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INVARIANCE PRINCIPLES FOR THE LAW OF THE ITERATED
LOGARITHM FOR MARTINGALES AND PROCESSES
WITH STATIONARY INCREMENTS

By C. C. HEYDE AND D. J. ScorTt*
Australian National University

The main result in this paper is an invariance principle for the law of
the iterated logarithm for square integrable martingales subject to fairly
mild regularity conditions on the increments. When specialized to the
case of identically distributed increments the result contains that of Stout
[16] as well as the invariance principle for independent random variables
of Strassen [17]. The martingale result is also used to obtain an invariance
principle for the iterated logarithm law for a wide class of stationary
ergodic sequences and a corollary is given which extends recent results of
Oodaira and Yoshihara [10] on ¢-mixing processes.

1. Introduction. This paper is basically divided into two parts. In the first part
a general invariance principle for the law of the iterated logarithm for martingales
is obtained. This result (Theorem 1) specializes, in the case of identically dis-
tributed increments, to a result (Corollary 2) which contains the invariance
principle of Strassen [17] for sums of independent and identically distributed
random variables. Corollary 2 also contains Stout’s [16] result giving a classical
Hartman-Wintner form of iterated logarithm law for stationary ergodic martin-
gales and its minor generalization by Heyde [6]. Our approach to Theorem 1
follows essentially the pattern of that of Theorem 3 of [17] in that it is based on
the use of a form of the Skorokhod representation theorem.

In the second part of the paper we make use of Corollary 2 to establish an
invariance principle for the law of the iterated logarithm for a certain class of
(strictly) stationary processes (Theorem 2). The basic idea is a representation
for the increments of the stationary process in terms of the increments of a
stationary martingale plus other terms whose sum is negligible under suitable
norming. This idea is due to Gordin [4], who has used it to prove a central
limit theorem for stationary ergodic sequences and it has been further developed,
in that context, by Scott [14]. As a corollary to Theorem 2 we obtain Corol-
lary 3 which extends results of Oodaira and Yoshihara [10], who have given an
invariance principle for the law of the iterated logarithm for stationary ¢-mixing
sequences.

Previous work on iterated logarithm results for stationary processes has pro-
ceeded via classical methods. Our approach via the Skorokhod representation is
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more direct, gives ready access to the invariance principle, and avoids the
necessity of obtaining detailed estimates of probabilities via, for example, rates
of convergence to normality. In principle the result of Theorem 2 could be
obtained by classical methods by paralleling the work of Chover [2] but a
prerequisite would be estimates of rates of convergence to normality along the
lines of those of Heyde [5] for sums of independent random variables.

2. Martingale results. Let {S,, 7, ; n = 0} be a martingale on the probability
space (Q, %7, p) where 7, = {¢, Q} and _#, = o-field generated by S,, S,, - - -,
S, for n > 0. Let S, = X, = 0 almost surely (a.s.)and S, = >7_, X, forn > 1.
Further, let 5,2 = ES,? < oo.

We consider the metric space (C, p) of all real-valued continuous functions
on [0, 1] with

(X, y) = SUPoges [X(1) — Y(7)| for x,yeC.
Let K be the set of absolutely continuous x € C such that x(0) = 0 and
Se[¥(OPdr < 1

where % denotes the derivative of x determined almost everywhere with respect
to Lebesgue measure. Define a real function g(+) on [0, o) by

o(r) = sup {n: 5,2 < 1} .

Let & be a standard Wiener process (Brownian motion) on [0, co) and define a
sequence of real random functions &,(+) on [0, 1], for n > g(e) by

£u(n) = [$(s.7)]7(s,7) t€[0, 1]
where ¢(+) is a real function on [e, oo) given by
#(t) = (2t log log 1)t tele, ).

We also define a sequence of real random functions 7,(+) on [0, 1], for n > g(e),
by
7.(1) = [B(D] T[Sk + (571 — 5N (Skpx — 87) 7 Koy
SEZ 8 St k=0,1,...,n—1.

THEOREM 1. If 5> — co and

(1) e s, E{ XA X| < 0s,)} < oo for some &> 0,
2) T S TE( X X,| 2 es,)} < o0 forall ¢>0,
(3) Sn_2 ZZ=1 sz —a.s. 1 as n— oo

hold, I(+) denoting the indicator function, then {y,; n > g(e)} is relatively compact
in C and the set of its limit points coincides with K. (“—, ,” means ‘“‘converges a.s.
to.”)

CoroLLARY 1. If 5,”— oo asn — co,

(4) Zf:l S”_'*EX”“ < S
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and (3) holds then {y,; n > g(e)} is relatively compact in C and the set of its limit
points coincides with K.

COROLLARY 2. If the X, are identically distributed and satisfy (3), then {y,; n >
e[E(X")]™"} is relatively compact in C and the set of its limit points coincides with K.

The condition (3) is, unfortunately, often difficult to check. It holds, for
example, if {X,} is a stationary ergodic sequence.

The result of Theorem 1 appears to be new even in the case of independent
random variables. Other iterated logarithm type results for martingales have
been obtained by Stout [15] and Strassen [18] but they involve random norming
and do not seem to be directly comparable with the present results.

3. Martingale proofs. The first step is to define a truncated martingale
sequence {S,*, £, *;n = 0}. For d >0, let X;* =0 a.s., 7* = {¢, Q} and
for k > 0,

XX = X I(|X| < 0s,) — E{X (| X,| < ds,)| 70}
where . * = o-field generated by X;*, - .., X,*. Then we let
S = Do X* for n>0,
and s,** = ES,* < 5,2 < oo. For n > g(e) we define a sequence of real random
functions »,*(+) on [0, 1] by
7.5(0) = [PSDTS* + (8,7 — 50)(Sen — )7 XK
st < sk, k=0,1,...,n—1.
We first observe that

(%) SUPogesa [7,%(1) — 7(1)] —a.5. 0 as n— oo
under the conditions of Theorem 1. This will of course be true if

(6) 537 D [ Xl (X = 85,) 45,0 as n— oo
and

(7) 8,7 2k [E{X (| X| < 08,) [} =06, 0 as n— oo,

and these results follow straightforwardly from (2) via the Kronecker lemma
and the monotone convergence theorem.

Now we introduce the Skorokhod representation. From Theorem 4.3 of
Strassen [18] we may conclude that there exists a sequence 7, =0, T,, T,, - - -
of nonnegative random variables such that

(S Sas -+, 8) = (&(T), &Ty+ Ty), -+ E(S71-1 TW)
is distributed as
(®) (S1*5 S35 -+ 5 §,%)
for each n > 1. Further, if §, = 0 a.s., %, = {¢, Q}, _#, for n > 1 is the o-

field generated by S, - .-, S,, &, = 7, &, is the o-field generated by &(r) for



INVARIANCE PRINCIPLES FOR LIL 431

O0<r<yr, T, fornx=1and S, = 37, X, for n > 0, then

9) E{T,|%,_) = E{X,?| #,_} as. for n>1.
Also, for r > 1,

(10) E{T,"|%,,} < LLE[X>|_7,_} aus. for n>1,

where L, is a constant depending only on r.
Define 7,(+) on [0, 1], for n > g(e), by
(1) =[SOSk + (82 — 5)(5En — )7 Ko

Sk2§3n2[§5z+l,k=0, 13 "'an_19
and 7(+) on [0, o) by

77(1‘) = Sn + A_,n+1(t - snz)(s'i+1 - s"Z)—l Sn2 é t

A

Sht1 -
Then
(1) = B(5.7)7a (5,7%1) for re[0, s,7]
for any n > g(e).
Our proof follows the work of Strassen in [17]. In fact, in view of (5) and
(8) above and the results of [17], Theorem 1 will follow provided we can show
that s7,,/s,* — 1 and p(7,, §,) —..,. 0 and this last condition is implied by

(11) P(lim,_., [¢()]7* sUp.<, |7(r) — &(r)] = 0) = 1.
In order to prove that s},,/s,* — 1, we first note that (2) gives, via an appli-
cation of the Kronecker Lemma,

5,7 sup,, | X (| Xy = esy) —.6. 0, forany ¢ >0,
so that upon squaring we have a fortiori

s'n_z Supksn szl(lel ; esn) —a.s. O .
Thus
5,77 sUp,g, X* < & 4 5,77 sup,, XX, | = es,) ,

and since ¢ may be chosen arbitrarily small,

(12) 5,7 SUPyg, X, 0.

From (3) and Theorm 1 of Pratt [12] we then deduce that

(13) lim, ., 5,7? sup,, EX,? < lim,_, Es,~?sup,., X,> =0,

and s2_,/s,> — 1 follows.
We next proceed to the proof of (11) for which we need to know more about
the behavior of the sequence T}, T, - - -.

LeMMA 1. Under the conditions of Theorem 1,
S, YR E[T, | st} = 1 as n— oo.
Proor. Using (8) and (9), we need only show

(14) 5,70 T E(X 2| k) e | as n— oo .
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Now
(15) 5,70 Dra E{ X Ak )
= 5,77 Zia [E{XI(X,| < 0s,) | i) — (E{XL( X < 0s,) | 2k0))]
and
(16) 5,7 Zio (E{XJ(1X,] < 0s,)| 7L
< 5,70 Dro E{| X I(| X, = 0s,) | 1) =6 O as n— oo .
Also, using Proposition IV. 6.1, page 147 of Neveu [8],
(17) 8,77 2k (XX < 0s) — E{X2I(|X,| < 05,) | Fk1}) =0 O

as n— oo
since

L= STE[XH(X,| < 9s,) — E{XN(X,] < ds,)| ST
= X sTEX(1X,] < 0s,)] < oo
using (1). Consequently, from (15), (16) and (17), it suffices to show that

8,7 L= XX < ds) =46, 1 as n— oo
or equivalently, in view of (3),
(18) 8,7 2ka XM Xy = 0s,) 46,0

However,
a7 Lk XM X 2 050) < (5,77 SUPgy [Xil)s, ™" i | XilI(| o] 2 051)
and (18) follows from (2) and (12).
LEMMA 2. Under the conditions of Theorem 1,
8,7 Lk=r (T — E{T, | 1)) =44, 0 as n— oo .
Proor. Again using Proposition IV. 6.1, page 147 of [8], the result will
follow if
L= E(T, — E{T, | Z, )" < oo
Now
L s E(T, — E{T, | Z,))
< X s TET)
< L Xra s EX (by (10))
= L, 215 s, E(X (X, < 0s,) — E{X (X, < 9s,) [ F8))
= Ly 2i5a s EX( X < 0s,))
+ 158, EIE{X,I(|X,| < ds,) |- 7X}]
= L, 20 s EXGH( X, < 3s,)) 4 150°,°E(| X, | (|X,] 2 05,))]
< oo
by (1) and (2).
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We are now in a position to complete the proof of Theorem 1. Since
EX, < oo for any k,

(19) 9(t) — oo as t—oo.
Then also
253t — 1| = 1878 EXJiiy 1l

(20) = |50+ EXJ 0y 41l [85000 415500

—0 as t— oo
by (13) and (19). Similarly,
(21) ts;h ., — 1 as t—oo.
From (19), (20), (21) and Lemmas 1 and 2 we obtain

YO T, >, 1 as t— oo
and
e T 1 as t—oo.

Finally, we note that

() — £(1)] = max {|§(ZE4 Th) — €I, [§(21A Th) — €)1} -

From this point, it is obvious that Strassen’s proof on page 217 of [17] may be
followed to obtain (11), which completes the proof of Theorem 1.

Corollaries 1 and 2 follow easily from Theorem 1 using standard arguments
of the kind of, for example, Neveu [8], pages 153, 154.

4. Stationary process results. We consider a probability space (Q, %7, P) with
an ergodic automorphism 7. Let L,(P) be the Hilbert space of random variables
with finite second moment, and write (EX?)! as ||X||. Define U on L,(P) by
UX(0) = X(Tw) for Xe L(P), wc Q. Then U is a unitary operator. If 7 is
a o-field such that . c % and _# c T~ (.+#;), define 7, = T-¥(_#,),
A = Nie—w #, and _#,,, = o-field generated by Uz _., 4.

We consider a particular random variable X, e L,(P). Defining X, = U*X,,
we see that - .., X_,, X, X, - -- is a doubly infinite stationary ergodic sequence.
Put X =0 and X = 720 X, for n > 1 and define a sequence of random
functions 6,(+) on [0, 1] by

0.(1) = [$(IXPIP)]IHX® + (nt — k) X,)

k<m<k+1,k=0,1,...,n—1.
Also define

g =sup(n: || XM Z e}.
THEOREM 2. If
@ Zin=o (E{X | AZu}| + |1Xo — E{X| AH]) < oo

then
lim,_, || X™||/nt = ¢
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exists for 0 < ¢ < co. If 6 > 0 then g < oo, {0,; n > g} is relatively compact and
the set of its limit points coincides with K.

Proor. The key to the proof is a representation
(23) X, =Y, + Uz, — Z,

where Y,, Z, belong to L,(P) and, writing Y, = U*Y,, Y® =0 and Y™ =
st Y, for k=1, {Y™, #,_;n=0}is a stationary ergodic zero-mean
martingale. This representation, which is due to Gordin, holds under the con-
dition (22); see Scott [14] for full details.
Setting ||Y,|]| = ¢ we have ||Y™|| = gnt. Also, from Minkowski’s inequality

and (23),
XN — ont|/nt < 2||Z;]|/n* — O

since Z, € L,(P) and thus
lim, ., [|[X™||/n} = 0.

We henceforth assume ¢ > 0. Then
(24) lim, . [[X™||fon* = 1
and g < oo. Also, from (24) we readily deduce that
(25) P X ™)/ g(ne*) — 1.
Now define a sequence of random functions {,(-) on [0, 1] by
u(0) = [$(na")][Y® + (n1 — k)Y, ]
k<m<k4+1,k=0,1,---,n—1.

Then by Corollary 2 we know that {{,; n > e/¢?} is relatively compact and the
set of its limit points coincides with K. Thus, the proof will be complete if we
can show that

(26) SUPy<i<1 |0,(1) — L (1)] =46 0.
We first consider
(27)  supycir [Ca(1) — S(na®)[ (|| X ™[] 7C,(0)|
= 1 — ¢(na®)[ (| X )] suPosest [Ca(1)] -

lim sup, .., SUPo<;<: [C,(1)] = SUP, e x SUPosy [X(7)] 2.5
<1 as.

Now

From this and (25) and (27) we conclude that
(28) SUPsgist [Calt) — P(na?)[ (|| X |)]7Ca(D)] = O -

Now, writing Z, = U*Z, consider

SUPoges1 [0u(1) — G(na)[S(|| X ()] 7C.(1)]
= SUPigiza [P X2 — Zf (by (23))
= 28UPogis, [P(IX 1] Z
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which goes almost surely to zero provided

SUPy<rs, [$(n0%)]7|Z,| = (no® log log na®)~* supyg,<, |Z as. 0
(by (25)) and thus if
(nloglogn)y=4Z,| —,, 0

But, this last result follows from the Borel-Cantelli Lemma since Z, e Ly(P).
Thus

SUPysi<i |0,(1) — S(na?)[$(|| X |)]C()] =4 O

and taking this with (28), (26) follows and the proof is complete.

As an application of Theorem 2, we shall see how it extends some recent
results of Oodaira and Yoshihara [9], [10]. The papers [9], [10] in turn improve
results of Tosifescu [7] and Reznik [13] as well as the (strictly) stationary case of
results of Philipp [11].

Let {X;, —co < j < oo} be a stationary process defined on a probability space
(Q, o7, P). Write _#, for the o-field generated by --., X,_,, X,; #, for the
o-field generated by - .-, X_,, X, X, - .. and _#Z~ for the o-field generated by
X,, Xi41> - --- The sequence {X,] is called ¢-mixing if for each k(—co < k < o0)
and each n(n = 1),

supy. = esssup|P(B|.7,) — P(B)| = ¢, | 0 as n— oo.

CoroLLARY 3. If {X,} is a stationary ¢-mixing process with EX, =0,
E|X,[*** < oo some 6 = 0 and Y 7., [$,]" TP/ < oo, then

lim, .. || X™|}n = EX2 + 2 Y2, EX,X; = 6 = 0.

m, e ||
If 6 > 0 then g < oo and {0,; n > g} is relatively compact and the set of its limit
points coincides with K.

Proor. First note that {X,} is stationary and ¢-mixing and hence ergodic.
Further, there exists an ergodic transformation T on _#Z, such that X,(0) =
X(T o), ® € Q (e.g. Doob [3], Chapter X) and, since . is the o-field generated
by ..., X_,, X, our present situation fits within the framework of Theorem 2.

Next we need to check (22). This is a simple matter using Lemma 1, page
170 of Billingsley [1]. We have

1200 (I | A + 11X — B | ) = Timo | (X | AL
and
E[E{X, | A_n}]" = E[XE{X,| 2 .}]
< 2¢m‘1+"’/‘2+‘”[E|E{X0|%m}|‘2+"’/“+‘”]‘1+"’/‘2+‘”[E|X0|2+"]1/‘2+"’
_<__ 2¢m(1+5)/(2+5)[E[E{X0 | ‘%_m}]z]g[E|X0|2+5]1/(z+5)
so that
EQG | AL S 26,0509 E| X000

and (22) holds under the conditions of the corollary.
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Finally, from Lemma 3, page 172 of [1],
lim, ., [|X®|fn = EX;? + 2 52, E(X,X)

and the corollary follows from Theorem 2. :

In Theorem 1 of Oodaira and Yoshihara [10], an invariance principle for the
law of the iterated logarithm is given under the conditions of Corollary 3 plus
the requirements that {,, .y x*dP(X, < x) = O((log N)=®) as N — co if 6 = 0 or
¢, = O(n='=¢) for some ¢ > (1 - 9)*if 6 > 0.
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