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A SIMPLE ANALYTIC PROOF OF THE POLLACZEK-WENDEL
IDENTITY FOR ORDERED PARTIAL SUMS

By Jos H. A. DE SMIT

University of Louvain

In this note we prove an identity due to Pollaczek (1952) and Wendel
(1960). The identity describes the distributions of ordered partial sums of
independent identically distributed random variables and thus generalizes
Spitzer’s identity. Our proof follows from a simple analytic argument ap-
plying a kind of Wiener-Hopf decomposition. We also give an extension
of the Pollaczek-Wendel identity.

Let {X,,n = 1,2, ...} be a sequence of independent identically distributed
random variables with common distribution function G(x) = P{X, < x}. The
nth partial sum is denoted by S, = X, + X, + ... + X, forn= 1,2, .. .; while
S, = 0. If we have a sequence of real numbers a,, a,, - - -, a,; then by max{¥,_, a;
we denote the kth largest element of this sequence, so max{l;_, a; = max,g;, 4;
and max{®,_,a;, = min,_;, a,. We introduce the random variables R, , =
max{¥,_, S;. The distributions of these variables were studied by Pollaczek (1952)
and Wendel (1960), who both found a result which generalizes Spitzer’s identity.
In the latter identity only the variables R, , = max,;_, S; occur. The treatment
by Pollaczek requires very complicated analytical arguments, while Wendel ap-
plied a simpler algebraic method. Analytical methods are unpopular because of
their apparent complexity. This note is intended to illustrate that properties of
random walks having simple combinatorial and algebraic proofs may have even
simpler analytical proofs. It also shows the power of the Wiener-Hopf decom-
position. The present approach is an extension of a very elegant derivation of

Spitzer’s identity given by Cohen (1969). We define
S, =max®._ (S, —S,), n=1,2,--;k=12,.-4,n;

and note that S, , and R, , are identically distributed. Moreover we see that the
joint distributions of S, and S, , on the one hand and S, and R, , on the other
hand are the same. We proceed by considering the variables S, , instead of R, ;;
and for convenience we define S, , =0 for n=0,1,2,..-; k=n+4+1,n+
2, .... We shall use the notation x* = max (0, x) and x~ = min (0, x).
THEOREM 1.
(1) Spir1 =851+ Xoias n=20,1,2,...;
Sprrp =St 4+ Soior + Xogas n=12,3,.--;k=2,3,---,n4+ 1.
Proor.
Spi1,1 = max (X, .y, S, 1 + X, +l)—‘Sn,l+Xn+l3 n=0,1,2,...3

_ ®
Spire = Max® (X, 1, S, + Xops o005 Saper + Xairs Sap + Xaid) »
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forn=1,2,...; k=2,3,...,n+4 1; hence
if S <0 then 8., =min(X,,,, S, 1+ Xp1) = S5ir + Xopas
if Spp =0 then S, =38,, + X,
Define for 9| < 1, |[r| < 1, Re p, = 0, Re p; = 0,
D(g, 1, 01 05) = Do D=1 4T E{Xp (— 0,57 — 05S,)}
and for Rep = 0,
T(p) = §=. e~ dG(x) = Efexp (—pX,)} .
THEOREM 2. (The Pollaczek-Wendel identity.)

D(q, r, o1, £3)
1

~ =T = 4T e
x exp[ Zgm & (" = DE(exp (= pS)(1 — exp (—0,S, )} |

for|gl < 1,|rl < 1,Rep;, =0, Rep, =0.
Proor. Forn=1,2,..-;k=2,3,...,n+ 1; we have
eXp (—0157,1,0) = €XpP (—P18ns16) + 1 — €Xp (—018741,4)
= eXPp (— 01 X1 ){eXP (—0155,1) + eXp (—015;,k-1)}
+ 1 — exp(—0S5114) >
or upon multiplying with exp (— p;S,,,) and rearranging
eXP (— 0188 11,6 — P3Sns1) — €XP (—(01 + 05)Xp11) €XP (— 0185 — £55,)

@)

(3) = eXP (— 03S,+1) — €XP (— 018116 — P3Sn41)

— exp (— (01 + P5)X,1){eXP (—p5S,) — €XP (— 018541 — 055,)} -
Taking expectations (3) yields for Rep, =0, Rep, =0, n=1,2,...; k=
2,3, --.,n+ 1

E{exp (— 0187110 — 038} — (01 + 05)E{eXp (— 01571 — 055,)}
= E{exp (—05Su+1) — €XP (— 0187116 — 03Sn11)}
— L(p; + p)E{exp (—p5S,) — eXp (— 015541 — 0:5,)}
and forn =0, 1, .. .; we have
E{exp (— 0157111 — 03wt} — (o1 + p3)E{eXp (— 01551 — 055,)}
= E{exp (—03S,+1) — €XP (— 0187111 — 03Sa41)} -
Combining the last two formulas it follows for Re p, = 0, Re p, =0, |g| < 1,
|r| < 1, that
— qC(o, + p3)
— qrT (o, + 05)
_ 1
(=01 = grT(e))}
X Efexp (—p3S,)(1 — exp (—p0:55,))} -

1
D(q, r, o1 05) i
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Define for Re p, =0, || < 1, |r] < 1,

K*(q, r, p,s p3) = €xp [Z:=1 %ﬂ (r* — I)E{exp (—p3S,)(exp (_PIS?+) - 1)}] s
Rep, =0,
K=(9, 15 p1s 03) = exP[Z::l 117” (r" — 1)E{exp (—p, S, — Pssn)}] >

Rep, <0,
then it is immediately seen that

1 —ql'(0, + ps) _ K*(q, r,
[ = ¢rD(p, + o)

so that instead of (4) we can write for Rep, =0, Re o, =0, || < 1, |¢| < 1,

o1 )K(q, 15 015 03)

(5) D(q, 1, p15 3)K* (g5 T, 015 P3) = F(g, T, P15 03)

where F(q, r, p,, p;) is a function which for fixed values of ¢, r and p, is an analytic
function of p, for Re p, < 0. The lefthand member of (5) is analytic for Re p, > 0
and both members are continuous for Re p, = 0. Hence both members are ana-
lytic continuations of each other (see Titchmarsh, 1944). We introduce the func-
tion H(q, r, p,, p;) Which equals the lefthand member for Re p, = 0 and the
righthand member for Re p, < 0. It is easily seen that H(q, r, p,, p5) is bounded
for |r| < 1, |9] < 1, Re p; = 0 and every p,. According to Liouville’s theorem
H(q, r, o, p,) is independent of p,. Consequently from (5) we have

D(q, 1, o1, P)K*(q, 1, p1s 03) = D(q, 1, 0, p)K*(q, 1, 0, p;)
1

T (=Dl = qT(og)}

This proves the theorem.
From Theorem 2 we immediately find the distribution of S;, by noting that

Se = —[maxizz i {— (S, — S._)H*»

i.e. we take —S, instead of S, in (2) and max"~*+V instead of max®. The result
is

Din=0q" Do=a r*E{eXp (— 02871 — £55,)}
_ 1 4 1
{1 —ql(e}1 — 1) {1 — grl(px)}(1 — 1)

1 — ql(0s + 09) @y,
- s Iy Ao ’
1 — qu"(p, + pa) (q ’

for |g < 1, |r] < 1, Rep, £ 0, Re p, = 0. Using the identity: exp (—p,x* —
0;x7) = exp (—p,x*) + exp (—p,x~) — 1; we can combine the above expression
with Theorem 2, so that we find the following extension of the Pollaczek-Wendel
identity.
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THEOREM 3.
2in=09" D=1 r*'Elexp (=018t — 03551 — 055,)}

1 — qT'(p, + 05)
= s I's 01 -
(@> 75 01 p5) — +— T (o + p)

@(q, r, 055 05)

_ 1
{1 —qT(p}1 — 1)

X {exp| 270 L (" — DELxp (=001 — exp (~0,5,) |

— exp| Zin L (" — DE(exp (—p,5," — oSl |}

for Rep, = 0, Rep, <0, Rep, =0, || < 1, |r| < 1. This result was obtained
in 1963 by Port, using combinatorial methods.
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