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ON POSTERIOR CONSISTENCY OF SURVIVAL MODELS
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Ghosh and Ramamoorthi studied posterior consistency for survival
models and showed that the posterior was consistent when the prior on
the distribution of survival times was the Dirichlet process prior. In this
paper, we study posterior consistency of survival models with neutral to
the right process priors which include Dirichlet process priors. A set of
sufficient conditions for posterior consistency with neutral to the right pro-
cess priors are given. Interestingly, not all the neutral to the right process
priors have consistent posteriors, but most of the popular priors such as
Dirichlet processes, beta processes and gamma processes have consistent
posteriors. With a class of priors which includes beta processes, a necessary
and sufficient condition for the consistency is also established. An interest-
ing counter-intuitive phenomenon is found. Suppose there are two priors
centered at the true parameter value with finite variances. Surprisingly,
the posterior with smaller prior variance can be inconsistent, while that
with larger prior variance is consistent.

1. Introduction. Let X1�X2� � � � �Xn be independent and identically
distributed (iid) with an unknown cumulative distribution function (cdf) F on
�0�∞� and suppose the data are subject to right censoring. Bayesian analysis
of a model requires an appropriate class of priors and efficient computational
methods. Since Dirichlet processes [Ferguson (1973)] were introduced as pri-
ors for nonparametric models, many classes of priors have been constructed
and applied to survival models such as Dirichlet processes [Susarla and Van
Ryzin (1976)], neutral to the right processes [Doksum (1974), Ferguson and
Phadia (1979)], extended gamma processes [Dykstra and Laud (1981)], beta
processes [Hjort (1990)] and beta-Stacy processes [Walker and Muliere (1997)].
Recently, Kim (1999) employed Poisson measures to represent Lévy process
priors for multiplicative counting process models. This approach gives a sim-
ple representation of the prior and posterior and covers all neutral to the right
process priors (note that Dirichlet processes, gamma processes, beta processes
and beta-Stacy processes are all neutral to the right processes). For the com-
putational side, Markov chain Monte Carlo (MCMC) computation schemes
for various priors have been studied by many authors including Doss (1994),
Damien, Laud and Smith (1996) and Wolpert and Ickstadt (1998).
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In contrast to the construction of suitable priors and their computation,
theoretical properties of posteriors in survival models have received relatively
little attention [see Ghosh and Ramamoorthi (1995) for an exception]. In this
paper, we study the issue of posterior consistency in survival models with neu-
tral to the right process priors. Recently, the issue of posterior consistency in
nonparametric Bayesian models has been studied intensively and now a body
of a fairly general theory exists [see, Schwartz (1965); Barron (1988, 1989),
Barron, Schervish and Wasserman (1999); Ghosal, Ghosh and van der Vaart
(2000), Shen and Wasserman (1998), Ghosal, Ghosh and Ramamoorthi (1999a,
b)]. The theory, however, assumes the existence of a σ-finite measure which
dominates all the distributions under consideration. This assumption is cru-
cial for the general theory, because it allows the use of the Bayes theorem by
which the posterior can be expressed in very general settings. Unfortunately,
neutral to right priors put probability mass 1 to the set of all discrete dis-
tributions and the class of distributions under consideration includes all the
discrete as well as continuous distributions. Thus, there does not exist a dom-
inating σ- finite measure and the Bayes theorem cannot be used to represent
posteriors. For this reason, survival models naturally fall outside the scope
of the the theory developed in the papers mentioned above. It is necessary to
take another route to study the consistency of posteriors for survival models.
The route taken in this paper is to look at the limits of the first and second
moments of the posterior using the approach studied in Kim (1999).

It turns out that not all neutral to the right processes have consistent
posteriors. To describe an example of posterior inconsistency through simple
moment calculations, we introduce a class of priors called extended beta pro-
cesses which admits a relatively simple parametrization. Despite its simplic-
ity, the class is quite large, including Dirichlet processes and beta processes.
A necessary and sufficient condition for consistency with the extended beta
processes priors can be characterized under very mild conditions. Then a gen-
eral theorem is given with sufficient conditions for posterior consistency with
neutral to right process priors.

In the course of investigation, a surprising phenomenon was found. Con-
sider two priors, prior 1 and prior 2 which happen to be centered at the true
parameter value and suppose prior 1 has smaller variance than prior 2. If
the posterior with prior 2 is consistent, it is natural to expect that the pos-
terior with prior 1 is also consistent, because prior 1 is expected to be more
concentrated on the true value than prior 2. In survival models, however, this
may not be the case. This example contradicts the usual belief that “the more
mass around the true value a priori, the more mass around the true value a
posteriori.” This counter-intuitive phenomenon is dealt with in Section 3 in
more detail.

In Section 2, we review basic facts of neutral to the right processes. In
Section 3, a necessary and sufficient condition for consistency of the class
of extended beta processes is given; with this class of prior, the interesting
phenomenon is introduced in detail. A general theorem for consistency is given
with sufficient conditions in Section 4 and its proof is given in Section 5.
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2. Neutral to the right processes. In this section, we review several
features of processes neutral to right as prior distributions for F. Let � be
the space of cdfs on �0�∞�. A process F defined on � is said to be a random
distribution function neutral to right if it can be written in the form

F�t� = 1− exp�−Y�t���(2.1)

whereY�t� is a nondecreasing stochastic process with independent increments
(called Lévy process) with Y�0� = 0 and Y�t� → ∞ as t → ∞ with probabil-
ity 1. As is well known, any nondecreasing Lévy process Y�t� is a sum of a
deterministic function and a jump process, and we assume that the determin-
istic function vanishes everywhere. Note that most of the practically important
processes such as the aforementioned ones in the introduction are pure jump
processes. From what follows, we simply use the term “Lévy process” for such
a Lévy process. The definition (2.1) of processes neutral to right was origi-
nally introduced by Doksum (1974) and posterior distribution with censored
observations was derived by Ferguson and Phadia (1979).

There are two approaches to Bayesian modeling of survival models. One
approach is to put a Lévy process prior on Y directly and the other is to put
a Lévy process prior on the cumulative hazard function (chf), A, defined by

A�t� =
∫ t
0

dF�s�
1−F�s−� �

An advantage of the first approach is that one can choose the prior mean and
variance without restriction, which is not the case for the second approach.
Its main weak point is that Y is not really a cumulative hazard function for
discrete distributions, although it is for continuous distributions. This can be
problematic, because all the Lèvy process priors put probability 1 to discrete
distributions.

The second approach was initiated by Hjort (1990), where he defined a
process neutral to right by a cumulative hazard function. It can be shown
that F is a process neutral to right if and only if A is a nondecreasing Lévy
process such that A�0� = 0�0 ≤ �A�t� ≤ 1 for all t with probability 1 and
either �A�t� = 1 for some t > 0 or limt→∞A�t� = ∞ a.s. Note that not all
Lévy processes can be prior distributions of A since �A�t� should be bounded
by 1.

A consequence of modeling A with a Lévy process is

Var�A�t�� < E�A�t���(2.2)

This causes a problem in elicitation of the prior, because one’s prior guess of
the chf limits one’s confidence on the guess to a certain degree. However, if one
is willing to elicit one’s prior on A by eliciting the hazard of tiny intervals or
through dA, it is a natural consequence. A similar parametric example is the
beta prior on a probability. Its variance is always smaller than its expectation.
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In spite of this disadvantage, we will use Hjort’s characterization of the
process neutral to right for the following reasons. First, as was pointed out in
Hjort (1990), A is as basic as F in survival analysis. Second, it can be eas-
ily extended to general counting process models such as left-truncated right-
censored data and the Poisson process [see Kim (1999) for details]. Third, in
the proof of posterior consistency we will use extensively the first and second
moments of the posterior distribution of A. Since �A�t� is bounded by 1 for
all t with probability 1, the two moments of A always exist [see Lemma 2
of Chapter IV, Gikhman and Skorokhod (1975)] while no such nice property
exists for Y. So A is mathematically more tractable than Y.

Kim (1999) uses the following characterization of Lévy processes whose
jump sizes are bounded by 1. This characterization may be dated back to
Lévy [see the note in Breiman (1968), page 318]. Similar characterizations
can also be found in Theorem 6.3 VIII of Daley and Vere-Jones (1988) and
Theorem 3, page 606 of Fristedt and Gray (1997). For any given Lévy process
A�t� on �0�∞� with 0 ≤ �A�t� ≤ 1, there exists a unique random measure µ
on �0�∞�× �0�1
 such that

A�t� =
∫
�0� t
×�0�1


xµ�ds�dx��(2.3)

In fact, µ is defined by

µ��0� t
 ×B� = ∑
s≤t
I��A�s� ∈ B�

for any Borel subset B of �0�1
 and for all t > 0. Since µ is a Poisson random
measure [Jacod and Shiryaev (1987), page 70], there exists a unique σ-finite
measure ν on �0�∞�× �0�1
 such that

E�µ��0� t
 ×B�� = ν��0� t
 ×B�(2.4)

for all t > 0. Conversely, for a given σ-finite measure ν such that

∫ t
0

∫ 1

0
xν�ds�dx� <∞(2.5)

for all t, there exists a unique Poisson random measure µ on �0�∞� × �0�1

which satisfies (2.4) [Jacod (1979)] and so we can construct a Lévy process A
through (2.3). Consequently, we can use ν to characterize a Lévy process A.

Suppose that a given Lévy process A has fixed discontinuity points at t1 <
t2 < · · · and that the Lévy formula is given by

E�exp�−θA�t��� =
[∏
ti≤t

E�exp�−θ�A�ti���
]
exp

(
−
∫ 1

0
�1− e−θx�dLt�x�

)
�
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where Lt�x� is the Lévy measure. Then it can be shown [see Theorem II.4.8
in Jacod and Shiryaev (1987)] that

ν��0� t
 ×B� =
∫
B
dLt�x� +

∑
ti≤t

∫
B
dGi�x�

for all t > 0 and for any Borel set B of �0�1
 where Gi�x� is the distribution
function of �A�ti�. When there are no fixed discontinuities, µ is a Poisson
random measure defined on �0�∞� × �0�1
 with the intensity measure ν and
dLt�x� =

∫
�0� t
 ν�ds�dx�. Hence, the measure ν simply extends dLt by incorpo-

rating the fixed discontinuity points. However, this simple extension provides
a convenient notational device. The posterior distribution, which typically has
many fixed discontinuity points, can be summarized neatly by the correspond-
ing measure ν without separating the stochastically continuous part and fixed
discontinuity points as was done in the previous papers [Ferguson and Phadia
(1979) and Hjort (1990)]. For this reason, we call ν simply the “Lévy measure”
of A.

From the Lévy measure ν, we can easily calculate mean and variance of the
Lévy process by the following two equations [Kim 1999)]:

E�A�t�� =
∫ t
0

∫ 1

0
xν�ds�dx�(2.6)

and

Var�A�t�� =
∫ t
0

∫ 1

0
x2ν�ds�dx� −∑

s≤t

(∫ 1

0
xν��s�� dx�

)2

�(2.7)

SupposeX1� � � � �Xn are iid with a true cdf F∗ whose chf is A∗. In the usual
random censorship model, we observe Tn = �T1� � � � �Tn� and δn = �δ1� � � � � δn�
where Ti = min�Xi�Ci�� δi = I�Xi ≤ Ci� and C1� � � � � Cn are iid censoring
times with a distribution function G which are independent with X’s.

For a prior distribution ofA, letA be a Lévy process with a Lévy measure ν.
We suppose that the Lévy measure ν can be rewritten as

ν��0� t
 ×B� =
∫ t
0

∫
B
fs�x�dxds(2.8)

with

lim
t→∞

∫ t
0

∫ 1

0
xfs�x�dxds = ∞�(2.9)

Then the posterior distribution of A given �Tn� δn� is again a Lévy process
with the Lévy measure νp given by

νp��0� t
 ×B� =
∫ t
0

∫
B
�1− x�Yn�s�fs�x�dxds

+
∫ t
0
cn�s�−1

∫
B
x�Nn�s��1− x�Yn�s�−�Nn�s�(2.10)

× fs�x�dx
1

�Nn�s�
dNn�s��
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where Nn�t� = ∑n
i=1 I�Ti ≤ t� δi = 1��Yn�t� = ∑n

i=1 I�Ti ≥ t�� �Nn�t� =
Nn�t� −Nn�t−� and

cn�s� =
∫ 1

0
x�Nn�s��1− x�Yn�s�−�Nn�s�fs�x�dx�(2.11)

For the proof, see Hjort (1990) or Kim (1999).
In this paper, we have the following two assumptions:

(A1) There exists a positive constant τ such that F∗�τ−� < 1 and G�τ−� < 1.
(A2) A∗ is continuous on �0� τ
.

We will study the posterior distribution of A only on �0� τ
. (A1) guarantees
that Yn�τ� → ∞ as n → ∞, which is necessary for posterior consistency. If
(A1) holds, however, for all τ > 0, posterior consistency results are valid on
�0�∞�. (A2) is for technical purposes.

3. Posterior consistency of extended beta processes. Let λ0� α and β
be strictly positive continuous functions defined on �0� τ
 and A0�t� =

∫ t
0 λ0�s�

ds, for all t ∈ �0� τ
. Let b�x� a� b� be the density of the beta distribution with
parameters a� b > 0, that is,

b�x� a� b� = '�a+ b�
'�a�'�b�x

a−1�1− x�b−1 for 0 < x < 1�

Consider a Lévy process with parameters �A0�t�� α�t�� β�t�� whose Lévy
measure is given by

ν��0� t
 ×B� =
∫ t
0

∫
B

1
x
b�x� α�s�� β�s��dxdA0�s��

We call it an extended beta process. Note that the class of extended beta pro-
cesses includes the beta processes which are characterized by α�t� ≡ 1. We
first study the issue of posterior consistency in this restricted class of pri-
ors, because the class of extended beta processes is large enough to include
both consistent and inconsistent priors and mathematically tractable enough
to render a simple necessary and sufficient condition for the posterior consis-
tency without much difficulty. The study of the extended beta processes tells
us what feature in the prior process is important for consistency.

In this section, we construct a counter-intuitive example mentioned in
Section 1 with the class of extended beta processes as priors. We say the
posterior is consistent if the posterior probability of A on any ε-neighborhood
of A∗ with sup-norm converges to 1 with probability 1. That is, for any ε > 0,

Pr
{
sup
t≤τ

�A�t� −A∗�t�� < ε�Tn� δn
}
→ 1(3.1)

with probability 1.

Remark. The standard definition of the posterior consistency of A is that
the posterior distribution of A converges weakly to the point mass at A∗ in



672 Y. KIM AND J. LEE

D�0� τ
with probability 1 whereD�0� τ
 is the space of all real valued functions
defined on �0� τ
 which are right continuous and have left limits, equipped with
Skorokhod topology. It is easy to verify that (3.1) implies the standard poste-
rior consistency. We use (3.1) to avoid unnecessarily complicated Skorokhod
topology.

The following theorem gives a necessary and sufficient condition for the
posterior distribution of A to be consistent within the class of extended beta
process priors.

Theorem 3.1. A priori, let A be an extended beta process with parame-
ters �A0�t�� α�t�� β�t�� with λ0�t�� α�t� and β�t� bounded and continuous on
t ∈ �0� τ
. Then the posterior distribution of A given �T1� δ1�� � � � � �Tn� δn� is
consistent if and only if α�t� ≡ 1; that is, an extended beta process prior has
consistent posterior if and only if it is a beta process.

Proof. Since A∗ is continuous, there is a set of probability 1 such that on
that set �Nn�t� ≤ 1 for all t, and hence by (2.10), the posterior distribution
of A becomes a Lévy process with the Lévy measure

νp��0� t
 ×B� =
∫ t
0

∫
B
�1− x�Yn�s� 1

x
b�x� α�s�� β�s��dxdA0�s�

+
∫ t
0

∫
B
b�x� α�s�� β�s� +Yn�s� − 1�dxdNn�s��

By (2.6), (2.7) and the moments formulas for beta distributions, we have

E�A�t��Tn� δn� =
∫ t
0

∫ 1

0
xνp�ds�dx�

=
∫ t
0

∫ 1

0
�1− x�Yn�s�b�x� α�s�� β�s��dxdA0�s�

+
∫ t
0

∫ 1

0
xb�x� α�s�� β�s� +Yn�s� − 1�dxdNn�s�(3.2)

=
∫ t
0

'�α�s� + β�s��'�β�s� +Yn�s��
'�β�s��'�α�s� + β�s� +Yn�s��

dA0�s�

+
∫ t
0

α�s�
α�s� + β�s� +Yn�s� − 1

dNn�s�

and

Var�A�t��Tn�δn� =
∫ t
0

∫ 1

0
x2νp�ds�dx�−∑

s≤t

(∫ 1

0
xνp��s��dx�

)2

=
∫ t
0

∫ 1

0
x�1−x�Yn�s�b�x� α�s��β�s��dxdA0�s�

+
∫ t
0

∫ 1

0
x2b�x� α�s��β�s�+Yn�s�−1�dxdNn�s�
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−
∫ t
0

(∫ 1

0
xb�x� α�s��β�s�+Yn�s�−1�dx

)2

dNn�s�

=
∫ t
0

'�α�s�+β�s��'�α�s�+1�'�β�s�+Yn�s��
'�α�s��'�β�s��'�α�s�+β�s�+Yn�s�+1�dA0�s�(3.3)

+
∫ t
0

α�s��α�s�+1�
�α�s�+β�s�+Yn�s�−1��α�s�+β�s�+Yn�s��

dNn�s�

−
∫ t
0

α�s�2
�α�s�+β�s�+Yn�s�−1�2 dNn�s�

=
∫ t
0
α�s� '�α�s�+β�s��'�β�s�+Yn�s��

'�β�s��'�α�s�+β�s�+Yn�s�+1�dA0�s�

+
∫ t
0

α�s��β�s�+Yn�s�−1�
�α�s�+β�s�+Yn�s�−1�2�α�s�+β�s�+Yn�s��

dNn�s��

By the fact that Yn�s� → ∞ for s ≤ τ together with the dominating conver-
gence theorem, the first term in (3.2) converges to 0; by Lemma 1 in Section 5,
the second term converges to

∫ t
0 α�s�dA∗�s�. Similarly, the first and the second

term in (3.3) converge to 0. Combining these facts, we have that

E�A�t��Tn� δn� →
∫ t
0
α�s�dA∗�s�

and

Var�A�t��Tn� δn� → 0

with probability 1 for all t ∈ �0� τ
. By Theorem A.1 in the Appendix the
posterior probability ofA�·� on any ε-neighborhood of

∫ �·�
0 α�s�dA∗�s� with sup-

norm converges to 1. Hence, the posterior is consistent if and only if A∗�t� =∫ t
0 α�s�dA∗�s� for all t ∈ �0� τ
 or, equivalently, α�t� ≡ 1� ✷

Remark. We have proved a stronger result than the statement of the the-
orem. In fact, we have proved:

If α�t� ≡ 1, the posterior is consistent at all continuous chf.
If α�t� �≡ 1, the posterior is inconsistent at all continuous chf.

Theorem 3.1 has interesting implications. Consider two priors, prior 1 and
prior 2, which happen to be centered around the true value of the param-
eter. Suppose prior 1 has smaller variance than prior 2. Then it is natural
to expect that the posterior with prior 1 is more concentrated at the true
parameter than that with prior 2. Thus, if the posterior with prior 1 is con-
sistent, the posterior with prior 2 is expected to be consistent. In survival
model, however, this may not be the case. To take a look at this counter-
intuitive phenomenon closely, consider two extended beta processes 1 and 2
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with parameters �A∗� α1 ≡ 1/2� β ≡ 1� and �A∗� α2 ≡ 1� β ≡ 1�, respectively.
Using the moment formulas of Lévy processes, it is not hard to see that

E1�A�t�� = E2�A�t�� = A∗�t� for all t ∈ �0� τ

and

Var1�A�t�� = 1
3A

∗�t��
Var2�A�t�� = 1

2A
∗�t� for all t ∈ �0� τ
�

where the subscript i represents that the expectation and variance are with
respect to the extended beta process i, for i = 1�2. Thus, both processes have
the same prior mean A∗, but process 1 has smaller prior variance. However,
Theorem 3.1 implies that process 1 has an inconsistent posterior, while pro-
cess 2 has a consistent posterior. This example contradicts the usual belief
that “the more mass around the true value a priori, the more mass around
the true value a posteriori.”

Note that ft�x� in (2.8) governs the number as well as the sizes of jumps
of a Lévy process. Since A0�t� =

∫ t
0 λ0�s�ds,

ft�x� =
λ0�t�
x
b�x� α�t�� β�t���

for the extended beta process with parameter �A0� α�β�. The condition α�t� ≡ 1
implies that the rate of ft�x� near 0 is crucial for consistency of the posterior
and it has to be exactly

ft�x� ≈ c�t�
1
x

for x near 0�(3.4)

for some positive function c�t�. Since ∫ 1
0 1/xdx = ∞, the Lévy process prior

should have infinitely many infinitesimal jumps; however, too many infinites-
imal jumps [e.g., ft�x� ≈ c�t�/x3/2 or α�t� ≡ 1/2 for extended beta processes]
leads to an inconsistent posterior.

Note also that the extended beta process with α�t� > 1 results in an incon-
sistent posterior. An explanation of this posterior inconsistency is that the
process has finitely many jumps with probability 1, so it does not put its mass
on the parameter space densely enough.

Hjort (1990) defined the beta process as the limit of time discrete mod-
els with beta priors. Such an intuitive characterization of the extended beta
process with α�t� < 1, however, is not available. Usually, time continuous mod-
els are considered to be the approximation of time discrete models, and this
partially explains why only the beta process has the desirable large sample
properties.

It can be postulated from Theorem 3.1 that (3.4) is necessary for consistency
of posterior with general Lévy process priors. Indeed, in the next section, we
use a similar condition to prove consistency of posterior with general Lévy
process priors.
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4. Main results. In this section, we give sufficient conditions for the con-
sistency of posterior of A when the prior is a general Lévy process. It will be
shown that our sufficient conditions include most of the practically used priors
such as Dirichlet processes and gamma processes.

Assume that a priori A is a Lévy process with the Lévy measure given by

ν��0� t
 ×B� =
∫ t
0

∫
B

1
x
gs�x�dxλ0�s�ds�(4.1)

where
∫ 1
0 gt�x�dx = 1 for all t ∈ �0� τ
. Assume that λ0�t� is bounded and

positive on �0� τ�.

Remark. Comparing (2.8) and (4.1), we can see that

λ0�t� =
∫ 1

0
xft�x�dx

and

gt�x� =
xft�x�
λ0�t�

provided λ0�t� > 0.

Remark. Positiveness of λ0�t� on t ∈ �0� τ� is necessary for posterior con-
sistency. Suppose λ0�t� = 0 for t ∈ �c� d
 where 0 < c < d < τ. Then, both the
prior and posterior put mass 1 to the set of chfs, A, with A�d� = A�c�. Hence
the posterior distribution cannot be consistent unless A∗�d� = A∗�c� where
A∗ is the true chf.

For the general consistency result, we need the following two conditions:

(C1) supt∈�0� τ
� x∈�0�1
�1− x�gt�x� <∞.
(C2) There exists a function h�t� defined on �0� τ
 such that

lim
x→0

sup
t∈�0� τ


�gt�x� − h�t�� = 0

and

0 < inf
t∈�0� τ


h�t� ≤ sup
t∈�0� τ


h�t� <∞�

(C2) is the main condition which is basically the same as that α�t� ≡ 1
for posterior consistency with extended beta processes. The main idea of the
proof is to approximate the posterior with a Lévy process prior by that with
an extended beta process prior. (C1) is necessary for the approximation. The
following theorem is the main theorem of the paper.

Theorem 4.1. Under (C1) and (C2), the posterior distribution of A given
�Tn� δn� is consistent.
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The posterior consistency of the distribution itself follows immediately from
the main theorem.

Corollary 1. Under the same conditions in Theorem 4�1, the posterior
distribution of F given �Tn� δn� is consistent. Here, the posterior consistency
of F means that for any ε > 0�

Pr
{
sup
t≤τ

�F�t� −F∗�t�� < ε�Tn� δn
}
→ 1

with probability 1.

Proof. We recover F from A by F�t� = ∏
s≤t�1−dA�s��� Since the product

integration is a continuous mapping from D�0� τ
 to D�0� τ
 with sup-norm
[Theorem 7 in Gill and Johansen (1990)], for any ε > 0 there exists δ > 0 such
that {

sup
t≤τ

�A�t� −A∗�t�� < δ
}
⊂

{
sup
t≤τ

�F�t� −F∗�t�� < ε
}
�

Since the posterior probability of �supt≤τ �A�t�−A∗�t�� < δ� converges to 1 with
probability 1 by Theorem 4.1, so does the posterior probability of �supt≤τ �F�t�−
F∗�t�� < ε�. ✷

Posterior consistency of beta process priors (hence, of Dirichlet process pri-
ors) can be proved using Theorem 4.1, but the proof is omitted because the
consistency is already shown in Theorem 3.1. In the following example, we
show that gamma process priors have consistent posteriors.

Example (Gamma process). A priori, assume that Y�t� = − log�1 −F�t��
is a gamma process with parameters �A0�t�� c�t�� with A0�t� = ∫ t

0 λ0�s�dx,
where λ0�t� is a positive bounded function on t ∈ �0� τ�. Furthermore, assume
that c�t� is continuous around t = 0 and 0 < inf t∈�0� τ
 c�t� ≤ supt∈�0� τ
 c�t� <∞.
Here, the gamma process with parameters �A0�t�� c�t�� is defined by

Y�t� =
∫ t
0

1
c�s� dX�s��

whereX�t� is a Lévy process whose marginal distribution ofX�t� is a gamma
distribution with parameters �∫ t0 c�s�dA0�s��1�. For details of this definition,
see Lo (1982). This prior process was used by Doksum (1974), Ferguson and
Phadia (1979) and Kalbflesch (1978). Since

log E�exp�−θY�t��� =
∫ t
0

∫ ∞

0
�e−θx − 1�c�s�

x
exp�−c�s�x�dxdA0�s��

it can be shown that the chf A of F is a Lévy process with a Lévy measure
given by

ν��0� t
 ×B� =
∫ t
0
c∗�s�

∫
B

1
− log�1− x��1− x�c�s�−1 dxdÃ0�s��



POSTERIOR CONSISTENCY 677

where

c∗�t� =
(∫ 1

0

x

− log�1− x��1− x�c�t�−1 dx
)−1

and

Ã0�t� =
∫ t
0

c�s�
c∗�s� dA0�s��

Note that 0 < inf t∈�0� τ
 c∗�t� ≤ supt∈�0� τ
 c∗�t� <∞. Therefore, we have

gt�x� = c∗�t�
x

− log�1− x��1− x�c�t�−1� 0 ≤ x ≤ 1

and h�t� = c∗�t�� Now (C1) follows immediately. For (C2), by the Taylor expan-
sion, for all x ∈ �0� ε� we have∣∣∣∣1− x

− log�1− x��1− x�c�t�−1
∣∣∣∣

≤
∣∣∣∣1− x

− log�1− x�

∣∣∣∣+ x

− log�1− x� �c�t� − 1�ε max�1� �1− ε�−2��

Since −x/ log�1 − x� converges to 1 as x tends to 0, we get (C2). Hence, by
Theorem 4.1 the posterior is consistent.

5. Proofs of the main results. In this section, we prove Theorem 4.1
and lemmas necessary for the proofs of Theorems 3.1 and 4.1. As stated in
Section 2, we assume (A1) and (A2) throughout this section.

Lemma 1. Let X1�t��X2�t�� � � � be stochastic processes defined on �0� τ
.
Suppose that there exists a continuous function X�t� defined on �0� τ
 such
that

lim
n→∞ sup

t∈�0� τ

�Xn�t� −X�t�� = 0

with probability 1. Then, for all t ∈ �0� τ
,

lim
n→∞

∫ t
0
Xn�s�

1
Yn�s�

dNn�s� =
∫ t
0
X�s�dA∗�s� a.s.

Proof. First, we shall prove that

sup
t∈�0�τ


∣∣∣∣ ∫ t0 1
Yn�s�

dNn�s� −A∗�t�
∣∣∣∣ → 0(5.1)

with probability 1. The distribution of T1 is given by

H�t� = Pr�T1 ≥ t� = exp�−A∗�t� −B�t���
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where B�t� = − log�1 − G�t��� Then the joint probability of T1 and δ1 = 1
becomes

Q�t� = Pr�T1 ≥ t� δ1 = 1� =
∫ ∞

t
H�s�dA∗�s��

Now we can write

Nn�t�/n = 1
n

n∑
i=1
I�Ti ≤ t� δi = 1�

and so the strong law of large numbers implies that for a fixed t,

Nn�t�/n→ 1−Q�t� with probability 1�

Since Q�t� is a nonincreasing function, we can prove

sup
t∈�0� τ


�Nn�t�/n− �1−Q�t��� → 0(5.2)

with probability 1 similarly to the Gilivenko–Cantelli lemma. Again, the
Gilivenko–Cantelli lemma implies that

sup
t∈�0� τ


�Yn�t�/n−H�t�� → 0(5.3)

with probability 1. Combining (5.2) and (5.3) with Lemma A.2 of Tsiatis (1981),
we get

sup
t∈�0� τ


∣∣∣∣ ∫ t0 1
Yn�s�

dNn�s� −
∫ t
0

1
H�s�H�s�dA∗�s�

∣∣∣∣ → 0

with probability 1 and the proof of (5.1) is done.
The proof of the lemma can be done by combining (5.1) and Lemma A.2 in

Tsiatis (1981). ✷

Lemma 2. For i = 0�1� � � � � s ∈ �0� τ
� c > 0 and λ > 0,

lim sup
n→∞

sup
s∈�0�τ


ni+1
∫ 1

λ/n
xi�1− x�Yn�s�−c dx ≤

i∑
k=0
Ckλ

k exp�−pλ� a.s.,

where p = limYn�τ�/n and Ck are positive constants, for k = 0�1� � � � � i,
depending on i and c, but not on λ and s.

Proof. Without loss of generality, assume 0 < λ/n < 1 and Yn�τ�− c > 0.
We prove this lemma by induction on i. First, suppose i = 0,

n
∫ 1

λ/n
�1− x�Yn�s�−c dx = n

Yn�s� − c+ 1

(
1− λ
n

)Yn�s�−c+1

≤ n

Yn�τ� − c+ 1

(
1− λ
n

)n�Yn�τ�−c+1�/n
�
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Since Yn�s� is nonincreasing in s and p = limn→∞
Yn�τ�
n
> 0, the result follows

for i = 0. Suppose the result holds for i − 1 with i = 1�2� � � �. Then, using
integration by parts

ni+1
∫ 1

λ/n
xi�1− x�Yn�s�−c dx ≤ ni+1

Yn�s� − c+ 1

(
λ

n

)i(
1− λ
n

)Yn�s�−c+1

+ ni

Yn�s� − c+ 1
ni

∫ 1

λ/n
xi−1�1− x�Yn�s�−c+1 dx�

Using the induction assumption, the result follows for all i = 0�1� � � � . ✷

Lemma 3. Suppose (C1) holds. Then, for i = 0�1� � � � ,

sup
t∈�0� τ


∫ t
0

∫ 1

0
xi�1− x�Yn�s�gs�x�dxλ0�s�ds→ 0 with probability 1�

Proof. Let g∗ = supx∈�0�1
� s∈�0� τ
�1−x�gs�x�, which is finite by (C1). Using
the fact �x�i ≤ 1 for all i = 0�1� � � � and that Yn�s� is nonincreasing in s, we
have ∫ t

0

∫ 1

0
xi�1− x�Yn�s�gs�x�dxλ0�s�ds

≤
∫ τ
0

∫ 1

0
xi�1− x�Yn�s�gs�x�dxλ0�s�ds

≤
∫ τ
0

∫ 1

0
�1− x�Yn�s�−1�1− x�gs�x�dxλ0�s�ds

≤
∫ τ
0

g∗

Yn�s�
λ0�s�ds

≤ g
∗A0�τ�
Yn�τ�

→ 0�

where A0�τ� =
∫ τ
0 λ0�s�ds� Since Yn�τ� → ∞ a.s., the result follows. ✷

Lemma 4. Suppose (C1) and (C2) hold. Then, for i = 0�1� � � �,

sup
s∈�0� τ


∫ 1

0
xi�1− x�Yn�s�−1�gs�x� − h�s��dx = o

(
1
ni+1

)
with probability 1�

Proof. Let

M = sup
x∈�0�1
�s∈�0� τ


�1− x��gs�x� + h�s�


and

p = lim
n→∞Yn�τ�/n�(5.4)
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Note that M < ∞ by (C1) and (C2) and p > 0. Choose an arbitrary large
positive number λ. For all positive integer n such that λ/n < 1, define

dn = sup
x∈�0� λ/n
� s∈�0� τ


�gs�x� − h�s���

By (C2), limn→∞ dn = 0. For all n with λ/n < 1 and s ∈ �0� τ
, we have

ni+1
∫ 1

0
xi�1− x�Yn�s�−1�gs�x� − h�s��dx

≤ ni+1
[∫ λ/n

0
+
∫ 1

λ/n

]
xi�1− x�Yn�s�−1�gs�x� − h�s��dx

≤ ni+1dn
∫ λ/n
0
xi�1− x�Yn�s�−1 dx

+ni+1
∫ 1

λ/n
xi�1− x�Yn�s�−2�1− x��gs�x� − h�s��dx

≤ ni+1dn
(
λ

n

)i ∫ λ/n
0
dx+ ni+1M

∫ 1

λ/n
xi�1− x�Yn�s�−2 dx

≤ λi+1dn + ni+1M
∫ 1

λ/n
xi�1− x�Yn�s�−2 dx�

By Lemma 2 and the fact that limn→∞ dn = 0,

lim sup
n→∞

sup
s∈�0� τ


ni+1
∫ 1

0
xi�1− x�Yn�s�−1�gs�x� − h�s��dx ≤

i∑
k=0
Ckλ

k exp�−λp��

for some positive constants Ck independent of λ, for k = 0�1�2� � � � � i. Since λ
is arbitrarily large, the result follows. ✷

Lemma 5. Suppose (C1) and (C2) hold. Then, for i = 0�1� � � � ,

sup
s∈�0� τ
� �Nn�s�=1

∣∣∣∣∫ 1

0
xi�1− x�Yn�s�−1

(
gs�x�
kn�s�

−Yn�s�
)
dx

∣∣∣∣
= o

(
1
ni

)
with probability 1�

where

kn�s� =
∫ 1

0
�1− x�Yn�s�−1gs�x�dx�
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Proof. For s ∈ �0� τ
 with �Nn�s� = 1,∣∣∣∣ ∫ 1

0
xi�1− x�Yn�s�−1

(
gs�x�
kn�s�

−Yn�s�
)
dx

∣∣∣∣
≤ 1
kn�s�

∫ 1

0
xi�1− x�Yn�s�−1�gs�x� − h�s��dx(5.5)

+ 1
kn�s�

∫ 1

0
xi�1− x�Yn�s�−1�h�s� − kn�s�Yn�s��dx�

It suffices to show supremums of two terms on the right-hand side of (5.5)
over all s ∈ �0� τ
 with �Nn�s� = 1 converge to 0 with probability 1. In this
proof, sup and inf are the supremum and infimum over all s ∈ �0� τ
 with
�Nn�s� = 1, respectively.

First, we have

sup �Yn�s�kn�s� − h�s�� = sup
∣∣∣∣Yn�s� ∫ 1

0
�1− x�Yn�s�−1gs�x�dx

−Yn�s�
∫ 1

0
�1− x�Yn�s�−1h�s�dx

∣∣∣∣
≤ supYn�s�

∫ 1

0
�1− x�Yn�s�−1�gs�x� − h�s��dx(5.6)

≤ supn
∫ 1

0
�1− x�Yn�s�−1�gs�x� − h�s��dx

= o�1� with probability 1�

where the last equality is due to Lemma 4.
Consider the first term in (5.5). Since Yn�s� ≤ n for all n and s,

inf nkn�s� ≥ inf h�s� − sup �h�s� − kn�s�Yn�s���(5.7)

By (C2) and (5.6) we see that nkn�s� > 0 all but finitely many n. Hence,
Lemma 4 implies

sup
ni+1

nkn�s�
∫ 1

0
xi�1− x�Yn�s�−1�gs�x� − h�s��dx→ 0� with probability 1�

Finally, consider the second term in (5.5):

ni sup
1
kn�s�

∫ 1

0
xi�1− x�Yn�s�−1�h�s� − kn�s�Yn�s��dx

≤ ni sup �h�s� − kn�s�Yn�s��
kn�s�

∫ 1

0
xi�1− x�Yn�s�−1 dx

≤ sup
�h�s� − kn�s�Yn�s��
kn�s�Yn�s�

ni'�i+ 1�
�Yn�s� + 1� · · · �Yn�s� + i�

�
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Again using (C2) and (5.6) together we have

inf kn�s�Yn�s� ≥ inf h�s� − sup �h�s� − kn�s�Yn�s�� > 0�

all but finitely many n with probability 1. Hence the second term in (5.5)
converges to 0 with probability due to (5.6). This completes the proof. ✷

Proof of Theorem 4.1 Since the posterior distribution ofA is also a Lévy
process, by Theorem A.1 it suffices to show that

E�A�t��Tn� δn� → A∗�t�(5.8)

and

Var�A�t��Tn� δn� → 0(5.9)

with probability 1, for all t ∈ �0� τ
.
Noting that kn�s� = cn�s�/λ0�s� for s > 0 with �Nn�s� = 1 and N�0� = 0

with probability 1, we have

E�A�t��Tn� δn� =
∫ t
0

∫ 1

0
�1− x�Yn�s�gs�x�dxλ0�s�ds

+
∫ t
0

1
kn�s�

∫ 1

0
x�1− x�Yn�s�−1gs�x�dxdNn�s��

(5.10)

By Lemma 3, the first term on the right-hand side of (5.10) converges to 0
with probability 1. By adding and subtracting the same quantity and using
Lemma 5, the second term on the right hand side of (5.10) is rewritten by

∫ t
0
Yn�s�

∫ 1

0
x�1− x�Yn�s�−1

∣∣∣∣gs�x�kn�s�
−Yn�s�

∣∣∣∣dx 1
Yn�s�

dNn�s�

+
∫ t
0
Yn�s�2

∫ 1

0
x�1− x�Yn�s�−1 dx 1

Yn�s�
dNn�s��

(5.11)

By Lemmas 1 and 5 and the fact that Yn�s� ≤ n, the first term of (5.11) con-
verges to 0 with probability 1. By the beta integral, the second term of (5.11) is

∫ t
0

Yn�s�
Yn�s� + 1

1
Yn�s�

dNn�s��

Since

sup
s∈�0� τ


∣∣∣∣ Yn�s�Yn�s� + 1
− 1

∣∣∣∣ ≤ 1
Yn�τ� + 1

→ 0 with probability 1�

the second term of (5.11) converges to A∗�t� by Lemma 1.
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For (5.9), we have

Var�A�t��Tn�δn� =
∫ t
0

∫ 1

0
x�1−x�Yn�s�gs�x�dxλ0�s�ds

+
∫ t
0

[
1
kn�s�

∫ 1

0
x2�1−x�Yn�s�−1gs�x�dx(5.12)

−
(

1
kn�s�

∫ 1

0
x�1−x�Yn�s�−1gs�x�dx

)2]
dNn�s��

The first term on the right-hand side of (5.12) converges to 0 with probability
1 by Lemma 3. Since the integrand of the second term of (5.12) is the variance
of the density

1
kn�s�

�1− x�Yn�s�−1gs�x� for 0 < x < 1�

it is less than or equal to

1
kn�s�

∫ 1

0
x2�1− x�Yn�s�−1gs�x�dx�

Hence, the second term on the right-hand side of (5.12) is less than or equal to∫ t
0
Yn�s�

∫ 1

0
x2�1− x�Yn�s�−1

∣∣∣∣gs�x�kn�s�
−Yn�s�

∣∣∣∣dx 1
Yn�s�

dNn�s�

+
∫ t
0
Yn�s�2

∫ 1

0
x2�1− x�Yn�s�−1 dx 1

Yn�s�
dNn�s�

≤
∫ t
0
n
∫ 1

0
x2�1− x�Yn�s�−1

∣∣∣∣gs�x�kn�s�
−Yn�s�

∣∣∣∣dx 1
Yn�s�

dNn�s�

+
∫ t
0

Yn�s�'�3�
�Yn�s� + 1��Yn�s� + 2�

1
Yn�s�

dNn�s��

By Lemmas 1 and 5, it converges to 0 with probability 1. ✷

APPENDIX

Theorem A.1. Let An be a sequence of nondecreasing stochastic processes
with values in D�0� τ
 such that for all t ∈ �0� τ
,

Var�An�t�� → 0�

Suppose that there exists a nondecreasing deterministic continuous function
A0 in D�0� τ
 such that

E�An�t�� → A0�t� for all t ∈ �0� τ
�
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Then for any ε > 0,

Pr
{
sup
t≤τ

�An�t� −A0�t�� < ε
}
→ 1�

Proof. Since A0 is a nondecreasing continuous function, we can choose a
grid 0 = t0 < t1 < t2 < · · · < tk = τ such that

max
i=1� ���� k

�A0�ti� −A0�ti−1�� < ε/3�

First, we will show that for any ε > 0,

Pr
{
max
i=1� ���� k

�An�ti� −A0�ti�� > ε
}
→ 0�

By Chebyshev inequality and the assumptions of the theorem,

Pr
{
max
i=1� ���� k

�An�ti� −A0�ti�� > ε
}

≤ Pr



√√√√ k∑
i=1

�An�ti� −A0�ti��2 > ε




≤ 1
ε2

k∑
i=1

��A0�ti� − EAn�ti��2 + Var�An�ti��� → 0�

Now, for given t with ti−1 ≤ t < ti, let t∗ = ti−1 and t∗ = ti. Then we can write

�An�t� −A0�t�� ≤ �An�t� −An�t∗�� + �An�t∗� −A0�t∗�� + �A0�t� −A0�t∗��

≤ �An�t∗� −An�t∗�� + �An�t∗� −A0�t∗�� + �A0�t∗� −A0�t∗��

≤ �An�t∗� −A0�t∗�� + 2�An�t∗� −A0�t∗�� + 2�A0�t∗� −A0�t∗��

≤ 3 max
i=1� ���� k

�An�ti� −A0�ti�� + 2
3ε�

Hence,

Pr
{
sup
t≤τ

�An�t� −A0�t�� > ε
}
≤ Pr

{
max
i=1� ���� k

�An�ti� −A0�ti�� > ε/9
}
→ 0

and the proof is done. ✷
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