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A COMPARISON OF CONTINUITY CONDITIONS
FOR GAUSSIAN PROCESSES

By M. B. MaARrcus

Northwestern University

Three sufficient conditions for continuity of real-valued, separable,
Gaussian processes on R! are compared. They are: (1) Fernique’s (1964)
integral condition, (2) the Kahane (1960)-Nisio (1969) condition on the
spectrum of stationary processes and (3) Dudley’s (1967) condition in-
volving c-entropy. Let S; = set of stationary, separable, Gaussian processes
that can be proven continuous by condition i = 1, 2, 3. Dudley (1967) has
shown that §; € S3. It is shown here that S; C 1 C S3, that is, the inclu-
sion is strict. These results extend to non-stationary processes where
appropriate.

' The Kahane-Nisio condition is strengthened and the best possible
integral condition for continuity involving the spectrum is given. A result
on the e-entropy of blocks in a separable Hilbert space is also of indepen-
dent interest.

1. Discussion of results. There are several sufficient conditions for the con-
tinuity of real-valued, separable, Gaussian processes (which we shall henceforth
refer to simply as Gaussian processes). Let X(r), t € [0, 1] be a Gaussian process;
Fernique’s (1964) condition involves a monotone majorant for the increments
variance of the process. Let

(1.1) E(X(1) — X(s) = ¢(It — s1) ¢1t5€[0,1].
Fernique’s condition is that X(r) is continuous if
(1.2) §= p(e™*") dx < oo .

Nisio (1969) has given the following condition; for X(r) also stationary let
o(t) = EX(t + 5)X(s) = {§ cos tAdF(2) where F is a distribution function. Let

s, = F(2", 2*"] = F(2**') — F(2"),n = 0, 1, . ... If a decreasing sequence {M,}
can be obtained such that s, < M, and
(1.3) Dmee M} < o0

then X(¢) is continuous. Nisio’s condition includes an earlier result of Kahane
(1960). Kahane considers random Fourier series. His result, in the case that
the series is a stationary Gaussian process, i.e.

(1.4) X(t) = Yo, a,[é, cosnt + &' sin nt]
where £, and &, are independent Gaussian random variables with mean zero
and variance 1, is the following: Define

— on 1
Sp = jt+on+1 a,’
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124 M. B. MARCUS

a sufficient condition for the continuity of (1.4) is
(1.5) s, non-increasing, st < oo

Dudley (1967) has given sufficient conditions for X(¢) in terms of e-entropy.
Let H be a real infinite dimensional Hilbert space. An isonormal Gaussian
process L on H is a linear map from H into real Gaussian random variables with
EL(x) = 0, EL(x)L(y) = (x, y) for all x, ye H. A GC-set is a subset C C H on
which the isonormal L has continuous sample functions. One measure of the
size of a subset S of H is the minimal number N(S, ¢) of sets of diameter < 2¢
which cover it. The e-entropy H(S, ¢) of S is defined as log N(S, ¢). Dudley’s
condition is that if S is a subset of a Hilbert space and
(1.6) §o H¥(S, ¢) de < o0
then S is a GC-set.

Let X(r), t € [0, 1] be a Gaussian process. A concrete way to realize X() as a
linear map from some Hilbert space is to use the Karhunen-Loéve expansion of
X(1) (see Garsia, Rodemich and Rumsey (1970) for a more detailed treatment
of the following). Let I'(¢, s) = EX(1)X(s). Then

F(S’ t) = Z::l 2n¢n(s)¢n(t)
where the 2, are eigenvalues and the ¢,, which are orthonormal with respect
to Lebesgue measure, are eigenfunctions of I'(s, r). The function

. .ys(t) = Z:LO:I 'zni¢n(s)¢n([)
is an element of L¥[[0, 1], 1], where s is Lebesgue measure, since {jy (1) dr =
e A, 0.()p.(s) = I'(s, s). The isonormal linear map L is defined as follows:

L:y,(+) = Ziar 2 0a(5)7a(@)
where 7, are independent N(0, 1). It is obvious that
Yoy, (u)y(u) du = E(Ly,)(Ly,) = I'(, 5) .

Suppose that I'(t + h, t + h) + (¢, 1) — 20(¢, t + by < #*(h), ¢ T 1 €0, 1].
For any ¢ >0 let d=sup{r: ¢(r) <e}. Let S={y(+):s5€[0,1]}, SC
L[]0, 1], ] then N(S,¢) < C/o for some constant C and H(S,¢) < log C +
log 1/6. Dudley (1967, Theorem 7.1) shows that if (1.2) holds so does (1.6) or,
equivalently, those processes that can be shown to be continuous by the integral
test (1.2) can be shown to be continuous by the e-entropy condition (1.6).

Marcus and Shepp (1970, Section 5) have shown that neither (1.2) nor (1.3)
is necessary for sample continuity on R' (in dealing with (1.3) we must further
restrict ourselves to stationary processes). Even though Qualls and Watanabe
(1971) have given examples in which (1.2) and (1.3) are equivalent it has ap-
peared that these conditions, one dealing with the spectrum and the other with
the covariance function, are not the same. However, we prove that (1.3) can
be derived from (1.2), in fact, (1.2) implies a result that is stronger than (1.3).
Specifically, we prove the following theorem.
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THEOREM 1. Let X(t) be a stationary Gaussian process, EX*t) =1, p(1) =
EX(t + s)X(s) = {; cos At dF(2). Define F, = 1 — F(2"), and let ¢(r) be the least
monotone majorant for 2(1 — p(t)). Then

(1.7) Zea (L

n

To clarify the relationship between (1.7) and (1.3) set 5; = F(27, 27+') so that
F,= 7.5 < )7, M;. Itfollowsfrom Boas’ lemma (1960) [see also Marcus,
Shepp (1970) page 389] that if M, | then

(1.8) zo (L) s2meome.

n
One can readily obtain examples of processes satisfying the left side of (1.7) and
not (1.3) so (1.2) is strictly stronger than (1.3). We do not take up the question
of whether the implication in (1.7) can be reversed.

Since the random Fourier series (1.4) are of interest in their own right we
note that applying Theorem | we obtain that a sufficient condition for continuity
of these series is

(1.9) T (5 Dies) < oo

Convergence of the sum in (1.7) is equivalent to

>§ < o= {d(e?)dx < oo .

(1.10) o (L=FO! 4 ¢ o .
t(log )t

This is the best possible integral condition on the spectrum of the process since
we know from Marcus, Shepp (1970) and the Tauberian theorems of Pitman
(1961) that if 1 — F(r) = C[log t(log log t)*- - - (log log- - -log t)*]~", for large ¢,
the corresponding Gaussian process is discontinuous. (Note: The integral
(1.10) converges for 1 — F(t) = C,[log t(loglog t)*- - - (log log- - -log #)**]"", t
sufficiently large, ¢ > 0.)

Let p, be an increasing sequence of positive numbers and a, > 0, 7., a, <
; §,, &, are independent N(0, 1). Consider

(1.11) X(1) = 5. a6, o5 7,1 4 £, sinp,1] .

An obvious deficiency of (1.2) is that it cannot be used to prove the continuity
of these Gaussian processes, a result which follows easily from the three-series
theorem. In Marcus, Shepp (1970, Section 5) an example of a continuous
Gaussian process of this type, with », = 27, is given for which the least mono-
tone majorant of the characteristic function does not satisfy (1.2). The second
result of this paper can be used to show that (1.6) implies continuity of the
processes (1.11).

Let H be a separable Hilbert space and {¢,} an orthonormal basis for H. A
“block’’ in this space is a subset of the form

(1.12) B({a,})) = {Lvai X, b %, S a,,n=1,2,...}.
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We assume that a, is non-increasing and that }]a,’ < co. The following
theorem is proved:

THEOREM 2. Let B({a,}) be a block in a separable Hilbert space. Let H(B{a,}, ¢)
be the c-entropy of B({a,}). Then

(1.13) i Hi(Bla,), x) dx < 00 = 57,4, < oo .

(Note that the convergence of the integral implies the convergence of the sum
by (1.6) and the three-series theorem; the other direction is the new result.)

The random series (1.11) can be rearranged so that the a, are non-increasing.
They are then isonormal Gaussian processes on subsets of blocks with 3 a, < oo.
Using Theorem 2, (1.6) implies the continuity of these random series. There-
fore, we have shown that (1.6) is strictly stronger than (1.2).

This result leads us to question whether (1.6) is necessary and sufficient for
continuity of stationary Gaussian processes on R'. We will relate the condition

(1.14) {= H¥(S, ¢) de = o

to the result of Marcus and Shepp (1970, 1971) on a sufficient condition for a
Gaussian process on [R' to be discontinuous. Their result is: Let X(r) be a
Gaussian process on R' and suppose that E(X(1 4+ 5s) — X(s))* = p’(t), where for
some 6 > 0, p(h) 1, he[0,0]. Then

(1.15) i p(e=*) dx = oo

is sufficient for X(r) to be discontinuous. Let X() be a process satisfying (1.15)
and p(7) the monotone minorant such that E(X(r + s) — X(s))’ = p’(¢). Recall
the discussion showing how the Karhunen-Loéve expansion gives rise to a linear
map from some Hilbert space to X(r); following that discussion let S =
{y,(+): s€[0,1]}. Define d =sup{r: p(r) < ¢}; by an argument similar to
Dudley’s (1967, Theorem 7.1) with the inequalities reversed (1.15) implies
(1.14).

The reader is remined that Dudley (1967) and Sudakov (1969) have shown
that (1.6) is not necessary and sufficient for continuity of GC-sets in general,
nevertheless, it is still not known whether (1.6) is necessary and sufficient for
continuity of stationary Gaussian processes on R*. (The result for R” should
be no more difficult than the result for R'.)

Fernique (1971) has a new sufficient condition for continuity of Gaussian
processes that is stronger than (1.2); however it is not known whether it implies
the continuity of the examples in (1.11).

2. Proofs.
(a) Proor oF THEOREM 1. Let p(r) = EX(t + 5)X(s) = {7 cos 1A dF(2).

Ah 2341 Ah

E(X(t + ) — X)) = 2 §isin* 22 dF(3) + 2 Xy 33" sin* 52 dF ().
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For 1/2"** < h < 1/27H,

E(X(r + h) — X)) = + Do S5 R dFQ2) + Dieni §57 dF(2)

< 5o 2m 4oy 2R, 2 4 Yo F(29, 204

For 1)2" < h < 1/2n+1 define

22

P*(h) = 22” + i *F(Z’ 2]+ [1 = F2Y)

and observe that ¢(k) is a monotone majorant for E(X(t 4+ k) — X(1))>. By a
change of variables (1.2) is equivalent to

@1 22, 200 < .

Using (|x| + |y|)t < |x|* + |y|* we see that (2.1) will converge if both

(2.2) 2in=1 <4;" 2150 2V F(27, 2“‘])é < o0
and
2.3) T <F7>* < oo

That (2.3) implies (2.1) is what we want to prove; therefore, we need only to
show that (2.3) implies (2.2).
The left side of inequality (2.2) is bounded above by

D 27 D0 VRN, 2] = 1T, e 2TV, 207
=2 37, Fi(27, 294].
By Hardy, Littlewood and Polya (1934, Theorem 345)

4
Do P2, 27 £ 2 3, (D)
n
(b) In order to prove Theorem 2 we need the following lemma.
LemMma 1.

@ Ta(o Zieat) <o - I

a’
LRI

Proor. If 37, (n! 2%, a)! converges so does

el 5o = (2

w w 2y o o L (D= @) + (Din @)}
= Zn:l né[(2k=n a, )i (Zk=n+l a, )]i (Z?:n akz)i _I_ (Zl?:n+l ak2)§

a,’

(—2—::;11 akz)é ’

1
= Yo, nt
_22_1
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(c) Proor oF THEOREM 2. Given a block B({a,}) we will show that } a, <
oo = {3 H* (Bfa,}, x) dx < oo. It is convenient to eliminate large gaps in the
sequence {a,}. Construct a sequence {b,} so that {a,} c {b,} and so that
(2.5) b <4 N by
This can be done in such a way that {4,} is non-increasing and 37, b, < co.
The block Bf(a,}) is a proper subset of B({b,}). We will show that
{¢ HY(B{b,}, x) dx < oo which implies that {{ H}(B{a,}, x) dx < oo.

Let 6, = ((n + 1) X, b))% since the d, are decreasing, if b,/6, = 1 then
b,/0,,, = 1. Let

ntl =

(2.6) M(n) = min {n, max{k: b = 1}} .

3,
We shall now find an upper bound for the minimal number of sets of diameter
2e, = 2(2 Xr_... b2 that covers B({b,)).
For n fixed consider the following element in B({b,}):
2.7 {jfnr - Jwm0.) Wwhere the j, are integers,
0 |l £ I:.g&] ,k=1,..., M(n), ([ ] denotes integral part).

Let x € B({b,}). There is an element in (2.7), call it X for which
(2.8) Ix — %[]* < M(m)3," + Ziowim1 08 + ienn b

By (2.6)
llx — 2| < 10,2 + w67 <

The covering sets are of the form x + S, where x is an element of (2.7) and S
is the following set:

S={x:|x] <0d,,i=1,---,n|x| < b;,i>n}.
Therefore N(B{b,}, ¢,) is less than the number of elements in (2.7).

b n o LAmege [T 2b
NB(b). o) < Ty 22 4 1) 5 (DT TTED 200

The additional factor 2" is introduced since ((b,/d,) + 1) < 2(,/d,); although
2" seems excessively large, using it simplifies the proof. Let

Ny = 3O A D"™PIIEY b and  f(e,) = log N(,) -

- e, M
For any 4 there is an integer N for which
Sg H&(X) dx é Z:;=N [6"_1 - en]ﬁi(en) .
(2.9) Xoovlea — 5n]17&(5n) = 2w En—l[ﬁé(en) - H&(En—l)] + eN—lﬁQ(N—l) .

. _ _ _ . ﬁ( n) — ﬁ( n—l)
\Zn=N en—l[H&(En) - Hi(e”_l)] - Zn:N En 1—1&(:”) + ﬁ:(en—l)

< Doy 25 [Ae) — Aen)]-
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The last inequality follows from the fact that H(e,) > n. Suppose that
M(n — 1) < M(n), then

— X —_ M(n)[(2 —M(n-1)/2
(210)  A(e,) — Aes) = Tog [ 8 TTwy e 6“0 ()]

en—]

M(n — 1) e M(n) 1
<= “Jlogm=t 4 M 1+ =
=T 5 %t °g< + n>

M(n) — M(n — 1) lo nb
2 g

+ ?&I;n;lwl + log 8 .

Since by, 1,41/0,1 < 1, nb% 1,1, < no2_ L &&_. Therefore

(2.11)  H(e,) — H(e,_,) < M(n) log n1 2t M(”) + log8 < — log w1 144
When M(n) = M(n — 1) the product term in (2.10) is replaced by 1, (2.11)
follows easily. We now have

{3 HA(x) dx < ey H(ey_y) + 0=, St [l log =1 4 ,1,.] .
nt 2 el

n

Note that Y17 ye, ,/nt = Yiv_, (2n7' Y., 0,5 < 28 33w\ b, when b, | by Boas’
lemma (see 1.8).

Ty me,  log st < T 2n)H(Sp, byt — O

Enz Zk 'n+l
i 2
<8 3w " by (2.5).
S by )

The proof follows from Lemma 1 and Boas’ lemma.
For further results on the e-entropy of compact subsets of /» spaces see Marcus
(1972).
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