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NARROW-BAND ANALYSIS OF NONSTATIONARY PROCESSES1

By P. M. Robinson2 and D. Marinucci

London School of Economics

The behavior of averaged periodograms and cross-periodograms of a
broad class of nonstationary processes is studied. The processes include
nonstationary ones that are fractional of any order, as well as asymptot-
ically stationary fractional ones. The cross-periodogram can involve two
nonstationary processes of possibly different orders, or a nonstationary
and an asymptotically stationary one. The averaging takes place either
over the whole frequency band, or over one that degenerates slowly to zero
frequency as sample size increases. In some cases it is found to make no
asymptotic difference, and in particular we indicate how the behavior of
the mean and variance changes across the two-dimensional space of inte-
gration orders. The results employ only local-to-zero assumptions on the
spectra of the underlying weakly stationary sequences. It is shown how the
results can be applied in fractional cointegration with unknown integration
orders.

1. Introduction. In the analysis of time series that are believed prone
to nonstationarity, the behavior of bilinear and quadratic forms is of prime
interest. For univariate time series, Gaussian rules of inference lead to consid-
eration of quadratic forms, and Gaussian methods developed by Whittle (1951)
and others in stationary short-range dependent environments were extended
to unit root nonstationary ones by Box and Jenkins (1971), with limit the-
ory developed by Dickey and Fuller (1979) and many subsequent authors. In
case of multivariate time series, the Gaussian approach covers not only jointly
dependent modelling but also linear regression, and in either case bilinear and
quadratic forms arise. Again, limit theory for stationary short-range depen-
dent vector processes has been extended to unit roots, activity in this direction
fuelled by considerable econometric interest in the possible existence of coin-
tegrated structures, positing the existence of a linear combination of related
unit root series which has short-range dependence.

The scope of time series analysis has considerably expanded with the devel-
opment of methods and theory for stationary and nonstationary long-range
dependent or fractional processes. A fractional view of time series regards
the stationary short-range dependent and unit root processes as mere points
(at β = 0 and β = 1, respectively) on the real line of processes indexed by
integration order β. For univariate processes, a loose definition of integration
order (the article employs a more general one) is “that degree of differencing
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needed to convert a stationary or nonstationary process to one with spectral
density that is positive and continuous at zero frequency.” Limit theory for
Whittle estimates of parametric stationary long-range dependent series has
been developed by Fox and Taqqu (1986) and others, while recently cointegra-
tion of multiple nonstationary fractional time series has been considered by
Chan and Terrin (1995), Jeganathan (1999, 2001), Dolado and Marmol (1998)
and others, though this topic is still in its infancy.

Narrow-band frequency domain analysis has been a major focus of the
long-range dependence literature. A stationary long-range dependent univari-
ate series is usually thought of as having a spectral pole at zero frequency,
with spectral density behaving like λ−2β nearby, where λ indicates frequency,
and 0 < β < 1

2 . Methods of estimating β based on a band of frequencies
around zero that degenerates slowly as sample size increases were consid-
ered by Geweke and Porter-Hudak (1983), Kűnsch (1986, 1987) and Robinson
(1994a, b, 1995a, b), the asymptotic theory of the latter author imposing few
or no conditions on spectral behaviour away from zero frequency and thereby
demonstrating a signal advantage of such ‘semiparametric’ methods.

The main theoretical concern of Robinson (1994a) was the convergence of
the discretely averaged periodogram of a univariate series, over a degenerating
band of Fourier frequencies, but one of his applications of this theory was
to cointegration of bivariate stationary long-range dependent series �yt� zt�
t = 0�±1� � � ��. It was envisaged that whereas yt and zt each has integration
order β ∈ �0� 1

2�, there exists an unknown ν such that the unobservable series
ζt in

yt = νzt + ζt(1.1)

has integration order α < β. The ζt by construction thus have the character
of regression errors, at least after mean-correction, but there is no prior rea-
son to suppose that they possess the classical property of orthogonality with
zt�Cov�ζt� zt� = 0. Were yt� zt nonstationary, but ζt stationary, or “less nonsta-
tionary” than yt� zt, such that the signal-to-noise ratio

∑n
t=1 ζ

2
t /

∑n
t=1 z

2
t con-

verges stochastically to zero as sample size n tends to infinity, the least squares
estimate (LSE) of ν would be consistent, as demonstrated by, for example,
Stock (1987), in case yt� zt have a unit root but ζt is short-range dependent
�α = 0� β = 1�. When yt� zt are stationary, however, the LSE is generally
inconsistent when there is correlation between zt and ζt. However, Robinson
(1994a) showed that the narrow-band least squares estimate (NBLSE) of ν,
namely the ratio of the real part of the averaged cross-periodogram of yt� zt
to the averaged periodogram of zt, averaging across the m lowest Fourier fre-
quencies where m → ∞ but m/n → 0 as n → ∞, is consistent for ν. This
is due to the spectrum of zt dominating that of ζt near zero frequency, since
α < β, even though the respective variances (equivalently, the spectra inte-
grated over the whole sampling frequency band) are both finite and positive.
Robinson (1994b) discussed optimal choice of m.

Cointegration of stationary long range-dependent series has been of inter-
est in a financial context, for example for the three-dimensional vector of
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exchange rates between three currencies. However, financial series may also
be nonstationary, as is typically believed to be the case with macroeconomic
ones, while cointegration has also been of interest in other fields, such as
ecology, where nonstationarity can arise, and in general not only are integra-
tion orders likely to be unknown, but also we may not even know whether or
not the series is stationary. Thus, given its superiority over the LSE in sta-
tionary environments, there is interest in analyzing the performance of the
NBLSE in nonstationary ones.

Cointegration provides a motivation for the theoretical contribution of the
present paper, an examination of the averaged cross-periodogram, and the
sample covariance, of a bivariate series, one element of which is nonstation-
ary and the other is either nonstationary or (asymptotically) stationary. We
derive and compare leading terms in the asymptotic bias and variance of these
statistics, leading to a qualitative classification of behavior depending on inte-
gration orders of the time series, for example, whether the integration orders
sum to less than one or greater than one is important, while the case when one
of them is zero and the other unity (familiar from the unit root cointegration
literature) is seen to be quite special. Our modelling of the series is notably
general. They are linear filters of short-range dependent series. The filters
have desirable commutativity properties and cover standard fractional differ-
encing, and in general produce low frequency stochastic trends. Consequently,
it is the low frequency behavior of the short-range dependent innovations that
is important, as our results and conditions stress; in the spirit of Robinson
(1994a, b) our conditions entail only mild restrictions at zero frequency and
have little implication for higher frequencies.

Our results clarify the extent to which the (cross-) periodogram averaged
over all Fourier frequencies, equivalently the sample (co-) variance, is approx-
imated by the average over only frequencies near zero, possibly an asymptoti-
cally negligible proportion of the sampling frequencies. Intuitively, this is due
to a dominance of low frequency contributions. When the limit distribution of
the sample (co-) variance can be characterized by means of invariance prin-
ciples for nonstationary fractional series, of Marinucci and Robinson (2000),
we may thence simply deduce limit distributional behavior of the averaged
(cross-) periodogram. When applied to cointegration, we can then characterize
the limit distributions of both the LSE and NBLSE. These distributions, and
rates of convergence, reflect integration orders. Over some range of these, the
LSE and NBLSE have the same limit distribution and convergence rate, but
over another they do not, the NBLSE suffering from less bias and consequently
even converging faster.

The following section defines the basic averaged (cross-) periodogram statis-
tic and its implementations of particular interest. Section 3 demonstrates an
approach to modelling nonstationary and asymptotically stationary sequences,
with derivation of useful properties. Sections 4 and 5 cover, respectively asym-
ptotics for the mean and variance of the averaged (cross-) periodogram under
this type of model. Section 6 applies the results to the LSE and NBLSE
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for cointegrated nonstationary series. Sections 7–9 give proofs of results of
Sections 3–5, respectively.

2. The averaged cross-periodogram. For a sequence ζt, t = 1� � � � � n,
we define the discrete Fourier transform

wζ�λ� =
1

�2πn�1/2
∑
t

ζte
itλ�(2.1)

where
∑
t will always denote

∑n
t=1; with also a sequence ξt, t = 1� � � � � n, we

define the (cross-) periodogram

Iζξ�λ� = wζ�λ�wξ�−λ��
Denoting by λj = 2πj/n, for integer j, the Fourier frequencies, and by 1�·�
the indicator function, we define the averaged (cross-) periodogram,

F̂ζξ�l�m�= 2π
n

[
2�e

{ m∑
j=l
Iζξ�λj�

}
−Iζξ�0�1�l=0�−Iζξ�π�1

(
m= n

2

)]
(2.2)

for integers l, m such that 0 ≤ l ≤ m ≤ n/2, noting that Iζξ has period 2π,
that �e�Iζξ�λ�� is symmetric about λ = 0 and λ = π, and that Iζξ�π� is
real-valued. We have for all such m,

F̂ζξ�1�m� = F̂ζξ�0�m� − ζ̄ξ̄�(2.3)

with the notation ā = n−1 ∑
t at, so that omission of zero frequency entails a

sample mean correction. We shall always consider only l = 0 or l = 1, though
properties for other fixed (as n→ ∞) values of l are the same as those for l = 1.
On the other hand, the final term in (2.2) can make a non-zero contribution
only when m = n/2, for which n must be even. Defining ñ = �n/2�, where �·�
denotes the integer part, the orthogonality of the complex exponential implies
that, irrespective of whether n is even or odd,

F̂ζξ�0� ñ� =
2π
n

n∑
j=1

Iζξ�λj� =
1
n

∑
t

ζtξt�(2.4)

the sample second (cross-) moment, so that from (2.3), Fζξ�1� ñ� is the corre-
sponding statistic based on deviations from sample means.

The real part operator in (2.2) is redundant when m = ñ, but not in other
cases of interest. We shall sometimes generalize m = ñ to

m ≤ ñ� m→ ∞ as n→ ∞�(2.5)

but more often contradict m = ñ by

m < ñ� 1
m

+ m

n
→ 0 as n→ ∞�(2.6)

so that F̂ζξ is based on a degenerating band of frequencies.

Under (2.6), F̂ζξ has principally been of interest in connection with esti-
mating the (cross-) spectral density of covariance stationary processes. As a
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matter of notation, if ζt, ξt, t = 0�±1� � � �, are jointly covariance stationary
with a (cross-) spectral density fξζ�λ�, the latter satisfies

Cov�ζ0�ξj�=E�ζ0−Eζ0��ξj−Eξ0�=
∫
�
fζξ�λ�eijλdλ� j=0�±1�����(2.7)

where � = �−π�π�. Under regularity conditions and (2.6), πnF̂ζζ�1�m�/m
consistently estimates fζζ�0� [see Brillinger (1975)]. When the latter is infi-
nite (so ζt has long-range dependence), Robinson (1994a, b) studied asymp-
totic properties of F̂ζζ�1�m�, with multivariate generalization given by Lobato

(1997). We are concerned, however, with F̂ζξ�l�m� when neither ζt nor ξt is
stationary, though one of them can be asymptotically stationary; the follow-
ing section describes such processes and their properties. An identity readily
deduced from (2.2),

F̂ζξ�l�m� = F̂ζξ�l� ñ� − F̂ζξ�m+ 1� ñ�� m < ñ�(2.8)

is important in our context because the second term on the right is sometimes
asymptotically dominated by the first; this is not the case when ζt� ξt are both
asymptotically stationary.

Relative to the literature on quadratic forms of stationary long-range depen-
dent processes, following Fox and Taqqu (1985), F̂ζξ�l� ñ� cover very special-

ized quadratic forms and we can envisage how F̂ζξ�l�m�, for general m, can
likewise be generalized. On the other hand the possible bilinear aspect, with
allowance for nonstationary ζt� ξt, or a mixture of asymptotically stationary
and nonstationary processes, represents in itself a considerable theoretical
development, not only when m < ñ [where indeed the forms considered in
the stationary literature do not even quite cover F̂ζξ�0�m�, say] but even
when m = ñ. As it is, our simple forms can be used to approximate ones with
a factor σ�λj� in the summand of (2.2), where σ�λ� is nonzero and sufficiently
well behaved at λ = 0, while the allowance for poles and zeros in σ�λ� would
affect the character of the results more interestingly, as would tapering, but
require a considerably more lengthy discussion. Our possibly bivariate set-
ting means that results for the averaged periodogram matrix are immediately
covered for vector series with possibly different integration orders. Note also
that while the stationary quadratic form literature focusses directly on limit
distributional properties, our leading concern is with comparison of F̂ζξ�l�m�
satisfying (2.5) and (2.6) through their first and second moments. These com-
parisons vary considerably with α and β, and to the extent that F̂ζξ�l�m�
approximates the “time domain” statistics F̂ζξ�l� ñ� [see (2.3), (2.4)], func-
tional limit theory for vector nonstationary fractional processes of Marinucci
and Robinson (2000) can be used to characterize limit distributional theory,
as mentioned in Section 6.
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3. Nonstationary sequences. We first define classes of weight seque-
nces which will generate classes of nonstationary, including asymptotically
stationary, processes.

Definition 3.1. ��α� is the class of sequences �φ�α�
t � t = 0�1� � � �� such that

φ
�0�
t = 1�t = 0��(3.1)

and for α > 0, as t→ ∞,

φ
�α�
t ∼ tα−1

!�α� �(3.2)

∣∣∣φ�α�
t −φ�α�

t+1

∣∣∣ = O(∣∣φ�α�
t

∣∣
t

)
�(3.3)

where “∼” means that the ratio of left- and right-hand sides tends to 1, and !�·�
is the Gamma function.

There is no loss of generality in the scale restrictions implicit in (3.1)
and (3.2). It is possible to extend the definition, and subsequent results of
the article, to cover α < 0, but we have focused on α ≥ 0 here due to space
limitations and because this covers the cases of greatest practical interest.
When 0 < α < 1, (3.2), (3.3) define �φ�α�

t � as quasi-monotonically convergent
to zero and of pure bounded variation in the sense of Yong [(1974), pages 2, 4].
In particular, (3.2) and (3.3) are satisfied by φ�α�

t = tα−1/!�α�, but only (3.2)
by φ�α�

t = tα−1/!�α� + tβ−11 (t even), for α − 1 < β < α (though it would be
possible to show that the results of following sections hold also for the latter
type of sequence).

For our purposes the class ��α� is motivated principally by the sequence
φ

�α�
t = #�α�

t , where

#
�α�
t = !�t+ α�

!�α�!�t+ 1� � t ≥ 0�(3.4)

with the conventions !�0� = ∞, !�0�/!�0� = 1, given by the formal expansion

#−α =
∞∑
t=0

#
�α�
t L

t�(3.5)

where L is the lag operator and # = 1 − L is the difference operator. Using
Stirling’s formula, we have �#�α�

t � ∈ ��α�, for all α ≥ 0. For integer α, #α is
familiar from Box and Jenkins’ (1971) “ARIMA” modelling of nonstationary
series. In particular,

#
�1�
t = 1� t ≥ 0�(3.6)

is used to generate “unit root” series in their framework. The somewhat special
nature of (3.4) relative to (3.2) and (3.3), even when α is fixed at 1, is notable in
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view of the vast econometric literature focussing on (3.6). In fact, some of our
work involving α = 1 (see Theorem 4.3) requires some strengthening of (3.3)
[see (4.15) and (4.18)], but still greater generality than (3.6) is afforded. When
α is nonintegral, #α is the fractional difference operator arising in modelling
of “FARIMA” series. A cosinusoidal modification of Definition 3.1 would enable
study of stationary or nonstationary cyclic or seasonal behavior.

Practical interest in ��α� will further be strengthened by means of the fol-
lowing lemma. In the sequel we write φt in place of φ�α�

t , dropping the super-
script; the dependence on α will be indicated by the statement �φt� ∈ ��α�.

Lemma 3.1. Let �φt� ∈ ��α�, �ψt� ∈ ��β�, α�β ≥ 0. Then

χt
def=

t∑
j=0

φjψt−j ∈ ��α+ β��(3.7)

The next lemma [see also Kokoszka and Taqqu (1996), Lemma 3.1], describ-
ing properties of the complex partial sum,

Suv�λ� α� =
v∑
t=u
φte

itλ� �φt� ∈ ��α��

for λ real, will be of considerable use in the sequel. Throughout the article,
C denotes a generic positive constant.

Lemma 3.2. Let �φt� ∈ ��α�. Then for 0 ≤ u < v, 0 ≤ �λ� ≤ π,
Suv�λ�0� = 1�u = 0��(3.8)

�Suv�λ� α�� ≤ Cmin
(
vα�

�u+ 1�α−1

�λ� �
1

�λ�α
)
� 0 < α ≤ 1�(3.9)

�Suv�λ� α�� ≤ Cmin
(
vα�

vα−1

�λ�
)
� α > 1�(3.10)

Also, for 0 < α < 1, as λ→ 0+,

�e�S0∞�λ� α�� ∼ cos
απ

2
λ−α� �m�S0∞�λ� α�� ∼ sin

απ

2
λ−α�(3.11)

Short range dependent processes are given as follows.

Definition 3.2. I is the class of zero-mean scalar covariance stationary
sequences �ηt� t = 0�±1� � � �� having spectral density fηη�λ� [cf. (2.7)] that is
positive and continuous at λ = 0.

The zero-mean restriction is costless in our discussion of F̂ζξ�l�m� when
l = 1. Robinson and Marinucci (2000) study the averaged periodogram in case
of additive time trends, though they obtain only upper bounds rather than
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our precise limits in Sections 4 and 5, and under stronger conditions on the
stochastic component. We generate long-range dependent processes as follows.

Definition 3.3. For α ≥ 0, I�α� is the class of processes �ζt� t = 0�±1� � � ��
such that for �ηt� ∈ I and �φt� ∈ ��α�,

ζt =
t∑

s=−∞
φt−s

{
ηs1�s ≥ 1�}�(3.12)

Lemma 3.3. Let �ζt� ∈ I�α� and let

ξt =
t∑

s=−∞
ψt−s

{
ζs1�s ≥ 1�}�(3.13)

where �ψt� ∈ ��β�. Then �ξt� ∈ I�α+ β�.

We can thus view processes in I�α� as having possibly been passed through
a succession of �-filters, whether by nature or the statistician, including the
difference filter given in (3.4), (3.5).

Notice that Definition 3.3 implies ζt = 0, t ≤ 0, as a consequence of ζt
being �η1� � � � � ηt�-measurable, which is itself motivated by the fact that, for
�φt� ∈ ��α�, the untruncated process

ρt =
t∑

s=−∞
φt−sηs(3.14)

is not well defined in the mean square sense when α ≥ 1
2 . However, for α < 1

2 ,
ρt is, unlike ζt, covariance stationary, for example when α = 0, we have ζt =
ηt1�t ≥ 1�. We have preferred to give a single definition for all α ≥ 0; for
α < 1

2 , ζt is “asymptotically covariance stationary” in a sense indicated in
the following lemma [see also Parzen (1963), Dahlhaus (1997)] which also
describes second order properties in the “purely” nonstationary case α ≥ 1

2 .
Define

φ�λ� =
∞∑
s=0

φse
isλ� φt�λ� =

t−1∑
s=0

φse
isλ�(3.15)

Lemma 3.4. Let �φt� ∈ ��α�, �ηt� ∈ I.
(i) Let 0 ≤ α < 1

2 . Then �ρt� is covariance stationary with spectral density

fρρ�λ� = �φ�λ��2fηη�λ�, satisfying
fρρ�λ� ∼ fηη�0�λ−2α as λ→ 0+�(3.16)

The “time varying spectral density” of ζt� f
�t�
ζζ �λ� = �φt�λ��2fηη�λ� satisfies

lim
λ+�λt�−1→0+

{
f
�t�
ζζ �λ�

/
fρρ�λ�

}
= 1(3.17)
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and in addition we have, uniformly in j ≥ 0,

Cov�ζt� ζt+j� − Cov�ρ0� ρj� = O�tα−�1/2���(3.18)

(ii) Let α = 1
2 . Then for all j ≥ 0, as t→ ∞,

Cov�ζt� ζt+j�
log t

→ 2fηη�0��(3.19)

where the convergence is uniform in j = o�log t�.
(iii) Let α > 1

2 . Then for all j ≥ 0, as t→ ∞,

t1−2αCov�ζt� ζt+j� →
2πfηη�0�

!�α�2�2α− 1� �(3.20)

where the convergence in uniform in j = o�t2α−1� for 1
2 < α < 1, j = o�t/ log t�

for α = 1, and j = o�t� for α > 1.

Note that (3.17) holds despite f�t�
ζζ �λ� having no pole at λ = 0 for finite t even

when α > 0, unlike fρρ�λ�. By comparison (3.18) is a weak result, but a time
domain version of (3.17) would require stronger conditions, in effect on fηη�λ�
for all λ, an approximation for Cov�ρt� ρt+j� as j → ∞ can be influenced by
a pole in fηη�λ� for some λ �= 0, for example. Lemma 3.4 foreshadows the
main results of the paper in its reliance on only mild, local-to-zero, conditions
on fηη�λ�.

4. The mean of the averaged periodogram. We consider the statistic
F̂ζξ�l�m� in (2.2), where �ζt� ∈ ��α�, �ξt� ∈ ��β� and

0 ≤ α ≤ β� β ≥ 1
2 �(4.1)

Thus only ζt can be asymptotically stationary. Strictly speaking, the case
where both are asymptotically stationary in our sense has not been covered
in the literature, but in view of Lemma 3.4 it is predictable that the results
will be too similar to the stationary cases covered by Robinson (1994a, b),
Lobato (1997) to be worth reporting. Of course when α ≥ 1

2 , our results for
(4.1) include the case where ζt ≡ ξt, the same nonstationary process. There is
no loss of generality in the requirement α ≤ β.

We introduce the following definition.

Definition 4.1. I2 is the class of jointly covariance stationary bivariate
processes �ηt� θt� t = 0�±1� � � �� such that �ηt� ∈ I, �θt� ∈ I and fηθ�λ� is
continuous at λ = 0.

With ζt generated by (3.12) we take

ξt =
t∑

s=−∞
ψt−s

{
θs1�s ≥ 1�}�(4.2)

where �ψt� ∈ ��β�.
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Definition 4.2. I�α�β� is the class of bivariate processes �ζt� ξt� t =
0, ±1� � � �� such that (3.12) and (4.2) hold with �ηt� θt� ∈ I2.

Depending on the values of α and β, E�F̂ζξ�0�m�� may or may not dif-

fer negligibly from E�F̂ζξ�1�m��, and so in view of (2.3) we first estimate
E�ζ̄ξ̄� and, more generally, the covariance structure of discrete Fourier trans-
forms wζ�λj�, wξ�λk� at fixed j� k, to extend results of Künsch (1986), Hurvich
and Beltrao (1993), Hurvich and Ray (1995), Robinson (1995a). Denote by the
superscripts R and I the real and imaginary part, respectively.

Lemma 4.1. Let �ζt� ξt� ∈ I�α�β�. Then for �A�B� = �R�R�, �R�I�� �I�R�,
�I� I�,

lim
n→∞n

−α−βE
{
wAζ �λj�wBξ �λk�

}
= fηθ�0�

∫ 1

0
UA
j �z�α�UB

k �z�β�dz�(4.3)

where UA
j �z�α� and UB

j �z�α� are, respectively, the real and imaginary parts of

Uj�z�α� =
1�α > 0�
!�α�

∫ 1−z

0
yα−1e2πij�y+z� dy+ 1�α = 0�e2πijz�(4.4)

Thus,

lim
n→∞n

1−α−βE�ζ̄ξ̄� = 2πfηθ�0�
!�α+ 1�!�β+ 1��α+ β+ 1� �(4.5)

For finite m, Lemma 4.1 can be applied to calculate the limit E�F̂ζξ�l�m��.
Under (2.5) or (2.6) the behavior of E�F̂ζξ�l�m�� varies significantly across
the following five mutually exhaustive subsets of (4.1):

α ≥ 0� β ≥ 1
2 � α+ β < 1�(4.6)

α > 0� β ≥ 1
2 � α+ β = 1�(4.7)

α = 0� β = 1�(4.8)

α = 0� β > 1�(4.9)

α > 0� β > 1
2 � α+ β > 1�(4.10)

In (4.6) and (4.7) ζt is asymptotically stationary and β is small enough that
the combined memory α+β of ζt and ξt is less than one in (4.6), while in (4.7) it
equals one but the familiar I�0�/I�1� case (4.8) of the econometric literature is
excluded. In (4.9) and (4.10) it exceeds one. In (4.10), β > 1

2 is actually implied
by α+ β > 1, in view of (4.1).

Consider first case (4.6). Define

ψ�λ� =
∞∑
t=0

ψte
itλ�

which [like φ�λ�] is infinite at λ = 0 but is well defined for λ �= 0, mod�2π�,
from Lemma 3.2.
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Theorem 4.1. Let �ζt� ξt� ∈ I�α�β� under �4�6�. Then for l = 0�1,

lim
n→∞E

{
F̂ζξ�l� ñ�

} =
∫
�
φ�λ�ψ�−λ�fηθ�λ�dλ�(4.11)

where the right side is finite, and under �2�6�,

lim
n→∞λ

α+β−1
m E

{
F̂ζξ�l�m�} = 2fηθ�0�

cos�α− β�π2
1 − α− β �(4.12)

Neither (4.11) nor (4.12) is affected by mean correction. Most interestingly,
the results are identical to those which may be obtained if both ζt and ξt
are stationary or asymptotically stationary, so α�β < 1

2 , which automatically
implies α + β < 1; thus sufficiently small memory in ζt can compensate for
the nonstationarity in ξt, though for given α+ β (4.6) has the potential for a
larger α−β and consequently smaller cos�α−β�π/2 factor in (4.12) than when
0 < α�β < 1

2 . The latter factor is positive, and so the limit (4.12) shares the
sign of fηθ�0� (which is real-valued by the continuity assumption and oddness
of the quadrature spectrum).

Theorem 4.2. Let �ζt� ξt� ∈ I�α�β� under �4�7�. Then for l = 0�1,

lim
n→∞

1
log n

E
{
F̂ζξ�l� ñ�

} = 2fηθ�0� sinαπ = 2fηθ�0� sinβπ�(4.13)

and under �2�5�,

lim
n→∞

1
logm

E
{
F̂ζξ�l�m�} = 2fηθ�0� sinαπ = 2fηθ�0� sinβπ�(4.14)

The degeneration condition (2.6) now leaves little difference between the
expectations of the broad- and narrow-band statistics, in fact for m ∼ na,
0 < a < 1, they have the same convergence rates. Note that just as Theorem 4.1
covered the case β = 1

2 , the border of the nonstationary region, so Theorem 4.2
covers α = β = 1

2 .
Though Theorem 4.2 does not cover (4.8), putting α = 0 or β = 1 annihilates

the limits (4.13) and (4.14), suggesting a faster rate of convergence under (4.8).
This is indeed the outcome, implying that the I�0�1� case (4.8), which looms
large in the econometric literature within an autoregressive framework, is
also rather special within the fractional domain. These results do require a
strengthening of the condition on �ζt� ξt�. Define the function

hηθ�λ� =
1

2π

∞∑
j=−∞

�ω−�j� −ω�j�+1� cosjλ� λ ∈ ��

where

ωj =
∞∑
l=�j�

γl sign�j�� γj = Cov�η0� θj�� j = 0�±1� � � � �

with the convention that sign(0) is negative.
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Theorem 4.3. Let �ζt� ξt� ∈ I�0�1�, so �4�8� holds.
(i) If also hηθ�λ� is integrable on � and

∞∑
j=0

�ψj − ψj+1� <∞�(4.15)

then

lim
n→∞E

{
F̂ζξ�0� ñ�

} =
∞∑
j=0

ψjγ−j�(4.16)

lim
n→∞E

{
F̂ζξ�1� ñ�

} = 1
2�ω0 −ω1� +

∞∑
j=0

�ψj − 1�γ−j�(4.17)

(ii) If also hηθ�λ� is continuous at λ = 0, �2�6� holds and

∞∑
j=0

�ψj − 1� <∞�(4.18)

then

lim
n→∞E

{
F̂ζξ�0�m�} = πfηθ�0��(4.19)

lim
n→∞

n

m
E
{
F̂ζξ�1�m�} = 2πhηθ�0� + 4πfηθ�0�

∞∑
j=0

�ψj − 1��(4.20)

It is sufficient for the conditions on hηθ�λ� that
∑ �jγj� < ∞, which is

implied if fηθ�λ� is differentiable with derivative satisfying a Lipschitz con-
dition of degree greater than 1

2 [see Zygmund (1977), page 240] but a global
smoothness condition is not implied, though by the Riemann–Lebesgue lemma
ω−�j� −ω�j�+1 → 0 as �j� → ∞. Note that if γj ≡ −γj (as is true if ηt ≡ θt , for
example), we have hηθ�λ� ≡ fηθ�λ�, so the additional conditions are vacuous.

The mean-corrected narrow-band statistic F̂ζξ�1�m� [but not F̂ζξ�0�m�] has
expectation of smaller order than that of either full band statistic. Sensitivity
is found, except in (4.19), to the precise values of the sequence �ψt�, rather
than simply their asymptotic value (in this case, 1). In the usual case ψt ≡ 1,
stressed in the econometric literature, (4.16), (4.17) are already known though
seemingly only under more global frequency domain conditions. Condition
(4.15) is only slightly stronger than (3.3) since we have α = 1 in Definition
3.1, while (4.18) is stronger than (4.15), by the triangle inequality. Note that
(4.19) can be interpreted as a limit of (4.12) with l = 1, on putting α = 0 and
then letting β tend to 1.
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Theorem 4.4. Let �ζt� ξt� ∈ I�0� β�� β > 1, so �4�9� holds.
(i) If also �ω−1� <∞,

lim
n→∞n

1−βE
{
F̂ζξ�0� ñ�

} = 0�(4.21)

lim
n→∞n

1−βE
{
F̂ζξ�1� ñ�

} = −2πfηθ�0�
!�β+ 2� �(4.22)

(ii)

lim
n→∞E

{
F̂ζξ�0� ñ�

} =
∞∑
j=0

ψjγ−j(4.23)

if the right side is finite.

Part (i) of the theorem shows that E�n−1 ∑
t ζtξt� is of smaller order than

E�ζ̄ξ̄�, while the former is shown in part (ii) to be finite as long as the γ−j decay
fast enough, as is the case for any β > 1 if �ζt� ξt� is an “ARMA” process. Mean-
correction now affects the order of magnitude of the expectation of full-band
statistics. The present case (4.9) is somewhat anomalous, the discontinuity
at α = 0 in Definition 3.1 taking effect, and by way of contrast with Theorems
4.1–4.3 it can be inferred that the F̂�l�m� can actually have larger expectation
for m < ñ; we have been unable to obtain an attractive result in this case.

The other way to achieve α+β > 1 is to allow α > 0, and now the choice of
m makes no difference.

Theorem 4.5. Let �ζt� ξt
} ∈ I�α�β� under �4�10�. Then under �2�5�,

lim
n→∞n

1−α−βE
{
F̂ζξ�0�m�} = 2πfηθ�0�

!�α�!�β��α+ β��α+ β− 1� �(4.24)

lim
n→∞n

1−α−βE
{
F̂ζξ�1�m�} = A�α�β�2πfηθ�0�

!�α�!�β� �(4.25)

where

A�α�β� = αβ�α+ β− 1� − α�α− 1� − β�β− 1�
αβ�α+ β− 1��α+ β��α+ β+ 1� �

and thus

lim
n→∞n

1−α−βE
{
F̂ζξ�m+ 1� ñ�} = 0�(4.26)

The distinctive feature of Theorem 4.5 is that E�F̂ζξ�l� ñ�� is dominated by
an arbitrarily slowly increasing number of low frequency components. As in
some of our earlier results, the rate of convergence is improved if ηt and θt
are fully incoherent at zero frequency, not necessarily at all frequencies. Note
that only (2.5) is imposed, so that we also cover the case where m increases
as fast as n.
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5. The variance of the averaged periodogram. Unlike in the case of
the mean, we can give a single theorem to describe the variance of F̂ζξ�l�m�
when

0 ≤ α ≤ β� β > 1
2 �(5.1)

though different proofs are needed over different portions of this region. Thus
we now omit the borderline case α = 0� β = 1

2 , which seems too special to
include in view of the particular treatment it requires.

We need to extend some earlier definitions.

Definition 5.1. I3 is the class of jointly fourth-order stationary bivariate
processes �ηt� θt� t = 0�±1� � � ��, such that �ηt� θt� ∈ I2 and the cumulant
spectral density fηθηθ�λ�µ�ω� given by

Cum�ηs� θt� ηu� θv� =
∫
�

∫
�

∫
�
fηθηθ�λ�µ�ω�ei�t−s�λ+i�u−s�µ+i�v−s�ω dλdµdω

is continuous at λ = µ = ω = 0 and satisfies

sup
µ�ω∈�

∫
�
�fηθηθ�λ�µ�ω��2 dλ <∞�(5.2)

Definition 5.2. I4 is the class of jointly fourth-order stationary bivariate
processes �ηt� θt� t = 0�±1� � � �� such that �ηt� θt� ∈ I3 and fηη�λ�� fθθ�λ� are
square integrable.

Definition 5.3. For j = 3�4� Ij�α�β� is the class of bivariate processes
�ζt� ξt� t = 0�±1� � � �� such that (3.12) and (4.2) hold for �ηt� θt� ∈ Ij.

We introduce, for α�β� γ� δ > 0,

p�x�y�α�β� = 2π
!�α�!�β�

∫ y
0
zα−1�z+ x�β−1 dz� 0 ≤ y ≤ 1 − x�

P�α�β� γ� δ� = 2
∫ 1

0

∫ 1−x

0
p�x�y�α�β�p�x�y�γ� δ�dydx�

q�x�α�β� = 2π
!�α�!�β+ 1�

∫ x
0
�x− y�α−1�1 − y�β dy�

Q�α�β� γ� δ� =
∫ 1

0
q�x�α�β�q�x�γ� δ�dx�
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and for β > 1
2 ,

P�0� β�β�0� = 0� P�0�0� β�β� = �2π�2
!�β�22β�2β− 1� �

Q�0� β�β�0� = �2π�2
!�2β+ 2� �

Q�0�0� β�β� = �2π�2
!�β�!�β+ 1�

∫ 1

0

∫ x
0
�x− y�β−1�1 − y�β dydx�

Also, define

R�α�β� γ� δ� = �2π�2
!�α+ 1�!�β+ 1��α+ β+ 1�!�γ + 1�!�δ+ 1��γ + δ+ 1� �

S�α�β� γ� δ� = P�α�β� γ� δ� − 2Q�α�β� γ� δ� +R�α�β� γ� δ��

Theorem 5.1. Let �ζt� ξt� ∈ I3�α�β� for α > 1
2 , β > 1

2 and �ζt� ξt� ∈
I4�α�β� for 0 ≤ α ≤ 1

2 � β >
1
2 . Then under �2�6�,

lim
n→∞n

2�1−α−β� Var
{
F̂ζξ�0�m�} = f2

ηθ�0�P�α�β�β� α�
+fηη�0�fθθ�0�P�α� α�β�β��

(5.3)

lim
n→∞n

2�1−α−β� Var
{
F̂ζξ�1�m�} = f2

ηθ�0�S�α�β�β� α�
+fηη�0�fθθ�0�S�α� α�β�β��

(5.4)

lim
n→∞n

2�1−α−β� Var
{
F̂ζξ�m+ 1� ñ�} = 0�(5.5)

As (5.3)–(5.5) indicate, throughout the region (5.1) Var�F̂ζξ�l�m�� is asymp-
totically dominated by the contribution from an arbitrarily slowly increas-
ing number of low frequencies. The variance is generally increased when
fηθ�0� �= 0, though this does not affect the rate of convergence, or divergence.
The square integrability requirement on fηη and fθθ (and thence on fηθ) when
α ≤ 1

2 seems unavoidable and is, for example, essential for sample autocovari-
ances of stationary sequences to be n1/2-consistent [see Hannan (1976)]. The
fourth cumulant requirement seems mild by the standards of such conditions
in the literature; (5.2) is milder than boundedness of fηθηθ, but stronger than
square integrability. We suspect that it could be further relaxed, but the proof
would further lengthen the paper and our current condition is automatically
satisfied when ηt� θt are Gaussian. In any case the absence from the limiting
variances (5.3) and (5.4) of any fourth cumulant contribution is fortunate, and
also distinctive from the stationary situation.

6. Cointegration application. We define observable sequences �yt� zt,
t = 0�1� � � �� such that (1.1) holds, or equivalently

yt = ζt + νξt� zt = ξt�(6.1)
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where ν is unknown and �ζt� ξt� ∈ I�α�β� under (4.1) with

α < β�(6.2)

From (6.1), yt and zt have a common, nonstationary, component ξt, while yt
has an additional component ζt that can be nonstationary or asymptotically
stationary. It is readily possible to apply the results of the preceding sections
to a model with additional components in yt and zt, with smaller memory
parameters, and to a model with vector observables of arbitrary dimension,
but we keep the setting as simple as possible to conserve on notation. We
deduce (1.1) from (6.1) and as discussed in Section 1 consider estimating ν by

ν̂l = F̂yz�l� ñ�/F̂zz�l� ñ�� l = 0�1�

and also by

ν̃l = F̂yz�l�m�/F̂zz�l�m�� l = 0�1� m < ñ�

so that ν̂l is the LSE with �l = 1� or without �l = 0� intercept, and under (2.6)
ν̃l is the NBLSE, likewise mean-corrected or not. When (2.5) holds withm∼ cn,
0 < c < 1, then ν̃l is based on a nondegenerate band of frequencies, fol-
lowing the idea of Hannan (1963). Phillips (1991) considered a spectral form
of estimate in cointegration with α = 0 or β = 1, though his proofs con-
cerned weighted autocovariance estimates rather than averaged periodogram
ones, and in a nonstationary environment these are not necessarily close
asymptotically.

Our main interest is in comparison of ν̂l� ν̃l across l�m in terms of bias and
convergence rates but we can also attempt to characterize limit distributions.
It follows from Theorems 4.5 and 5.1 that n1−2βF̂ξξ�l� ñ� and, when α+β > 1,

n1−α−βF̂ζξ�l� ñ�, have mean and variance which both have finite but nonzero
limits, motivating, though not implying, the following assumption which is
unprimitive but eases the exposition.

Assumption 6.1. For l = 0�1, there exist random variables �l�β��@l�α�β�
such that �l�β� �= 0 almost surely and

n1−2βF̂ξξ�l� ñ�
d→ �l�β�� β > 1

2 �(6.3)

n1−α−βF̂ζξ�l� ñ�
d→ @l�α�β�� α+ β ≥ 1�(6.4)

We can deduce (6.3) and (6.4) from the continuous mapping theorem if there
exist jointly dependent processes U�r�α��V�r�β��0 ≤ r ≤ 1, such that{

n1/2−αζ�nr�� n
1/2−βξ�nr�

} ⇒ {
U�r�α��V�r�β�} as n→ ∞� 0 ≤ r ≤ 1�(6.5)

where “⇒” denotes a suitable notion of weak convergence [see Billingsley
(1968), pages 30, 111–123]. Then �0�β� = ∫ 1

0 V�r�β�2 dr, �1�β� = �0�β� −
�∫ 1

0 V�r�β�dr�2,@0�α�β�=
∫ 1
0 U�r�α�V�r�β�dr,@1�α�β�−

∫ 1
0 U�r�α�V�r�β�dr.

Sufficient conditions for (6.5) given by Marinucci and Robinson (2000) [which
develops earlier work of Akonom and Gourieroux (1987), Silveira (1991)],
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are that φt�ψt are given by #t�α�� #t�β�, while �ηt� θt�′ = ∑∞
j=−∞Ajεr−j,

the Aj being 2×2 matrices such that
∑∞
j=0

∑∞
�k�=j+1 �Ak�2 < ∞ where �·�

is Euclidean norm, the εt being independent and identically distributed with
zero mean and finite qth moment for q > max�2�2/�2α−1��2/�2β−1��, while∑∞
j=−∞Aj and the covariance matrix of εt have full rank. These conditions

are implied by Gaussian “FARIMA” �ζt� ξt�, such that �ηt� θt� is a station-
ary and invertible “ARMA” sequence ,while on the other hand implying that
�ζt� ξt� ∈ I4�α�β�. Then for α�β > 1

2 we have (6.5) with U�V being “Type II
fractional Brownian motion” [see Marinucci and Robinson (1999)],

�U�r�α��V�r�β�� =
∫ r
0

{�r− s�α−1 dB1�s�� �r− s�β−1 dB2�s�
}
�(6.6)

where B�r� = �B1�r��B2�r��′ is 2×1 Brownian motion with EB�r� = 0 and

E
{
B�r1�B�r2�′

} = 2πmin�r1� r2�
[
fηη�0� fηθ�0�
fηθ�0� fθθ�0�

]
�

When α ≤ 1
2 �V is given as in (6.6) under a simplified version of the conditions.

We cannot so characterize @l�α�β� when α+β > 1 but 0 < α ≤ 1
2 since on the

one hand the continuous mapping theorem does not apply, while on the other
ζt cannot be approximated by a semimartingale. The latter property holds
when α = 0� β = 1 [case (4.8)] where, when ψt ≡ 1,

@0�0�1� =
∫ 1

0
B2�1�dB1�r�+ω0� @1�0�1� = @0�0�1�−B1�1�B2�1�−πfηθ�0��

ω0 representing the limiting expectation of F̂ζξ�0� ñ� from (4.16), and 1
2�ω0 −

ω1� = ω0 − πfηθ�0� that of F̂ζξ�1� ñ�, from (4.17).

Proposition 6.1. Let �ζt� ξt� ∈ I4�α�β� under �4�6� and let �6�1�, �6�2� and
�6�3� of Assumption 6�1 hold. Then as n→ ∞,

n2β−1�ν̂l − ν� →d

∫
� φ�λ�ψ�λ�fηθ�λ�dλ

�l�β�
� l = 0�1�

and under �2�6�,

nβ−αmα+β−1�ν̃l − ν� →d

2�2π�1−α−βfηθ�0�
cos�β− α��π/2�

1 − α− β
�l�β�

� l = 0�1�

Proof. Write

âl = F̂ζξ�l� ñ�� b̂l = F̂ξξ�l� ñ�� ãl = F̂ζξ�l�m�� b̃l = F̂ξξ�l�m��
Thus ν̂l − ν = âl/b̂l� ν̃l − ν = ãl/b̃l. Now b̃l = b̂l − �b̂l − b̃l − E�b̂l − b̃l�� −
E�b̂l − b̃l�. The term in braces is op�n2β−1� from (5.5) of Theorem 5.1, while
from (4.24) and (4.25) of Theorem 4.5, E�b̂l − b̃l� = o�n2β−1�. Thus from
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Assumption 6.1 we have n1−2βb̃l, n1−2βb̂l →d �l�β�. Next, from Theorem 5.1,
âl = Eâl + Op�nα+β−1� and ãl = Eãl + Op�nα+β−1�, so that λα+β−1

m ãl =
λ
α+β−1
m Eãl + Op�mα+β−1�. The proof is then routinely completed by means

of Theorem 4.1. ✷

Proposition 6.2. Let �ζt� ξt� ∈ I4�α�β� under �4�7� and let �6�1�, �6�2� and
�6�3� of Assumption 6�1 hold. Then as n→ ∞,

n2β−1

log n
�ν̂l − ν�

d→ 2fηθ�0� sinβπ

�l�β�
� l = 0�1�

and under �2�5�,
n2β−1

logm
�ν̃l − ν�

d→ 2fηθ�0� sinβπ

�l�β�
� l = 0�1�

Proof. From Theorem 5.1, âl −Eâl� ãl −Eãl are Op�1�, so that âl/ log n,
ãl/ logm→p 2fηθ�0� sinβπ by Theorem 4.2, and the remaining proof follows
from that of Proposition 6.1. ✷

Proposition 6.3. Let �ζt� ξt� ∈ I4�0�1� and let �6�1�, Assumption 6�1 and
the additional assumptions of Theorem 4�3 hold. Then as n→ ∞,

n�ν̂l − ν�
d→ @l�0�1�

�l�1�
� l = 0�1�

and under �2�6�,

n�ν̃l − ν�
d→ @l�0�1� − 1

2�ω0 −ω1� −
∑∞
j=0�ψj − 1�γ−j

�l�1�
� l = 0�1�(6.7)

Proof. We have âl →d @l�0�1� by Assumption 6.1. Write ãl = �âl−Eâl�−
�âl − ãl − E�âl − ãl�� + Eãl. For l = 1, the last two terms are respectively
op�1� by Theorem 5.1, and O�m/n� by (4.20) of Theorem 4.3, whereas by
Assumption 6.1 and (4.17) of Theorem 4.3, â1 −Eâ1 converges in distribution
to the numerator on the right of (6.7). For l = 0, the only difference is that
Eã0 → πfηθ�0� from (4.19), and since Eâ0 → ∑∞

j=0ψjγ−j we get the same
correction term in the numerator as when l = 1. The proof is again completed
by that of Proposition 6.1. ✷

Proposition 6.4. Let �ζt� ξt� ∈ I4�0� β�, for β > 1, and let �6�1� and
Assumption 6�1 hold. Then as n→ ∞, for l = 0�1,

nβ�ν̂l − ν�
d→ @l�0� β�

�l�β�
�

The proof is routine.
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Proposition 6.5. Let �ζt� ξt� ∈ I4�α�β�, for α > 0, α+β > 1, and let �6�1�,
�6�2� and Assumption 6�1 hold. Then as n→ ∞, for l = 0�1,

nβ−α�ν̂l − ν�
d→ @l�α�β�

�l�β�
�(6.8)

and under �2�5�,
nβ−α�ν̃l − ν̂l�

p→ 0�(6.9)

and thus

nβ−α�ν̃l − ν�
d→ @l�α�β�

�l�β�
�(6.10)

Proof. The proof of (6.8) is routine, and (6.10) will follow from (6.8) and
(6.9). To prove (6.9), write ν̃l − ν̂l = �ãl − âl�/b̂l + ãl�b̃−1

l − b̂−1
l �. Now ãl− âl =

op�nα+β−1� and ãl = Op�nα+β−1� by Theorem 4.5, while b̃−1
l −b̂−1

l = �b̂lb̃l�−1�b̂l−
b̃l� = op�n1−2β� by the proof of Proposition 6.1 and Assumption 6.1. ✷

Proposition 6.4 has convergence rate compatible with those of Propositions
6.3 and 6.5, but only deals with the full-band statistics ν̂l, in view of a remark
following Theorem 4.4. Proposition 6.5 shows that when α > 0 and the com-
bined memory α + β of the observables and cointegrating error exceeds that
of the usual case α = 0� β = 1� ν̃l has the same convergence rate and limit
distribution as ν̂l, so that nothing asymptotically is lost by neglecting high
frequencies, even all those outside a band around zero that decays arbitrarily
slower than n−1. In Propositions 6.1–6.3, ν̃l is found to have the capacity to
beat ν̂l when it is less affected by the “bias” due to correlation between ζt and
ξt in (6.1). In Proposition 6.3, when α = 0, β = 1, rates of convergence are
identical but ν̃1 eliminates the “second-order bias” [see Phillips (1991)] namely
the expectation of @1�0�1�; more particularly, the “second order bias” of ν̃1 is
only O�m/n2�, which is of smaller order than 1/n under (2.6). Monte Carlo
simulations [see Robinson and Marinucci (1997)] demonstrate the consequent
superiority of ν̃1 in smallish samples. (Note that ν̃0 does not share this desir-
able property of ν̃1.) In Proposition 6.2, α > 0, β < 1 but again α+ β = 1, and
here the comparison depends on m. If m increases at the same rate as n, as
permitted by (2.5), so logm ∼ log n, then ν̂l and ν̃l have the same convergence
rate and limit distribution. On the other hand if (2.6) holds there are essen-
tially two possibilities of interest. If m ∼ cnd, for c > 0�0 < d < 1, then ν̃l
has the same convergence rate as ν̂l but it is numerically shrunk towards ν.
If logm = o�log n�, for example if m = log log n, then ν̃l converges faster than
ν̂l. This latter phenomenon is more dramatically evident in Proposition 6.1,
where, with α+β < 1, ν̃l’s bias-reducing qualities really come to the fore; the
more slowly m increases the better.

A different definition of nonstationary fractional processes (which would
lead to different limit distributional forms for our estimates) entails integer
differences having stationary long memory, or negative memory with invert-
ibility. Chan and Terrin (1995) [see also Sowell (1990)] nest this kind of
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behavior in a vector autoregression (AR) and study the LSE of the AR coeffi-
cients, while Marinucci (2000) studies estimates similar to those in our paper,
replacing averaged periodograms by weighted sums of sample autocovari-
ances. Jeganathan (1999, 2001) also employs this definition of fractional non-
stationarity, considering cointegration in a first order AR model driven by a
simple parametric fractional stationary process, considering also the possibil-
ity that the AR coefficient is less than one in absolute value. He establishes
asymptotic properties of maximum likelihood estimates based on a general but
known distributional form for the innovations, the estimates of the cointegrat-
ing coefficient ν having a mixed normal asymptotic distribution, leading to a
standard, χ2, null limit distribution for Wald statistics for testing hypotheses
on ν, analogous to results of Phillips (1991) in case α = 0, β = 1 is known. The
convergence rates of his estimates of ν correspond in our setting to nβ−α for
β−α > 1

2 � �n/ log n�1/2 for β−α = 1
2 and n1/2 for 0 < β−α < 1

2 . We believe such
rates are optimal over our broader �α�β� space, and ν̂l and ν̃l achieve them
when α+β > 1 and β−α ≥ 1

2 , or when α = 0� β = 1 (see Propositions 6.3–6.5)
but not otherwise (see Propositions 6.1 and 6.2). In fact, as Theorem 4.1 hints,
the nβ−α rate, for any α�β such that 0 ≤ α < β, may be achievable by the
NBLSE with m fixed as n→ ∞, for example ν̃1 with m = 1; when α + β ≤ 1
such that �α�β� �= �0�1� this estimate converges faster than our estimates
which assume m → ∞, essentially because even less bias is incurred. How-
ever, such an estimate is likely to be unstable with an unusually dispersed
limit distribution, for example in case m = 1 and random walk Gaussian zt,
its denominator is proportional to a χ2

2 variate. Alternatively, the limitation
of convergence rates in Propositions 6.1 and 6.2 due to coherence between ζt
and zt raises the possibility of achieving the optimal rates by a form of bias-
correction. However this would require estimating the constant numerators in
the limit distributions, which in turn would necessitate computing estimates
of α�β and of other nuisance parameters/functions, while theoretical justifi-
cation would require further assumptions and considerable extra proof.This
kind of effort seems better directed to achieving and justifying estimates of ν
which not only achieve optimal rates but also the desirable mixed normal limit
distributional behavior for parametric or semiparametric forms of our vector
nonstationary processes. Such estimates require sufficiently good preliminary
estimates of ν, for which our present estimates suffice, but we also believe
these are of interest in themselves, the LSE for its computational simplicity
and familiarity, and the NBLSE for its bias-reducing property and illustration
of the dominating importance of low frequencies in cointegration analysis.

7. Proofs for Section 3.

Proof of Lemma 3.1. The proof when α = 0 and/or β = 0 is trivial so
assume α > 0� β > 0. By integral approximation we have

χt ∼
tα+β−1

!�α�!�β�
∫ 1

0
xα−1�1 − x�β−1 dx ∼ tα+β−1

!�α+ β�
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to verify (3.2). For 0 < r < t we may write

χt − χt+1 =
r∑
s=0

φs�ψt−s − ψt+1−s� −φr+1ψt−r +
t−r−1∑
s=0

�φt−s −φt+1−s�ψs�

Taking r = �t/2�, all three terms are easily seen to be O�tα+β−2� = O��χt�/t�,
to verify (3.3). ✷

Proof of Lemma 3.2. The proof of (3.8) is trivial so consider (3.9) and
(3.10) with α > 0. Drop the argument α from Suv�λ� α� and omit the triv-
ially easy case v = u + 1. Obviously �Suv�λ�� ≤ Cvγ. For α ∈ �0�1� write, for
u < s < v,

Suv�λ� =
s−1∑
t=u
φte

itλ +
v−1∑
t=s

�φt −φt+1�
t∑
r=s
eirλ +φv

v∑
t=s
eitλ

by summation-by-parts. Thus because∣∣∣∣ t∑
r=s
eirλ

∣∣∣∣ ≤ C�t− s�
1 + �t− s��λ� � �λ� ≤ π�(7.1)

[see, e.g., Zygmund (1977), page 51], (3.2) and (3.3) imply that �Suv�λ�� ≤
C�sα + sα−1/�λ��. For c ∈ �0� π� we may choose s = �c/�λ�� when c/v < �λ� <
c/�u+1�, which gives the bound C/�λ�α for such λ. On the other hand we also
have

Suv�λ� =
v−1∑
t=u

�φt −φt+1�
t∑
s=u
eisλ +φv

v∑
t=u
eitλ(7.2)

to deduce �Suv�λ�� ≤ C�u+1�α−1/�λ� for 0 < α < 1 from (3.2), (3.3), (7.1). Since
vα ≤ C/�λ�α for 0 < �λ� ≤ c/v and �u+1�α−1/�λ� ≤ C/�λ�α for c/�u+1� ≤ �λ� ≤ π
the bound C/�λ�α holds for all λ ∈ �0� π� when 0 < α < 1, to complete the
proof of (3.9). For α > 1, (7.2) gives instead �Suv�λ�� ≤ Cvα−1/�λ� to complete
the proof of (3.10). Finally (3.11) follows directly from Theorem III-11 of Yong
(1974) and a reflection formula for the Gamma function. ✷

Proof of Lemma 3.3. We have ξt = 0� t ≤ 0, and for t ≥ 1,

ξt =
t∑
s=1

ψt−s
s∑
r=1

φs−rηr =
t∑
s=1

χt−sηs�

where χt is given in (3.7). ✷

Proof of Lemma 3.4. (i) The first statement is standard while (3.16) fol-
lows from the stated formula for fρρ, (3.11) and �ηt� ∈ I. For α > 0 write
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φ̄t�λ� = ∑∞
s=t φse

isλ. From (3.10) we have �φt�λ�� ≤ C�λ�−α and �φ̄t�λ�� ≤
Ctα−1/�λ�, so∣∣ �φ�λ��2 − �φt�λ��2

∣∣ ≤ ∣∣φt�λ�φ̄t�−λ� +φt�−λ�φ̄t�λ�∣∣+ �φ̄t�λ��2

≤ C(tα−1�λ�−α−1 + t2α−2λ−2)
≤ C�λ�−2α(�t�λ��α−1 + �t�λ��2�α−1�)�

whence (3.17) follows by reference to (3.16). To prove (3.18), note that, for
j ≥ 0,

Cov�ζt� ζt+j� =
∫
�
φt�λ�φt+j�−λ�fηη�λ�eijλ dλ�(7.3)

so its deviation from Cov�ρ0� ρj� is bounded by∫
�

{�φ�λ�φ̄t+j�−λ�� + �φ̄t�λ�φt+j�−λ��
}
fηη�λ�dλ�(7.4)

Fix δ > 0. Because �ηt� ∈ I we can choose ε > 0 such that

sup
�λ�<ε

�fηη�λ� − fηη�0�� < δ�(7.5)

Also, we have

1
2π

∫
�

∣∣∣∣ v∑
s=u
φse

isλ

∣∣∣∣2 dλ =
v∑
s=u
φ2
s �(7.6)

Thus by the Schwarz inequality the contribution to (7.4) from the integral
over �−ε� ε� is bounded by

2�fηη�0� + δ�
{ ∞∑
s=0

φ2
s

∞∑
s=t
φ2
s

}1/2

= O�tα−�1/2��

as t→ ∞, while the contribution from �−π�−ε� ∪ �ε�π� is bounded by

C

ε2
tα−1

∫
�
fηη�λ�dλ = O�tα−1��

using (3.9).
(ii) and (iii). The difference between (7.3) and 2πfηη�0�

∑t−1
s=0φ

2
s is

fηη�0�
∫
�

{
φt�λ�φt+j�−λ�eijλ − �φt�λ��2

}
dλ(7.7)

+
∫ ′{
fηη�λ� − fηη�0�

}
φt�λ�φt+j�−λ�eijλ dλ(7.8)

+
∫ ′′{

fηη�λ� − fηη�0�
}
φt�λ�φt+j�−λ�eijλ dλ�(7.9)

where, here and subsequently,∫ ′
=

∫
�λ�<ε

�
∫ ′′

=
∫
�λ�≥ε

�
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Now (7.7) is zero for j = 0, and for j ≥ 1 it is bounded by

C

∣∣∣∣ t−1∑
s=0

φs�φs+j −φs�
∣∣∣∣ ≤ C t−1∑

s=0

�φs�
j−1∑
r=0

∣∣φs+r+1 −φs+r
∣∣

≤ C
t−1∑
s=0

�φs�
j−1∑
r=0

�φs+r�/�s+ r��

using (3.3). The last expression is, uniformly, O�j∑t
1 s
α−3� = O�j� for 1

2 ≤
α < 1, O�j log t� for α = 1, and O�j∑t

1 s
α−2�s+ j�α−1� = O�jt2α−2� for α > 1.

Because (7.8) is O�δ∑t+j
0 φ2

s�, which is uniformly O�δ log t� for α = 1
2 and

O�δt2α−1� for α > 1
2 , while (7.9) is, from (3.9), O��t + j�2α−2� = O�t2α−2� uni-

formly, the proof may then be routinely completed, noting that
∑t
s=0φ

2
s ∼

�log t�/π for α = 1
2 and

∑t
s=0φ

2
s ∼ t2α−1/!2�α��2α− 1� for α > 1

2 � ✷

8. Proofs for Section 4.

Proof of Lemma 4.1. Though (4.3) is of independent interest it is not in
this generality of much importance to the sequel, while a full proof would
require introduction of notation which would not find subsequent use. We
thus give the proof only of (4.5), which is equivalent to (4.3) with A = B = R,
j = k = 0, the full proof of (4.3) being only notationally more complex. We
first provide some basic derivations which will be useful also in subsequent
proofs. In view of (2.1), (3.12), (3.13), (3.15), (4.2), we can write

wζ�λ� =
1

�2πn�1/2
∑
t

φn−t+1�λ�ηteitλ� wξ�λ� =
1

�2πn�1/2
∑
t

ψn−t+1�λ�θteitλ�

where ψt�λ� =
∑t−1
s=0ψse

isλ. From (2.7)

EIζξ�λ� =
1

2πn

∫
�
χn�λ�µ�f�µ�dµ�(8.1)

where for brevity we write f�µ� = fηθ�µ�, and χn�λ�µ� = φn�λ�−µ�ψn�−λ�µ�,
in which, for example,

φn�λ�µ� =
∑
t

eit�λ+µ�φt�−µ�

= ∑
t

φn−t+1�λ�eit�λ+µ� =
∑
t

φn−te
i�n−t�λDt�λ+ µ��

(8.2)

the final equality following by summation-by-parts with

Dt�λ� =
t∑
s=1

eisλ�

the Dirichlet kernel, and all three representations in (8.2) finding use in the
sequel. From (7.1),

�φn�λ�µ�� ≤
Cnα+1

1 + n�λ+ µ� � �ψn�λ�µ�� ≤
Cnβ+1

1 + n�λ+ µ� � 0 ≤ �λ+ µ� ≤ π�(8.3)
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Fix δ > 0, then choose ε ∈ �0� π� such that

sup
�λ�<ε

�f�λ� − f�0�� < δ�(8.4)

We deduce from (8.1) that

E�ζ̄ξ̄� = 2π
n
EIζξ�0� =

1
n2

∫
�
χn�0� µ�f�µ�dµ�

which can be written, for ε ∈ �0� π�, as

f�0�
n2

∫
�
χn�0� µ�dµ+ 1

n2

∫ ′
χn�0� µ�f̄�µ�dµ+ 1

n2

∫ ′′
χn�0� µ�f̄�µ�dµ�(8.5)

writing f̄�µ� = f�µ� − f�0�. Since∫
�
Ds�λ�Dt�−λ�dλ = 2πmin�s� t��(8.6)

the first component of (8.5) is, from (8.2),

2πf�0�
n2

∑
t

∑
s

φn−sψn−tmin�s� t� = 2πf�0�
n2

∑
t

n−t∑
r=0

φr

n−t∑
s=0

ψs�

For α = 0, α > 0 this is, respectively,

2πf�0�
n2

∑
s

sψn−s ∼
2πf�0�nβ−1

!�β�
∫ 1

0
x�1 − x�β−1 dx ∼ 2πf�0�nβ−1

!�β+ 2� �

2πf�0�nα+β−1

!�α�!�β�
∫ 1

0

∫ 1−x

0
yα−1dy

∫ 1−x

0
zβ−1 dzdx�1 + o�1��

∼ 2πf�0�nα+β−1

!�α+ 1�!�β+ 1��α+ β+ 1� �

as n→ ∞. The second term in (8.5) is bounded by

Cδ

n2

∫ ′{∑
s

�φn−s� �Ds�µ��
}{∑

t

�ψn−t� �Dt�µ��
}
dµ

≤ Cδ

n2

∑
s

�φn−s�
∑
t

�ψn−t� max
1≤t≤n

∫
�
�Dt�µ��2 dµ ≤ Cδnα+β−1�

(8.7)

using (8.6). Because δ is arbitrary the second term of (8.5) can be neglected.
The final term of (8.5) is bounded by [cf. (8.7)]

C

n2

∑
t

�φn−t�
∑
t

�ψn−t�
∫ π
ε
µ−2�f̄�µ��dµ ≤ Cnα+β−2

ε2

[�Var�ηt�Var�θt��1/2 + �f�0��]
= O�nα+β−2�� ✷
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Proof of Theorem 4.1. Abbreviate F̂ζξ to F̂. We first prove (4.12), where
for any ε > 0 we can choose n such that 2λm < ε. Take l = 1. From (8.1),
E�F̂�1�m�� is the real part of

2
n2

m∑
j=1

∫ ′
χn�λj�µ�f�µ�dµ+ 2

n2

m∑
j=1

∫ ′′
χn�λj�µ�f�µ�dµ�(8.8)

From (8.3), the second term is bounded in modulus by

Cmnα+β−2
∫
�
�f�λ��dλ = O�mnα+β−2� = o

((
n

m

)α+β−1)
�(8.9)

The difference between the first term of (8.8) and

2
n2
f�0�

m∑
j=1

∫ ′
χn�λj�µ�dµ(8.10)

is bounded by

2δ
n2

m∑
j=1

∫
�
�χn�λj�µ��dµ ≤ Cδ

n2

m∑
j=1

{∑
t

�φt�λj��2
∑
t

�ψt�λj��2
}1/2

�(8.11)

using the Schwarz inequality and, for example, from (8.2),∫
�
�φn�λ�−µ��2 dµ = 2π

∑
t

�φt�λ��2�(8.12)

From (3.9), the factor in braces in (8.11) is O�n2�λj�−2�α+β��, so that (8.11) is
bounded by

Cδnα+β−1
m∑
j=1

j−α−β ≤ Cδ
(
n

m

)α+β−1

�(8.13)

and can thus be neglected because δ is arbitrary.
The difference between (8.10) and

2f�0�
n2

m∑
j=1

∫
�
χn�λj�µ�dµ(8.14)

is O�nα+β−2m� = o��n/m�α+β−1� using (8.3) again, so it remains to estimate
the real part of (8.14), which is 4πf�0� times

1
n2

m∑
j=1

∑
t

χt�λj� =
1
n

m∑
j=1

φ�λj�ψ�−λj�(8.15)

− 1
n2

m∑
j=1

{
φ�λj�

∑
t

ψ̄t�−λj� +
∑
t

φ̄t�λj�ψ�−λj�
}

(8.16)

+ 1
n2

m∑
j=1

∑
t

φ̄t�λj�ψ̄t�−λj��(8.17)
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where χt�λ� = φt�λ�ψt�−λ� and ψ̄t�λ� =
∑∞
s=t ψse

isλ. For α = 0, (8.17) is zero.
For α > 0, applying (3.9), we bound (8.17) by

C

n2

m∑
j=1

(�1/2λj�∑
t=1

λ
−α−β
j + λ−2

j

n∑
t=�1/2λj�

tα+β−2
)
≤ C

n2

m∑
j=1

λ
−1−α−β
j

≤ Cnα+β−1 = o
((

n

m

)α+β−1)
�

Likewise, for α > 0, (8.16) is bounded by

C

n2

m∑
j=1

(
λ−α−1
j

∑
t

tβ−1 + λ−β−1
j

∑
t

tα−1
)
≤ Cnα+β−1

m∑
j=1

�j−α−1 + j−β−1�

= o
((

n

m

)α+β−1)
�

whereas for α = 0, (8.16) is bounded byCn−2 ∑m
j=1 λ

−1
j

∑
t t
β−1 ≤ Cnβ−1 logm =

o��n/m�β−1�. Finally, the right side of (8.15) has, from (3.11), real part

1
n

(
cos

απ

2
cos

βπ

2
+ sin

απ

2
sin

βπ

2

) m∑
j=1

λ
−α−β
j �1 + o�1��

∼ cos�α− β�π2
2π�1 − α− β� · λ

1−α−β
m

(8.18)

as n → ∞, to complete the proof of (4.12) with l = 1. The proof for l = 0
follows from (2.3) and Lemma 4.1, due to α+ β < 1.

To prove (4.11) with l = 0, we can deduce from (8.1) that

E
{
F̂�0� ñ�} = 1

n

∑
t

∫
�
χt�µ�f�µ�dµ�(8.19)

which differs from (4.11) by

1
n

∫
�

{
φ�µ�∑

t

ψ̄t�−µ� +
∑
t

φ̄t�µ�ψ�−µ�
}
f�µ�dµ(8.20)

+ 1
n

∫
�

∑
t

φ̄t�µ�ψ̄t�−µ�f�µ�dµ�(8.21)

From (3.9) and (8.4), we can bound (8.21) by

C
∫ ′

�µ�−α−β dµ+ C

nε2

∑
t

tα+β−2
∫
�
�f�µ��dµ ≤ C

(
ε1−α−β + 1

nε2

)
= o�1��

with the same bound resulting for (8.20). Finiteness of (4.11) follows similarly,
by bounding it by C�ε1−α−β+ε−2�. Thus (4.11) is proved with l = 0, and thence
with l = 1 by Lemma 4.1. ✷
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Proof of Theorem 4.2. Given (4.13) and (4.14) for l = 0, they hold also
for l = 1 due to Lemma 4.1 and α + β = 1, so we can ignore l. The proof
of (4.14) closely follows that of (4.12). In place of (8.9) we have the bound
O�m/n� = o�logm�, while the right side of (8.13) is O�δ logm� = o�logm�.
The argument for replacing (8.14) by (8.10) holds, as does that for neglecting
(8.15)–(8.17), while (8.18) is �sinαπ/2π� logm�1 + o�1��. To prove (4.13), we
can write (8.19) as

1
n

∑
t

{
f�0�

∫
�
χt�µ�dµ+

∫ ′
χt�µ�f̄�µ�dµ+

∫ ′′
χt�µ�f̄�µ�dµ

}
�(8.22)

The contribution from the first term in the braces is

2πf�0�
n

∑
t

t−1∑
s=0

φsψs ∼
2πf�0�

!�α�!�1 − α�
(

1+
n∑
s=1

s−1
)
∼ 2 sinαπf�0� log n�(8.23)

That from the remaining terms can be bounded, respectively, by

δ

n

∑
t

∫ n−1

−n−1
�χt�µ��dµ+ δ

n

∑
t

∫
n−1≤�µ�≤ε

�χt�µ��dµ

≤ Cδ

n2

∑
t

t+Cδ
∫ ε
n−1
µ−1 dµ ≤ δC�1 + log n��

and by �C/ε2� ∫� �f�µ��dµ < C, using (3.9). ✷

Proof of Theorem 4.3. First note that (4.17) and (4.19) follow from
Lemma 4.1 and (4.16) and (4.18), respectively, since (4.5) is πf�0�. To prove
(4.16) note first that ω0 = ∑0

j=−∞ γj� ω1 = ∑∞
j=1 γj are both finite, because

2πf�0� = ω0 +ω1 and
∫
� h�λ�dλ = ω0 −ω1 both are, writing h = hηθ. Direct

calculation gives

E
{
F̂�0� ñ�} =

n−1∑
j=0

(
1 − j

n

)
ψjγ−j

=
∞∑
j=0

ψjγ−j −
∞∑
j=n

ψjγ−j −
1
n

n−1∑
j=0

jψjγ−j�

(8.24)

By summation-by-parts, the second term is bounded by

∞∑
j=n

�ψj − ψj+1�
∣∣∣∣ j∑
l=n
γ−l

∣∣∣∣ ≤ ∞∑
j=n

�ψj − ψj+1�
(�ω−n� + �ω−j−1

∣∣� → 0(8.25)

as n→ ∞, whereas the final term is bounded by

1
n

n−1∑
j=0

(
j�ψj − ψj+1� + �ψj+1�

)�ω−j−1� +
(
n− 1
n

)
�ψn−1� �ω−n�(8.26)

which tends to 0 for similar reasons. Thus (4.16) is proved.
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It is convenient to first prove (4.20) when ψt ≡ 1, and then estimate the
“error.” Write ω̃l =

∑
k≤l γk, whence

E�Iζξ�λj�� = 1
2πn

∑
s

∑
t

�ω̃t−s − ω̃−s�ei�s−t�λj

= 1
2π

n−1∑
1

(
1 − l

n

)
�ω̃l + ω̃−l�e−ilλj +

ω̃0

2π

(8.27)

because

Dn�λj� = n� j = 0�mod�n��(8.28)

= 0� otherwise.(8.29)

For l ≤ 0 we have ω̃l = ωl, whereas for l ≥ 0 we have ω̃l = ω0 + ω1 − ωl+1,
so (8.27) has real part

1
2π

n−1∑
1

(
1 − l

n

)
�ω0 +ω1 +ω−l −ωl+1� cos lλj +

ω0

2π

= 1
4π

n−1∑
1−n

(
1 − �l�

n

)
�ω−�l� −ω�l�+1� cos lλj�

(8.30)

in view of (8.29) and

n−1∑
l=0

l cos lλj = −n
2
� 1 ≤ j ≤ n− 1�

Now (8.30) is the Cesaro sum, to n− 1 terms, of the Fourier series of h�λj�/2.
Equivalently,

E

{
n

m
F̂�1�m�

}
= 1
nm

m∑
j=1

∫
�
�Dn�λ− λj��2h�λ�dλ�(8.31)

Fix δ > 0. There exists ε > 0 such that �h�λ� − h�0�� < δ for 0 < �λ� ≤ ε. Let n
be large enough that 2λm < ε. The difference between the right-hand side of
(8.31) and 2πh�0� is bounded by

1
n

{
δ max

1≤j≤m

∫ ′
�Dn�λ− λj��2 dλ+ sup

�ε/2�<�λ�<π
�Dn�λ��2

(∫
�
�h�λ��dλ+ 2π�h�0��

)}
which is O�δ+n−1� using (8.6). Because δ is arbitrary, the proof of (4.20) when
ψt ≡ 1 is complete.

The difference between E�F̂�1�m�� and the same thing with ψt ≡ 1, is,
from (8.2), the real part of

2
n2

m∑
j=1

∫
�
Rn�λj�µ�f�µ�dµ�(8.32)
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where

Rn�λ�µ� = Dn�λ− µ�
∑
t

�ψn−t − 1�eitλDt�µ− λ��

Using (8.6), we may write (8.32) as

4πf�0�
n2

∑
t

t�ψn−t − 1�
m∑
j=1

eitλj(8.33)

+ 2
n2

m∑
j=1

∫ ′
Rn�λj�µ�f̄�µ�dµ+ 2

n2

m∑
j=1

∫ ′′
Rn�λj�µ�f̄�µ�dµ�(8.34)

To consider (8.33), we have

1
n2

∣∣∣∣ n−r∑
t=1

t�ψn−t − 1�
m∑
j=1

eitλj
∣∣∣∣ ≤ m

n

∞∑
t=r

�ψt − 1� = o
(
m

n

)
as r→ ∞. On the other hand the contribution from t > n− r to (8.33) is

4πf�0�
{

1
n

r−1∑
t=0

�ψt − 1�
m∑
j=1

e−itλj − 1
n2

r−1∑
t=0

t�ψt − 1�
m∑
j=1

e−itλj
}
�

We can bound the second term by Crm/n2 = o�m/n�, taking r = o�n�, whereas,
using the inequality � cosx−1� ≤ x2, the first term has real part differing from

m

n

r−1∑
t=0

�ψt − 1� = m

n

∞∑
t=0

�ψt − 1��1 + o�1��(8.35)

by something bounded by

C

n

r−1∑
t=0

�ψt − 1�
m∑
j=1

�tλj�2 ≤ Cm3r2

n3

∞∑
t=0

�ψt − 1� = o
(
m

n

)
�

since we can at the same time choose r = o�n/m�. Since (8.35) delivers the
correction term in (4.20), it remains to show that the contribution from (8.34)
is o�m/n�. Using (8.6) and the Schwarz inequality, its first term is bounded
by

δ

n2

m∑
j=1

{∫
�
�Dn�λj − µ��2 dµ

∫
�

∣∣∣∣∑
t

�ψn−t − 1�eitλjDt�µ− λj�
∣∣∣∣2 dµ}1/2

≤ Cδ

n3/2

m∑
j=1

{∑
s

∑
t

�ψn−s − 1��ψn−t − 1�ei�s−t�λj min�s� t�
}1/2

≤ Cδm

n

∞∑
t=0

�ψt − 1�2 = O
(
δm

n

)
�
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whereas, with ε > 2λm, its second term is bounded by

Cm

n2

∞∑
t=0

�ψt − 1�
{∫
�
�f�µ��dµ+ �f�0��

}
= o

(
m

n

)
to complete the proof of (4.20). ✷

Proof of Theorem 4.4. From (8.24)–(8.26),

∣∣E{
F̂�0� ñ�}∣∣ ≤ C

r

n−1∑
j=1

jβ−1�ω−j−1� = o�nβ−1�

by the Toeplitz lemma, to prove (4.21) and then, by Lemma 4.1, (4.22). To
prove (4.23), consider (8.24) again: the second term on the right is clearly o�1�
while the last one can be written n−1 ∑n−1

j=1
∑∞
l=j ψlγ−l −

∑∞
l=n ψlγ−l → 0. ✷

Proof of Theorem 4.5. To prove (4.24) with m = ñ we use (8.19) and
(8.22). The left side of (8.23) is

2πf�0�
n!�α�!�β�

∑
t

t−1∑
s=0

sα+β−2�1 + o�1�� ∼ 2πf�0�nα+β−1

!�α�!�β��α+ β��α+ β− 1� �

By the Schwarz inequality, the contribution from the second term in braces in
(8.22) is bounded by

Cδnβ−3/2 ∑
t

{∫
�
�φt�λ��2 dλ

}1/2

�(8.36)

since
∫
� �ψt�λ��2 dλ = 2π

∑t
s=1ψ

2
s ≤ Cn2β−1, because β > 1

2 . For α > 1
2 , (8.36)

is thus clearly O�δnα+β−1�, while the same bound holds for α < 1
2 because the

integral in (8.36) is bounded by

Ct2α
∫ n−1

0
dλ+C

∫ π
n−1
λ−2α dλ ≤ Cn2α−1�

using (3.9). Finally, the contribution from the final term in braces in (8.22) is
bounded by

C

n

∫ π
ε

∑
t

�φt�µ�ψt�µ����f�µ�� + �f�0���dµ�

which is O�nα+β−1� for α > 1 and O�nβ−1� for α ≤ 1, on applying (3.10). Thus
(4.24) is proved for m = ñ, whence (4.25) follows by incorporating Lemma 4.1.
Now with m < ñ, we show that the contribution from the second term on the
right of (2.8) is negligible. We can bound E�F̂�m+ 1� ñ�� by

C

n2

∑
j

′′
∫ ′

�χn�λj�µ�� �f�µ��dµ+ C

n2

∑
j

′′
∫ ′′

�χn�λj�µ�� �f�µ��dµ�(8.37)
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where
∑′′
j denotes

∑ñ
j=m+1. Applying the Schwarz inequality and (8.4), (8.12),

the first term is bounded by

C

n2

∑
j

′′
{∑
t

�φt�λj��2
∑
t

�ψt�λj��2
}1/2

�(8.38)

On applying (3.9) and (3.10) we find that (8.38) is O�nα+β−1 ∑∞
j=m j

−2� =
O�nα+β−1m−1� when α > 1 and O�nα+β−1 ∑∞

j=m j
−α−min�β�1�� = o�nα+β−1×

m−min�α�α+β−1�� when α ≤ 1, so both are o�nα+β−1� from (2.5). Finally the
second term of (8.37) is bounded by

C

n2

∫ ′′{ n∑
j=1

�φn�λj�µ��2
n∑
j=1

�ψn�λj�−µ��2
}1/2

�f�µ��dµ�(8.39)

From (8.2), (8.28) and (8.29) we have, for example,
n∑
j=1

�ψn�λj�−µ��2 = n∑
t

�ψt�µ��2�(8.40)

Thus the term in braces in (8.39) is n2 ∑
t �φt�µ��2

∑
t �ψt�µ��2, so from (3.9)

and (3.10) we deduce that (8.39) is O�nα+β−2� when α > 1 and O�nβ−1� when
α ≤ 1. ✷

9. Proofs for Section 5.

Proof of Theorem 5.1. We first consider F̂�0� ñ�, which has variance

1
n2

∑
s

∑
t

s∑
1

φs−q
s∑
1

ψs−r
t∑
1

φt−u
t∑
1

ψt−v
{
γr−uγv−q + γ�η�u−qγ

�θ�
v−r + κqruv

}
�(9.1)

where γ�η�j = Cov�η0� ηj�� γ�θ�j = Cov�θ0� θj�� κqruv = Cum�ηq� θr� ηu� θv�. The
contribution of the first term in braces to (9.1) can be written

1
n2

∑
s

∑
t

astats =
1
n2

∑
s

∑
t

�bst + cst + dst��bts + cts + dts��

where

ast =
∫
�
χst�µ�f�µ�dµ� χst�µ� = φs�µ�ψt�−µ�ei�t−s�µ�

bst = f�0�
∫
�
χst�µ�dµ� cst =

∫ ′
f̄�µ�χst�µ�dµ�

dst =
∫ ′′
f̄�µ�χst�µ�dµ�

(9.2)

We shall show that

1
n2

∑
s

∑
t

astats =
1
n2

∑
s

∑
t

bstbts + o�1� ∼ P�α�β�β� α�n2�α+β−1��(9.3)
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For α > 0, the last relation follows from Definition 3.1, integral approximation
and ∫

�
χst�µ�dµ = 2π

∑
j�s�t�

′ φjψj+t−s�

where
∑′
j�s�t� =

∑s−1
j=max�0� s−t�, whereas for α = 0,

1
n2

∑
s

∑
t

bstbts =
4π2

n2
f�0�2 ∑

s

∑
t

ψs−tψt−s = O�n−1� = o�n2�β−1���

To prove the first relation in (9.3), we first consider the case α > 1
2 and note

that by elementary inequalities it suffices to show that∑
s

∑
t

�bst�2 = O�n2�α+β���∑
s

∑
t

�cst�2 = o�n2�α+β���∑
s

∑
t

�dst�2 = o�n2�α+β���

(9.4)

By the Schwarz inequality especially and∑
s

∑
t

�bst�2 ≤ Cn2
n∑
0

φ2
j

n∑
0

ψ2
j ≤ Cn2�α+β��

and clearly
∑
s

∑
t �cst�2 has the same bound times δ2, where δ is arbitrary, to

prove the first two components of (9.4). The last component of (9.4) follows
from the bound [due to (3.9), (3.10)],

�χst�µ�� ≤ Cnmax�α−1�0�+max�β−1�0��µ�−min�α�1�−min�β�1��

for 0 < �µ� ≤ π, since then
∑
s

∑
t �dst�2 is O�n2� for α�β ≤ 1, O�n2β� for α ≤ 1,

β > 1, and O�n2�α+β−1�� for α�β > 1, to complete the proof of (9.4) in case
α > 1

2 .
Now consider the case α ≤ 1

2 , which is more delicate. Writing

Gn�λ�µ�ω� =
∑
t

φt�λ�ψt�µ�eitω�

we have∣∣∣∣∑
s

∑
t

cstcts

∣∣∣∣ ≤ δ2
∫
�

∫
�
�Gn�µ�−λ� λ− µ��2 dµdλ

(9.5)
≤ 4π2δ2 ∑

s

∑
t

∑
j�s� t�

′ φjφj+t−s
∑
j�s�t�

′ ψjψj+t−s

≤ Cδ2
(
n+∑∑

s�=t
�s− t�α−1

) n∑
0

ψ2
j

n∑
0

ψ2
j = O�δ2n2�α+β��(9.6)
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for 0 < α ≤ 1
2 , while for α = 0 we easily get the bound O�j2n2β�. Next, recall

that φ̄t�λ� = φ�λ� −φt�λ�, and correspondingly introduce

�Gn�λ�µ�ω� = φ�λ�
∑
t

ψt�µ�eitω −Gn�λ�µ�ω��

Thus
∑
s

∑
t dstdts is∫ ′′ ∫ ′′{
φ�µ�ψn�−µ�λ� − �Gn�µ�−λ� λ− µ�

}
× {
φ�λ�ψn�−λ�µ� − �Gn�λ�−µ�µ− λ�}f̄�µ�f̄�λ�dµdλ
≤ C

∫ ′′{∫
�

(�ψn�−λ�µ��2 + ��Gn�λ�−µ�µ− λ��2)dµ}�f̄�λ��2 dλ
≤ C

∫ ′′{∑
t

�ψt�λ��2 +
(∑

t

�φ̄t�λ��
)2 n∑

0

ψ2
j

}
�f̄�λ��2 dλ

≤ C(n2β−1 + n2�α+β�−1) = o�n2�α+β��
for α ≥ 0. It is then straightforward to show, by similar means, that the
remaining components of n−2 ∑

s

∑
t�astats − bstbts� are negligible when 0 ≤

α ≤ 1
2 . This concludes the proof of (9.3).

The contribution from the second term in braces can be handled in almost
the same way; the only notable difference is that it is nonnegligible when
α = 0, but this is easily seen.

We write the contribution to (9.1) from the final, fourth-cumulant, term as

1
n2

∫
�

∫
�

∫
�
Hn�λ�µ�ω�f�λ�µ�ω�dλdµdω�(9.7)

where

Hn�µ�λ�ω� = Gn�λ+ µ+ω�−λ�−µ−ω�Gn�−µ�−ω�µ+ω��
To extend the approach used previously, we can write (9.7) as the sum of terms

f�0�0�0�
n2

∫
�

∫
�

∫
�
Hn�µ�λ�ω�dλdµdω(9.8)

+
∫
�

∫
�

∫
�
Hn�λ�µ�ω��f�λ�µ�ω� − f�0�0�0��dλdµdω�(9.9)

It is readily verified that (9.8) is δπ2f�0�0�0�/n2 times something bounded by

∑
s

∑
t

∑
j�s� t�

′φjψjφj+t−sψj+t−s ≤
n∑
j=0

�φjψj�
∑
s

∑
t

�φj+t−sψj+t−s��(9.10)

For α+β < 1, the sum over s� t is O�n�, uniformly in j, so that (9.10) is O�n�
also. For α+ β = 1, the sum over s� t is O�n log n� and (9.10) is O�n�log n�2�.
For α+β > 1, (9.10) is clearly O�n2�α+β�−1�. It follows that (9.8) is o�n2�α+β−1��.
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Now consider (9.9). For any δ > 0, we can choose ε such that

sup
�λ�<ε� �µ�<ε� �λ�<ε

�f�λ�µ�ω� − f�0�0�0�� < δ�(9.11)

Then with
∫ ′ having the same meaning as before∫ ′ ∫ ′ ∫ ′

Hn�λ�µ�ω�
{
f�λ�µ�ω� − f�0�0�0�}dλdµdω(9.12)

is bounded by

δ

n2

{∫
�

∫
�

∫
�
�Gn�λ+ µ+ω�−λ�−µ−ω��2 dλdµdω

×
∫
�

∫
�

∫
�
�Gn�−µ�−ω�µ+ω��2 dλdµdω

}1/2

�

(9.13)

Both triple integrals are easily shown to be 2π times (9.5)/δ2, which is
O�n2�α+β�� [see (9.6)]. By arbitrariness of δ it follows that (9.13) is o�n2�α+β−1��,
so that (9.12) can be neglected. The difference between (9.9) and (9.12) is
bounded by

3∑
j=1

∫ ∫ ∫
Uj

�Hn�λ�µ�ω�� �f�λ�µ�ω� − f�0�0�0��dλdµdω�(9.14)

where U1 = �λ� ε ≤ �λ� ≤ π� × V1� V1 = �µ� µ ∈ �� × �ω� ω ∈ ���U2 =
�λ� λ ∈ �� × V2� V2 = �µ� ε ≤ �µ� ≤ π� × �ω� ω ∈ ���U3 = �λ� λ ∈
�� ×V3� V3 = �µ� µ ∈ �� × �ω� ε ≤ �ω� ≤ π�. Then (9.14) is bounded by{

sup
µ�ω∈�

∫
�
�f�λ�µ�ω��2 dλ+ 2πf2�0�0�0�

}1/2

(9.15)

× 1
n2

3∑
j=1

{∫ ∫ ∫
Uj

�Gn�λ+ µ+ω�−λ�−µ−ω��2 dωdµdλ

×
∫ ∫

Vj

�Gn�−µ�−ω�µ+ω��2 dωdµ
}1/2

�

(9.16)

Since (9.15) is finite it suffices to show that each of the summands in (9.16)
is o�n2�α+β��. This is achieved by using the fact, already established, that one
of the factors in braces in each summand in (9.14) is O�n2�α+β��, and showing
that the other is o�n2�α+β��. The latter factors are the first one for j = 1, and
the second one for j = 2�3. The proofs are too similar to those concerning
Gn previously to warrant inclusion; we would only note that for the Uj we
effectively only integrate over one of ω�µ as before and that �λ� ≥ ε on U1,
while �µ� > ε on V2 and �ω� ≥ ε on V3.

By elementary inequalities and (2.8), (5.3) for m < ñ will follow from the
above proof and (5.5), so we prove the latter. Var�F̂�m+ 1� ñ�� is bounded by



NARROW-BAND ANALYSIS OF PROCESSES 981

the real part of

1
4πn4

∑
j

′′ ∑
k

′′ ∑
q

∑
r

∑
s

∑
t

φn−q+1�λj�ψn−r+1�−λj�φn−s+1�−λk�

×ψn−t+1�λk�ei�q−r�λj−i�s−t�λk
{
γt−qγr−s + γ�η�s−qγ

�θ�
t−r + κqrst

}
�

(9.17)

The contribution from the first term in braces may be written as �4π2n4�−1

times ∫
�

∫
�
Vn�λ�µ�f�λ�f�µ�dλdµ�(9.18)

where

Vn�λ�µ� =
∑
j

′′ ∑
k

′′φn�λj�−λ�ψn�−λj�µ�φn�−λk�−µ�ψn�λk� λ��

We subdivide the integral (9.18) into components
∫ ′ ∫ ′

�
∫ ′′ ∫ ′′

�
∫ ′ ∫ ′′ and

∫ ′′ ∫ ′.
First ∣∣∣∣ ∫ ′ ∫ ′

Vn�λ�µ�f�λ�f�µ�dλdµ
∣∣∣∣

≤ C
∫
�

∫
�

∣∣∣∣∑
j

′′φn�λj�−λ�ψn�−λj�µ�
∣∣∣∣2 dλdµ�

(9.19)

The double integral is evaluated as

4π2 ∑
s

∑
t

∣∣∣∣∑
j

′′φs�λj�ψt�−λj�ei�t−s�λj
∣∣∣∣2�(9.20)

If α+ β > 1 and α > 0, this is bounded by

C
∑
s

s2 max�α−1�0� ∑
t

t2 max�β−1�0�n2 min�α�1�+2 min�β�1�
(∑
j

′′j−min�α�1�−min�β�1�
)2

≤ Cn2�α+β+1�m−min�α+β−1�α�1� = o�n2�α+β+1��
as desired. For α = 0� β > 1 (9.20) is, from (8.28), (8.29),

4π2n
∑
j

′′ ∑
t

�ψt�λj��2 ≤ Cn2�β+1� ∑
j

′′j−2 = o�n2�α+β+1���

For α+ β ≤ 1 we write (9.20) as∑
s

∑
t

∣∣∣∣∑
j

′′{φ�λj� − φ̄s�λj�}ψt�−λj�ei�t−s�λj ∣∣∣∣2
= ∑

j

′′ ∑
k

′′φ�λj�φ�−λk�
∑
t

ψt�−λj�ψt�λk�eit�λj−λk�Dn�λk − λj�
(9.21)

− ∑
j

′′ ∑
k

′′φ�λj�
∑
t

ψt�−λj�ψt�λk�eit�λj−λk�
∑
s

φ̄s�−λk�eis�λk−λj�(9.22)
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− ∑
j

′′ ∑
k

′′φ�−λk�
∑
t

ψt�−λj�ψt�λk�eit�λj−λk�
∑
s

φ̄s�λj�eis�λk−λj�(9.23)

+ ∑
j

′′ ∑
k

′′ ∑
s

φ̄s�λj�φ̄s�−λk�eis�λk−λj�
∑
t

ψt�−λj�ψt�λk�eit�λj−λk��(9.24)

Because of (8.28) and (8.29), (9.21) is bounded by n2�1+α+β� times

C
∑
j

′′j−2�α+β� ≤ Cm1−2�α+β� = o�1��

since β > 1
2 . On the other hand, (9.22) and (9.23) are bounded by n2�1+α+β�

times

C
∑
j

′′j−α−2β−1 +C∑
j

′′j−α−β
∑
k>j

k−1−β

≤ Cm−α−2β +C∑
j

′′j−α−2β ≤ Cm1−α−2β = o�1��

and (9.24) is bounded by n2�α+β+1� times O��∑′′
j j

−1−β�2� = o�1�. Thus (9.19)
is o�n2�α+β+1��. The component

∫ ′′ ∫ ′′ requires careful treatment. It is bounded
by ∫ ′′ ∫ ′′ ∣∣∣∣∑

j

′′φn�λj�−λ�ψn�−λj�µ�
∣∣∣∣2�f�λ�f�µ��dλdµ(9.25)

≤
∫ ′′ n∑

j=1

�φn�λj�−λ��2�f�λ��dλ
∫ ′′ n∑

k=1

�ψn�−λk�µ��2�f�µ��dµ

≤ Cn2
∫ ′′ ∑

s

�φs�λ��2�f�λ��dλ
∫ ′′ ∑

t

�ψt�µ��2�f�µ��dµ
(9.26)

from (8.40). Clearly (9.26) isO�nmax�2α�2�+max�2β�2��, which is o�n2�α+β+1�� unless
α+ β ≤ 1 or α = 0. The latter possibilities imply α < 1

2 , when we write (9.25)
as ∫ ′′ ∫ ′′ ∣∣∣∣∑

j

′′
[∑
s

eis�λj−λ�
{
φ�λ� − φ̄s�λ�

}]
ψn�−λj�µ�

∣∣∣∣2�f�λ�f�µ��dλdµ�(9.27)

When α = 0 the contribution from φ̄s�λ� is zero, while for 0 < α < 1
2 and

1
2 < β < 1 it is bounded by

C
∫ ′′ ∫ ′′ n∑

j=1

∣∣∣∣∑
s

eis�λj−λ�φ̄s�λ�
∣∣∣∣2 n∑
k=1

�ψn�−λk�µ��2�f�λ�f�µ��dλdµ

≤ Cn3
∫ ′′ ∫ ′′ ∑

s

�φ̄s�λ��2
∑
t

�ψt�µ��2�f�λ�f�µ��dλdµ

≤ Cn2α+3 = o�n2�α+β+1��



NARROW-BAND ANALYSIS OF PROCESSES 983

using (8.28), (8.29), (8.40), (3.9). For α = 0� β ≥ 1 we bound (9.25) by

C

{∫
�

∫
�

∣∣∣∣∑
j

′′Dn�λj − λ�ψn�−λj�µ�
∣∣∣∣2 dλdµ}1/2

(9.28)

×
{∫ ′′ n∑

j=1

�Dn�λj − λ��2�f�λ��2 dλ
∫ ′′ n∑

j=1

�ψn�−λj�µ��2�f�µ��2 dµ
}1/2

�(9.29)

Now ∫
�
Dn�λj − λ�Dn�λ− λk�dλ = 2πDn�λj − λk��(9.30)

which is 2πn for j = k and 0 otherwise, so (9.28) is bounded by

C

{
n
∑
j

′′ ∑
t

�ψt�λ��2
}1/2

≤
{
Cn

(∑
j

′′λ−2
j

)∑
t

t2�β−1�
}1/2

= o�nβ+1��

On the other hand because (8.40) is O�n2β� for �µ� > ε and, for all λ,

n∑
j=1

�Dn�λj − λ��2 = n2�(9.31)

it follows that (9.29) is O�nβ+1�. Thus (9.25) is o�n2�β+1�� for α = 0� β ≥ 1. It
remains to consider α = 0� β < 1. From (6.2) we write

ψn�−λj�µ� = ψ�−µ�Dn�µ− λj� −
∑
t

eit�µ−λj�ψ̄t�−µ�(9.32)

for �µ� > ε. Now, using (9.30), (9.31),∫ ′′ ∫ ′′ ∣∣∣∣ψ�−µ�∑
j

′′Dn�λj − λ�Dn�µ− λj�
∣∣∣∣2�f�λ�f�µ��dλdµ

≤ C
∫
�

{∫
�

∣∣∣∣∑
j

′′Dn�λj − λ�Dn�µ− λj�
∣∣∣∣2 dλ}�f�µ��2 dµ

≤ Cn2
∫
�
�f�µ��2 dµ�

We bound the contribution to (9.25) from the second term on the right of (9.32)
by {∫ ′′ ∫ ′′ ∣∣∣∣∑

j

′′Dn�λj − λ�
∑
t

eit�µ−λj�ψ̄t�−µ�
∣∣∣∣2 dλdµ}1/2

(9.33)

≤
{∫ ′′ ∫ ′′ ∣∣∣∣∑

j

′′Dn�λj − λ�
∑
t

ei�µ−λj�ψ̄t�−µ�
∣∣∣∣2�f�λ�f�µ��2}1/2

�(9.34)
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Now (9.34) is bounded by

C

{∫ ∫ n∑
j=1

�Dn�λj − λ��2
n∑
j=1

∣∣∣∣∑
t

eit�µ−λj�ψ̄t�−µ�
∣∣∣∣2�f�λ�f�µ��2 dλdµ}1/2

≤ C
(
n3

∫ ′′ ∑
t

�ψ̄�−µ��2�f�µ��2 dµ
)1/2

≤ C
(
n3 ∑

t

t2�β−1�
)1/2

≤ Cnβ+1�

from (8.28), (8.29), (9.30), (9.31) and (3.9). To deal with (9.33) we employ (9.32)
and (8.2) to write∑

t

eit�µ−λj�ψ̄t�−µ� = ψ�−µ�Dn�µ− λj� −
∑
t

ψn−t+1�−λj�eit�µ−λj��

The contribution to (9.33) from the first term on the right is bounded by{∫
�

∫
�

∣∣∣∣ ′′∑
j

Dn�λj − λ�Dn�µ− λj�
∣∣∣∣2 dλdµ}1/2

= O�n3/2�

from (9.30), while the contribution from the second term is bounded by

C

{
n
∑
j

′′ ∑
t

�ψn−t+1�λj��2
}1/2

≤ Cn1+β
(∑
j

′′j−2β
)1/2

= o�nβ+1��

It follows that for α = 0� β < 1, (9.25) is O�n3�+�O�n3/2�+o�nβ+1��O�nβ+1� =
o�n2�β+1��. Thus we can neglect the component

∫ ′′ ∫ ′′ of (9.18), as we can also∫ ′ ∫ ′′ and
∫ ′′ ∫ ′ by straightforwardly combining proofs given so far.

Next the contribution of κqrst to (9.17) is

1
4π2n4

∫
�

∫
�

∫
�

{∑
j

′′φn�λj�−λ− µ−ω�ψn�−λj� λ�
}

×
{∑
j

′′φn�−λk�µ�ψn�λk�ω�
}
f�λ�µ�ω�dλdµdω�

(9.35)

The contribution of
∫ ′ ∫ ′ ∫ ′ is bounded by

C

n4

{∫
�

∫
�

∫
�

∣∣∣∣∑
j

′′φn�λj�−λ− µ−ω�ψn�−λj� λ�
∣∣∣∣2 dλdµdω

×2π
∫
�

∫
�

∣∣∣∣∑
j

′′φn�−λk�µ�ψn�λk�µ�
∣∣∣∣2 dµdω}1/2

�

(9.36)

Both factors in braces are bounded by the right side of (9.19), noting that in
the first factor we may substitute for λ+µ+ω and use periodicity of period 2π.
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Thus (9.36) = o�n2�α+β−1��. We omit the proof for the remainder of (9.35) as it
is so similar to earlier proofs. This completes the proof for F̂�0�m�.

For F̂�1�m� we note that

Var
{
F̂�1�m�} = Var

{
F̂�0�m�}− 2 Cov

{
F̂�0�m�� ζ̄ξ̄}+ Var�ζ̄ξ̄��

The proof proceeds by showing that

lim
n→∞n

2�1−α−β�Cov
{
F̂�0�m�� ζ̄ξ̄} = f2

ηθ�0�Q�α�β�β� α�
+fηη�0�fθθ�0�Q�α� α�β�β��

lim
n→∞n

2�1−α−β� Var�ζ̄ξ̄� = f2
ηθ�0�R�α�β�β� α�

+fηη�0�fθθ�0�R�α� α�β�β��
These proofs follow very closely the previous pattern, where we established
them first for m = ñ and then showed that the effect of taking m < ñ makes
no difference, the details being so similar as not to be worth reporting. ✷
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