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BOUNDS ON DISTRIBUTION FUNCTIONS IN TERMS OF
EXPECTATIONS OF ORDER-STATISTICS

By C. L. MALLows
Bell Laboratories

Suppose xi, - -+, x» are the order-statistics of a random sample from a
distribution F. We assume that the expectations &;:n = E(x;) are known,
and derive sharp bounds on F(x) for all x. These results are obtained by
transforming the problem into a classical one involving ordinary power
moments.

1. Introduction and summary. Kadane [5] has considered the problem of decid-
ing when a triangular array of numbers §,., can be represented as the expectations
of order-statistics in random samples from some distribution on the positive half-
line, so that a distribution function (df) F exists such that F(0—) = 0, and

(1) Eiw=B(i,n+ 1 — iy §xF(x)"¥(1 — F(x))**dF(x) 1<i<n

where B is the complete beta function (see e.g. [3]). Here we treat the analogous
problems when F has unrestricted or interval support. We also consider the
question of finding sharp bounds for F(x) when the expectations &,., are known
for 1 <i < n, and sharp bounds for &;,,, (1 <i<n+ 1) under the same
conditions.

Our basic device is to consider, instead of F the inverse function G(p) defined
by (3) below, treating this as a df. The (ordinary) moments of this new df are
related very simply to the expectations of order-statistics in samples from F, so
the problems considered here reduce to standard ones in the theory of moments
and Chebyshev inequalities. Thus, necessary and sufficient consistency condi-
tions on the expectations &;,, are given in Theorem 1 below for the finite-range
case and in Theorem 2 for cases where F has semi-infinite or infinite support.
In Section 3 we derive sharp bounds for F(x) when the expectations of the order-
statistics in samples of size n are known. Some explicit results appear in Section 4.

The author’s original motivation for this work was his desire to understand
to what degree a df can be determined from a compact summary of information
from several random samples. Suppose one is able to collect (repeatedly) random
samples of size n, but can only afford to record a total of » items of information.
Then one could choose n — 1 cell-boundaries {#,: i = 1, ..., n — 1} and record
the cumulative frequencies in the n cells; this would enable us to estimate only
the n — 1 values {F(0,): i =1, --.,n — 1}. A weakness of this method is that
the cells have to be selected in advance; a poor choice will result in lost efficiency.
Also, F remains completely unknown (except for monotonicity) between the 6,’s.
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An alternative method would be to accumulate estimates of the first » moments
of the distribution, and to use these to provide an estimate of F. Here one can
use the Chebyshev inequalities (see [7], [8]) to bound F(x) for each x. More
generally, one could estimate other linear functionals (generalized moments)
of F.

Another possibility would be to record the cumulative averages of the order-
statistics. This would provide estimates of &,.,,, and the question arises as to how
effective these would be in determining the df. Here we assume that &, i =
1, ..., n can be estimated to as high an accuracy as desired, and proceed to
derive sharp bounds on F(x) at each x. It turns out that in comparison to the
Chebyshev bounds derived from power-moments, these are comparatively weak
in the tails but stronger in the center, so that this method promises to be of value
if the shape of the center of the distribution is of most interest.

A detailed comparison of these various techniques for estimating and bounding
F, taking account of sampling variability, would be interesting but has not yet
been accomplished.

Kadane [5] gives a direct application of his results; he is able to show that a
conjectured structure for the expectations of the order-statistics is satisfied only
by a degenerate distribution.

2. The basic transformation. Suppose F(x) is any df, (monotone non-decreasing,
right-continuous) with F(a—) =0, F(8) = 1. We assume throughout that
§ |x| dF(x) < oo so that || < oo for all i, n.

Expanding the factor (1 — F)*~¢ in (1) by the binomial theorem, we can write

&,., as a linear combination of £,,.,, (1 < m < n); this gives
@ =BG+ 1= T 0 (")
J i+

Conversely by introducing a unit factor written as (F 4+ 1 — F)*~™ and expand-
ing we can write §,,.,, intermsof ¢, (1 < i < n, n < m). Many other identities
can be obtained similarly; Kadane [5] gives another pair explicitly, and see also
[9].

Thus instead of considering the whole triangular array &,,, (1 < i < n), it is
sufficient (and convenient) to consider only the sequence &, (1 < k < n). Hence-
forth we shall write &, for &,,,. Chan [2]' and Konheim [6] show that the sequence
&, &,, - - - determines F; from (2) this is clearly equivalent to the observation
that the triangular array {§,.,: 1 < i < n < oo} determines F. (In particular,
nt 3 (3 + $sgn(x — &,.,)) converges to F as n — oo; see [4].)

We now assume that both a and j are finite. We can define a function G
inverse to F by

3) G(p) = sup {x: F(x) < p) 0<p<l1.

Then G is monotone non-decreasing and right continuous, and so it defines a
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finite nonnegative measure on [0, 1] with total mass

to=$3dG(p) = p —a.
From (1), integrating by parts, for k > 1,

4 §o = VoxdFi(x) = p — §3p"dG(p) = B — 1,
where g, is the kth moment of the measure G. Clearly it is convenient to define
€, = a, so that (4) holds for k = 0 also.

We have now transformed the problem into a standard form, namely that of
the Hausdorff moment problem (for which see [8], Theorem 3.1 and Corollary
1.1, or [1], Section 6.4, page 73) and have the following result.

THEOREM 1. Necessary and sufficient (N andS) conditions that the array &;,, (1 <
i < n) be representable as the expectations of order-statistics of random samples from
some distribution on the finite interval [a, B] are that they satisfy the consistency
conditions (2) and that the sequence

(%) =8 —§ O0<k=n
(where &, — a, &, = &,.;,) are the moments of a nonnegative measure on [0, 1]. This

moment-problem is always determinate, so that if a distribution F exists correspond-
ing to the expectations &,, k = 1,2, ... then F is unique.

These Nand S conditions are presented explicitly in the references cited above;
to write them in a convenient form we introduce the following definition.

DEerINITION. A sequence ry, 8, 1y, - -+, 8, is m-zero if r,, s, > 0 for k =1,
2,...,m— 1, while r, =5, =0, k=m -+ 1, -.-,n. Now we define certain
determinants. With g, y,, - - - defined by (5), let

Ay = |Parsli i1, k=12, ...
(6) A = |Pivjaali =01, k=0,1,-..
By, = |irjor — Miriliimr,op k=1,2,..
Bypr = My — Mivinliizon, i k=0,1,.

Notice that 4, and B, are not functions of §,,,, - .-, &,.

Then the N and S condition for the numbers &,, &,, - .- to be the expected
values of largest order-statistics in samples from a distribution on [a, 8] is that
either 4,, B, A,, - --, B, are all positive or else for some m, 1 < m < n, this
sequence is m-zero with either 4,, = 0, B,, > 0 or with 4,, > 0, B,, = 0.

The significance of the integer m appearing here is as follows. Iff (if and only
ify0<B,, A,B,, -+, Ap_1,B,,0=A,, =B,,,, = Ay, = --- = A, then there
is a unique distribution having the given expected order-statistics, and it has sup-
port at 1 4 [4m] points, one of which is x = 8, and another of which is x = «
iff m is even. This distribution is determined by a, 8,&,, - -+, &, so that all
higher ¢’sand §’s are functions of these. Similarly, iff 0 < 4,, B, ---, B A

s Pm—19

0=8,=A4,,=8,,=--- = B,, then there is a unique distribution with the

ms’
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given expectations, with support at [4(m + 1)] points, none of which is x = B,
and one of which is x = « iff m is odd. Again, this distribution is determined
by a, 8, &, -+, 6, .

If 4,B, > 0 there are many distributions having the given expectations.

All the above facts follow easily from the material in [1] and [8] cited above,
after re-interpretation using (3) and (4).

Now we can deduce N and S conditions on the &’s for the cases in which F
has infinite or semi-infinite support.

We now define

A =1, B, = B, k=12, .
A;k = |_€i+j—2 + 25i+j-1 - 5¢+j|e,j=1,z,...,k k=1,2,...
A;k+1 = I_Ei+j—l + 25i+j - $i+j+l|i,j=l,---,k k=1,2,...

Al" — BIII — Azll — 1

i1 = Agrs k=12,...
By, = By, k=1,2,...
B;;c+l = |Ei+j+1 - 5i+j|i,j=1,---,k k=1,2,...
Ay = | —=8ivjma + 2600500 — Eiviliizas k=2,3,....
(In the above definitions, the determinants B,’ and B}, are to be taken as the
functions of &,, &,, - - - that are obtained by using (5) to substitute &’s for z’s in

the definitions (6). In each case the result is independent of 8.)

THEOREM 2. (i) If —oco < @, 8 = oo the N and S condition on the sequence
€, & -+, &, is that either A/, B, A/, ---, B, are all positive, or else for some
m, 1 £ m < n this sequence is m-zero with B,’ = 0, 4,’ > 0.

(ii) If a = —oc0, B = 40, the N and S condition is that either A", B)", - ..,
B,"” are all positive, or else for some m, 1 < m < n this sequence is m-zero where
m is even, B, = 0, 4,” > 0.

The proof is straightforward.

The above results can be used to obtain sharp bounds for the expectations of
order-statistics in samples of all sizes; if &,.,,, - - -, &,,.,, are given such that a dis-
tribution exists having these expectations, then for any n > m the expectations
Epms * + +» €. must satisfy the conditions expounded above (after Theorem 1 and
in Theorem 2). '

3. Bounds for the df when the expectations are known. We turn now to the
problem of giving sharp bounds for F(x) when &,, -- ., &, are known. We start
from the classical Chebyshev inequalities for G(p) — a (given p, a, B, tto, 11, - - +»
), and have only to translate these into bounds for p given x (and a, 8, &}, - - -,
¢,) using (3) and (5). The algebraic details in the case a, 8 both finite are messy,
and we shall merely describe these results informally. (Details of the classical
results can be found in [8], Lemma 3.1, page 79.) Letting 8 — oo and/or @ — — o
does lead to some simplifications.
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For a, $ finite, the Chebyshev bounds for G(p,) — a given p,, pt, 11, « -+, s
are obtained by fitting a distribution G, to the given moments, having exactly
4n + 1 points of increase in [0, 1], one of which is p,; here the end-points (0
and 1) count as halves. Thus for n = 2 we either have a distribution with sup-
port {p,, p,'} for some p,’ (# 0, p,, 1) or else a distribution with support {0, p,, 1}.
This construction is always possible if 4, B, > 0form = 1, - .., n (if not, G(p,)
is unique!) except when p, takes one of n special values =, --., z,. These are
the zeros of two polynomials 4,*, B,* of degree [4(n + 1)], [4n] respectively
which can be constructed from the determinants 4,,,, B,,, by replacing their
bottom rows by the row (1, =, n?, ...). The zeros of 4,* interlace with those
of B,*. When p = r, for some m, it is possible to construct a distribution with
support at exactly 4(n + 1) points (end-points still counting half), one of whicn
is 7,,.

Once the appropriate “extremal” distribution G, has been constructed, the
Chebyshev bounds are

G, (Po— 0) < G(py) = G,(po+ 0) .

Using (3) and (5) we can translate these bounds into inequalities for F(x) when
x,a, B, &, -+, &, are given. This gives

THEOREM 3. Given xy, a, B, &, - -+, &, With A,, - - -, B, all positive, sharp bounds
for F(x,) can be obtained by constructing a distribution F,(x) on [a, B] having the
correct order-statistic expectations, and having exactly 4n + 1 points of increase in
[«, B] (end-points counting half), one of which is x,; this construction is always possi-

ble unless x, takes one of n special values {,, ,, - - -, C, in (a, B), when a distribution
with §(n 4 1) points of increase can be constructed. The bounds are then
™ Fo(xo — 0) = F(xg) < Foi(xo) -

Now we can let —a and/or 8 — oo. Itisclear that provided the determinants
A4/, B/, - - - etc. are all positive, sharp bounds for F(x,) will be obtained if we
take B large, proceeding as in Theorem 3, and then let 8 — + oo, and so on. On
exar '~ation of the various cases that arise we have

THEOREM 4. Sharp upper and lower bounds for F(x,) when &,.., ...,¢&,.,. are
known are given by (7) where the distribution F,(x) has a finite number of points of
increase, one of which is x,, and is constructed as prescribed below.

(i) —o < a,f=o0. Therearen 4+ 2 numbersa =, < < --- <, <
€a41 = oo such that if {,, < x, <y, then H, has the correct expectations
Eims =+ s Epems While if &, 1 < X, < &, then F,, has only &,.,, - - -, §,_,., correct.
F, has[3n] + 1 points of increase except when n is even and x, = {,,,,, for some
m, when it has [}n].

The numbers ¢, - - -, £, can be found by constructing two distributions H,,
H,, where H, has [4(n 4 1)] points of increase, namely {,, {s, {5, - - - and has the
correct expectations &,,,, - - -, &,., where k is the largest odd integer < n; and
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H, has [4n] + 1 points of increase, namely, a, {,, {,, - - - and has correct expec-
tations ‘Slma tt SZn—I—k:n’

(i) —oc0o = a, B = +o0, nodd. There are n numbers(, < --- < {, such that
if x, < G or &y < X < Lypua then F, hasé,,, -+, &, correct, whileif ¢,,,,, <
Xy = Lamsa OF £, < X, then F, has §,,, - -, §,,, correct. F, has }(n + 1) points
of increase except when x, = {,,,. The numbers {,, {;, - - -, {, are the points of
increase of a distribution having¢,.,, - - -, §,., all correct; the numbers ¢, - - -, {,_,
are the points of increase of a distribution having &,,,, -- -, §,_,., correct.

(ili)y —oo = a, B = +oo0, neven. Again there are n numbers{;, < - -+ < {,.
If x, < &, o1 Gy < X < Comars Foy has &y, -+ -, &, all correct, and has §n + 1
points of increase; if {ypyy < Xo = Comaas Fi, has Eay, -+ 5 €,y cOrTECt and only
4n points of increase. The numbers {,, {;, - - - are the points of increase of a
distribution having &, ,, - - -, §,_,., correct; the numbers {;, {,, - - - are the points
of increase of a distribution having &,,,, -- -, §,., correct.

REMARKS. (i) Notice that in each case there are values of x, such that the
bounds of F(x,) do not depend on§,.,, butonlyon¢,,,, ---,§,_,.,. When nis
evenand @« = — oo, 8 = + oo there are values of x, such that neither £, or &,,.,
play any role in the inequalities.

(ii) In the semi-infinite case the inequalities are generated by distributions of
the same shapes as arise in the case of the ordinary Chebyshev inequalities, when
n power moments are given. (See for example [7] page 366.) This is not so in
the doubly-infinite case.

(iif) Since the transformed moment-problem is always determinate (Theorem
1), the bounds converge to F(x) as n increases.

‘4. Some explicit results. We present some of the inequalities derived above
explicitly. For brevity we write @, = &1.1, by = &y.5, by = &35, € = &1gy €3 = &gy
¢, = &,.; etc. From the results of Section 2, when «, 8 are both finite, we have

a+(al_a)z/(ﬁ—a)ébléalébaéﬁ—(ﬂ_al)z/(ﬂ—a)
by + 3(by — b)’)(B — @) < ¢y = by — 3(by, — b)*/(a; — @)
by + 36, —b)f(a—a) S =B — (B — b)Y /(B—a).

Letting « — — o0, 8 — oo we obtain results for the unrestricted case:

by<a, £ b,
2b, —a, ¢, £b0, ¢, £b6, < ¢; £2b, — q
2, —b£d ¢, — X
g+ X£d£6,£d, ¢, - Y
¢, +3Y<d <£2¢,— b,
where X = (¢, — ¢)*/(¢; — ¢1), Y = (¢ — ¢,)*/(¢; — ¢y).
Applying the results of Section 3 for the unrestricted case with n = 2, the
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bounds for F(x) are

0 =< F(x) = (b, — ay)/(a; — x) x<b
0<F) <1 bo<x<b,
(x — b)J(x — a) < F(x) < 1 bosx.

Obtaining the bounds generated by &,., (1 < i < n) for n = 3 requires the solu-
tion of polynomial equations of degrees higher than unity; computationally a
simpler approach is to construct the extremal distributions described in Theorems
3 and 4 by direct numerical methods.

The form of the bounds as |x| — oo is of some interest; simple computations
show that the upper bound for F(x) as x — —oo when §; isgivenfor 1 <j < 2m
is asymptotically c¢/|x| where

1 1 1 1 1 1 1 1
51 52 Ea * : Em+1 53 54 55 : * §m+2
¢ = 52 'Es . . . 5m+2 54 Ea . L §m+g .

S | [
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