexity and Clarke regularity are not equivalent.

Let us turn now to the concept of prox-regularity. It turns out that prox-
regularity is equivalent to the following condition, which can be viewed as
strengthening of Condition (A).

Condition (B). There exist a neighborhood V of x0 and a constant K > 0,
such that 〈

y1 − y2� x1 − x2
〉 ≥ −K

(�y1� + �y2�
)�x1 − x2�2(2.11)

for all x1� x2 ∈ S ∩ V and all y1 ∈ NS�x1�, y2 ∈ NS�x2�.

Proposition 2.2. For x0 ∈ S the following properties are equivalent:

(i) S is prox-regular at x0.
(ii) Condition (B) holds.
(iii) There exists a neighborhood W of x0 such that for all �X ∈ W the prob-

lem �2�1� has a unique globally optimal solution which is also unique locally
optimal solution in the neighborhood W.
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Proof. Implication (i) ⇒ (ii) is shown in Shapiro (1994). Let us prove
implication (ii) ⇒ (i). Clearly, condition (B) implies condition (A) at all points
of S sufficiently close to x0. Therefore, by assertion (iii) of Proposition 2.1, it
follows from condition (B) that the set S is Clarke regular, and hence TS�x�
is convex, for all x ∈ S in a neighborhood of x0. By taking x1 = x, x2 = x′,
y1 = h and y2 = 0 in (2.11), we obtain

�h�x′ − x� ≤ K�h��x′ − x�2 for h ∈ NS�x��(2.12)

Since the cone TS�x� is closed and convex, we can represent x′ − x in the
form x′ − x = a + b, where a ∈ TS�x�, b ∈ NS�x� and �a� b� = 0. By taking
h = b in (2.12) and noting that �b� = dist�x′ − x�TS�x��, we obtain (2.5).
This completes the proof of equivalence of (i) and (ii). This equivalence is also
proved in Poliquin, Rockafellar and Thibault (2000).

Let us prove implication (ii) ⇒ (iii). Let x1 and x2 be two locally optimal
solutions of the problem (2.1). By the first-order necessary conditions we have
that �X − x1 ∈ NS�x1� and �X − x2 ∈ NS�x2�. Consequently it follows from
(2.11), for x1 and x2 sufficiently close to x0, that

�x1 − x2�2 ≤ K
(� �X − x1� + � �X − x2�

)�x1 − x2�2�(2.13)

For x1, x2 and �X sufficiently close to x0, we have that � �X− x1� + � �X− x2� <
K−1, and hence, by (2.13), x1 = x2. This proves implication (ii) ⇒ (iii).

Conversely, suppose that the problem (2.1) has a unique globally optimal
solution, denoted PS� �X�, for all �X in a neighborhood of x0. It is not diffi-
cult to show then, by compactness arguments, that the (projection) mapping
PS�·� is continuous in a neighborhood of x0. By Theorem 1.3(i) of Poliquin,
Rockafellar and Thibault (2000), it follows that S is prox-regular at x0. Since
any locally optimal solution of (2.1) is also its globally optimal solution, impli-
cation (iii) ⇒ (ii) follows. ✷

Clearly results of the above proposition are directly relevant to the asymp-
totics of local optimizers of the maximum likelihood estimation method. We
discuss that in the next section.

Let us finish this section by showing that if the parameter set S is defined
by smooth constraints, then typically it is nearly convex and prox-regular.
Suppose that S is defined in the form

S 	= �x ∈ �d	 G�x� ∈ K��(2.14)

where K is a closed convex subset of a Banach space Z and G	 �d → Z is
a continuously differentiable mapping. Suppose further that x0 ∈ S and that
the following constraint qualification, due to Robinson (1976a), holds:

0 ∈ int �G�x0� + DG�x0��d − K��(2.15)

It follows then by the Robinson (1976b)–Ursescu (1975) stability theorem that

dist�x�S� = O�dist�G�x��K��(2.16)
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for all x in a neighborhood of x0. The above property (2.16) (called metric
regularity) implies that there exist a constant c > 0 and a neighborhood V of
x0 such that for all x� x′ ∈ S ∩ V the inequality holds:

dist
(
x′ − x�TS�x�) ≤ c

∥∥G�x′� − G�x� − DG�x��x′ − x�∥∥�(2.17)

and henceS is nearly convex at x0 [Shapiro and Al-Khayyal (1993), Theorem 2].
Moreover, if the derivative DG�·� is Lipschitz continuous near x0, then S is
prox-regular at x0 [Shapiro (1994), pages 134 and 135; Poliquin, Rockafellar
and Thibault (2000), Proposition 2.3].

Proposition 2.3. Suppose that the mapping G	 �d → Z is continuously
differentiable at x0 ∈ S and that Robinson’s constraint qualification �2�15�
holds. Then the set S is nearly convex at x0 and

TS�x0� = {
h ∈ �d	 DG�x0�h ∈ TK�G�x0��

}
�(2.18)

If, moreover, DG�·� is Lipschitz continuous in a neighborhood of x0, then S is
prox-regular at x0.

Suppose, for example, that S is defined by constrainsts as follows:

S 	= {
x ∈ �d	 c1�x� = 0� � � � � cm�x� = 0 qγ�x� ≥ 0� γ ∈ (

}
�(2.19)

where ( is a compact metric space, and c1�·�� � � � � cm�·�, qγ�·�, γ ∈ (, are con-
tinuously differentiable real-valued functions. Note that the set S, defined in
(2.19), can be formulated in the form (2.14) by considering the Banach space
Z 	= �m × C�(�, the set K 	= �0� × C+�(� ⊂ Z, and the mapping G	 x �→
�c1�x�� � � � � cm�x�� q�x� ·��. Here C�(� denotes the Banach space of continuous
functions φ	 ( → �, equipped with the sup-norm, C+�(� ⊂ C�(� denotes the
set of nonnegative valued functions φ	 ( → �+, and q�x� γ� 	= qγ�x�.

Suppose, further, that ∇qγ�x� is continuous on �d × ( (jointly in x and γ).
Then Robinson’s constraint qualification (2.15) is equivalent to the following
(extended) Mangasarian–Fromovitz, constraint qualification:

1. The gradient vectors ∇c1�x0�� � � � �∇cm�x0� are linearly independent, and
2. There exists a vector v ∈ �d such that �v�∇ci�x0�� = 0, i = 1� � � � �m and

�v�∇qγ�x0�� > 0, γ ∈ (∗�x0�, where (∗�x0� 	= �γ ∈ ( 	 qγ�x0� = 0�.
We obtain that if the functions c1�·�� � � � � cm�·�, qγ�·�, γ ∈ (, are continu-

ously differentiable, ∇qγ�x� is continuous on �d × ( and the Managasarian–
Fromovitz constraint qualification holds, then S is nearly convex at the point
x0, and

TS�x0� =
{
h	 �h�∇ci�x0�� = 0� i = 1� � � � �m,

h	 �h�∇qγ�x0�� ≥ 0� γ ∈ (∗�x0�.
(2.20)

Moreover, if ∇c1�·�� � � � �∇cm�·�, ∇qγ�·�, γ ∈ (, are Lipschitz continuous in a
neighborhood of x0, and such that the Lipschitz constant of ∇qγ�·� is indepen-
dent of γ ∈ (, then S is prox-regular at x0.
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Example 2.2. Consider the regression model

Yi = g�Xi� θ� + εi� i = 1� � � � � n�(2.21)

where θ ∈ �d and the fitted function g�·� θ� is assumed to be monotonically
nondecreasing on a given interval �a� b�. Suppose that the function g�x� θ�
is twice continuously differentiable. Then the monotonicity condition holds
iff qx�θ� ≥ 0 for all x ∈ �a� b�, where qx�θ� 	= ∂g�x� θ�/∂x. Therefore the
corresponding parameter set / can be written in the form

/ = {
θ ∈ �d	 qx�θ� ≥ 0� x ∈ �a� b�}�(2.22)

That is, / is defined by an infinite number of inequality constraints. Let θ0 ∈
/ be the true value of the parameter vector. The Mangasarian–Fromovitz
constraint qualification takes here the form: there exists a vector v ∈ �d such
that

�v�∇qx�θ0�� > 0� x ∈ (∗�θ0��(2.23)

where (∗�θ0� 	= �x ∈ �a� b�	 qx�θ0� = 0�. Suppose that the set (∗�θ0� is
nonempty. Then under the Mangasarian–Fromovitz constraint qualification,
θ0 lies on the boundary of the parameter set /, the set / is nearly convex
(and hence Clarke regular) at θ0, and

T/�θ0� = {
h	 �h�∇qx�θ0�� ≥ 0� x ∈ (∗�θ0�

}
�(2.24)

If, moreover, ∇qx�·� is Lipschitz continuous in a neighborhood of θ0 and such
that the Lipschitz constant of ∇qx�·� is independent of x ∈ �a� b�, then / is
prox-regular at θ0.

3. Asymptotics of local optimizers. In this section we discuss asymp-
totics of localM-estimators. In order to seewhat type of results can be expected,
let us assume for a moment that the mean vector of a normally distributed
random sample is estimated by solving the optimization problem (2.1). Let µ̂n

and µ̃n be two sequences of local maximizers of the corresponding likelihood
function, i.e., µ̂n and µ̃n are locally optimal solutions of (2.1) based on the
(same) sample of size n. Suppose that µ̂n and µ̃n are consistent estimators
of the population value µ0 of the mean vector, that is, µ̂n and µ̃n converge in
probability to µ0 as n → ∞. It follows then, by Proposition 2.2, that if S is
prox-regular at µ0, then µ̂n and µ̃n are equal to each other with probability
tending to one as n → ∞, and hence have the same asymptotics.

Moreover, suppose that µ̂n and µ̃n are
√
n-consistent, that is, µ̂n − µ0 =

Op�n−1/2� and µ̃n − µ0 = Op�n−1/2�, and that S is nearly convex at µ0. Since
µ̂n and µ̃n are locally optimal solutions of (2.1) we have that �X− µ̂n ∈ NS�µ̂n�
and �X − µ̃n ∈ NS�µ̃n�. By inequality (2.6), this implies that

�µ̂n − µ̃n� ≤ k�µ̂n� µ̃n�� �X − µ̂n� + k�µ̃n� µ̂n�� �X − µ̃n��(3.1)

Since �X − µ0 = Op�n−1/2�, and hence �X − µ̂n = Op�n−1/2� and �X − µ̃n =
Op�n−1/2�, and since k�µ̂n� µ̃n� = op�1� and k�µ̃n� µ̂n� = op�1�, it follows that

µ̂n − µ̃n = op�n−1/2��(3.2)
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Consequently we obtain that if S is nearly convex at µ0, then asymptotics
of any two

√
n-consistent local maximizers of the likelihood function are the

same, and hence coincide with the asymptotics of a
√
n-consistent global

maximizer.
Let us consider now a general case in the following framework. Let S be

a closed subset of �d and Fn�·� be a sequence of real-valued random func-
tions defined on a subset of �d which includes the set S. We assume that
Fn�θ� are defined on a common probability space �3�� �P�, that is, for fixed
θ and n, the random variable Fn�θ� = Fn�θ�ω� is defined on the probability
space �3�� �P�. We also assume that Fn�·� converge in some sense (which
will be specified later) to a deterministic function F�·�. For example, Fn�·� can
be given by n−1 times minus log-likelihood function, based on an i.i.d. random
sample of size n, associated with a parametric family f�x� θ�, θ ∈ S, of proba-
bility density functions. By the law of large numbers it converges (pointwise)
w.p.1 to the corresponding expected value function F�θ� 	= −Ɛθ0�log f�X�θ��,
provided this expectation exists, where θ0 is the population (true) value of the
parameter vector.

Let θ0 be a minimizer of the function F�θ� subject to θ ∈ S, and let θ̂n and
θ̃n be two locally optimal solutions of the corresponding “estimation” problem

min
θ∈S

Fn�θ��(3.3)

By assuming that S is nearly convex or prox-regular at θ0, and that vari-
ous “stochastic” conditions are satisfied, it is possible to show that θ̂n and
θ̃n are asymptotically equivalent in some sense. In that respect the following
theorem is already sufficient for many applications. We say that θ̂n and θ̃n
are consistent (strongly consistent) estimators of θ0, if θ̂n and θ̃n converge in
probability (w.p.1) to θ0 as n → ∞. We say that θ̂n and θ̃n are

√
n-consistent

if θ̂n − θ0 = Op�n−1/2� and θ̃n − θ0 = Op�n−1/2�.

Theorem 3.1. Suppose that:

(i) The set S is prox-regular at the point θ0.
(ii) θ̂n and θ̃n are strongly consistent estimators of θ0 and, moreover, that

there exists a neighborhood V of θ0 such that.
(iii) F�θ� is well defined and twice continuously differentiable on V.
(iv) θ0 is the (unconstrained) minimizer of F�θ� over V.
(v) The Hessian matrix ∇2F�θ0� is nonsingular.
(vi) w.p.1 the functions Fn�θ� are twice continuously differentiable on V

and

lim
n→∞

{
�∇Fn�θ0� − ∇F�θ0�� + sup

θ∈V
�∇2Fn�θ� − ∇2F�θ��

}
= 0 w�p�1�(3.4)

Then θ̂n = θ̃n w.p.1, for sufficiently large n.

Proof. Since θ0 is an unconstrained minimizer of F�θ�, it follows that
∇F�θ0� = 0, and that the matrix ∇2F�θ0� is positive semidefinite. Since
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the matrix ∇2F�θ0� is nonsingular, it follows that it is positive definite.
Consequently there exists a constant α > 0 such that the smallest eigen-
value of ∇2F�θ� is greater than 2α for all θ in a neighborhood of θ0. It follows
then by (3.4) that w.p.1 for n large enough the smallest eigenvalue of ∇2Fn�θ�
is greater than α for all θ in a neighborhood of θ0. Consequently, by the mean
value theorem, we obtain that w.p.1 for n large enough,〈

∇Fn�θ0� − ∇Fn�θ2�� θ1 − θ2

〉
≥ α�θ1 − θ2�2(3.5)

for all θ1� θ2 sufficiently close to θ0.
On the other hand, by first-order necessary conditions, we have that

− ∇Fn�θ̂n� ∈ NS�θ̂n� and − ∇Fn�θ̃n� ∈ NS�θ̃n��(3.6)

Since S is prox-regular at θ0, it follows by inequality (2.11) that〈
∇Fn�θ̂n� − ∇Fn�θ̃n�� θ̂n − θ̃n

〉
≤ K

(
�∇Fn�θ̂n�� + �∇Fn�θ̃n��

)
�θ̂n − θ̃n�2�

provided that θ̂n and θ̃n are sufficiently close to θ0. Together with (3.5) this
implies

α�θ̂n − θ̃n�2 ≤ K
(

�∇Fn�θ̂n�� + �∇Fn�θ̃n��
)
�θ̂n − θ̃n�2�(3.7)

It remains to note that since ∇F�θ0� = 0, and θ̂n� θ̃n tend w.p.1 to θ0 and,
because of (3.4), the term �∇Fn�θ̂n�� + �∇Fn�θ̃n�� tends w.p.1 to zero. The
result then follows from (3.7). ✷

Assumptions (ii)–(v) of the above theorem are rather standard. In the case
of the maximum likelihood estimation, assumption (iv) holds automatically.
Moreover, if the first- and second-order derivatives can be taken inside the
expected value, it follows by the law of large numbers that ∇2Fn�θ� con-
verge pointwise w.p.1 to ∇2F�θ�. The uniform version (3.4) of the law of large
numbers can be proved then under some mild additional conditions [see, e.g.,
Rubinstein and Shapiro (1993), Section 2.6, for an elementary discussion].

Of course, if θ̂n = θ̃n w.p.1, for sufficiently large n, then n1/2�θ̂n − θ̃n� tends
w.p.1 to zero, and hence θ̂n − θ̃n = op�n−1/2�. That is, under the assumptions
of Theorem 3.1, the estimators θ̂n and θ̃n are asymptotically equivalent. It is
possible to obtain that result under somewhat weaker conditions.

For a Lipschitz continuous function f�θ� we denote by ∂f�θ� its generalized
gradient of Clarke (1983), that is, ∂f�θ� is the convex hull of all limits of the
form limi→∞ ∇f�θi�, where θi − θ and f�·� is differentiable at θi. If f�·� is
continuously differentiable at θ, then the set ∂f�θ� is a singleton containing
one point ∇f�θ�. We denote by ∇f�θ� an element of the generalized gradient
∂f�θ� even at such a point θ where ∂f�θ� is not a singleton.

Theorem 3.2. Suppose that:

(i) The set S is nearly convex at the point θ0.
(ii) θ̂n and θ̃n are

√
n-consistent estimators of θ0.
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(iii) There exists a neighborhood V of θ0 such that F�θ� is well defined and
twice continuously differentiable on V.

(iv) θ0 is the (unconstrained) minimizer of F�θ� over V.
(v) The Hessian matrix ∇2F�θ0� is nonsingular.
(vi) w.p.1 the functions Fn�θ� are Lipschitz continuous on V and for any

∇Fn�θ̂n� ∈ ∂Fn�θ̂n� and any ∇Fn�θ̃n� ∈ ∂Fn�θ̃n�, the following holds

∇Fn�θ̂n� = Op�n−1/2� and ∇Fn�θ̃n� = Op�n−1/2��(3.8)

∇Fn�θ̂n� − ∇Fn�θ̃n� = ∇F�θ̂n� − ∇F�θ̃n� + op�n−1/2��(3.9)

Then θ̂n − θ̃n = op�n−1/2�.

Proof. As in the proof of Theorem 3.1, we have that ∇F�θ0� = 0 and the
Hessian matrix ∇2F�θ0� is positive definite. It follows that for some α > 0 and
θ1 and θ2, sufficiently close to θ0,

�∇F�θ1� − ∇F�θ2�� θ1 − θ2� ≥ α�θ1 − θ2�2�(3.10)

Also by first-order necessary conditions [Clarke (1983)] we have that there
exist ∇Fn�θ̂n� ∈ ∂Fn�θ̂n� and ∇Fn�θ̃n� ∈ ∂Fn�θ̃n� such that inclusions (3.6)
hold. It follows then by the inequality (2.6) that〈∇Fn�θ̂n� − ∇Fn�θ̃n�� θ̂n − θ̃n

〉
≤ {

k�θ̂n� θ̃n��∇Fn�θ̂n�� + k�θ̃n� θ̂n��∇Fn�θ̃n��}�θ̂n − θ̃n��
Since θ̂n and θ̃n converge in probability to θ0, we have that k�θ̂n� θ̃n� = op�1�
and k�θ̃n� θ̂n� = op�1�, and hence by assumption (3.8), the right-hand side of
the above inequality is of order op�n−1/2��θ̂n − θ̃n�. Also by assumption (3.9)
we have

�∇Fn�θ̂n�−∇Fn�θ̃n�� θ̂n−θ̃n� = �∇F�θ̂n�−∇F�θ̃n�� θ̂n−θ̃n�+op�n−1/2��θ̂n−θ̃n��
Together with (3.10) this implies

α�θ̂n − θ̃n�2 ≤ op�n−1/2��θ̂n − θ̃n��
which completes the proof. ✷

Again, assumptions (ii)–(v) of the above theorem are rather standard.
Assumptions (3.8) and (3.9) can be ensured by various conditions. They easily
follow from assumptions (iii) and (vi) of Theorem 3.1. Another set of condi-
tions which implies (3.8) and (3.9) is the following: (i) ∂Fn�θ0� = �∇Fn�θ0�� is
a singleton w.p.1 (ii) ∇Fn�θ0� = Op�n−1/2�, and (iii) there exists a neighbor-
hood V of θ0 such that F�·� is continuously differentiable on V and

sup
θ∈V\U

�∇Fn�θ� − ∇Fn�θ0� − ∇F�θ� + ∇F�θ0��
n−1/2 + �θ − θ0�

= op�1��(3.11)
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where U = Un�ω� denotes the set of points where ∇Fn�θ� fails to exist. Such
(or similar) conditions have already been discussed in Huber (1967).

Now let θ̂n be a globally optimal solution of the estimation problem (3.3).
Suppose that n1/2�θ̂n − θ0� converges in distribution, that is, has a limiting
distribution (this implies, of course, that θ̂n is a

√
n-consistent estimator of θ0).

We have then, under the assumptions of Theorem 3.2, that any
√
n-consistent

locally optimal solution θ̃n of (3.3) is asymptotically equivalent to θ̂n, and hence
n1/2�θ̃n −θ0� has the same asymptotic distribution as n1/2�θ̂n −θ0�. The above
discussion shows that a key property of the parameter set S, which is required
for such behavior of locally optimal solutions, is the near convexity of S at θ0.
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