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EPSILON ENTROPY OF STOCHASTIC PROCESSES WITH
CONTINUOUS PATHS!

By EDWARD C. PosNER AND EUGENE R. RODEMICH -
Jet Propulsion Laboratory, California Institute of Technology

This paper shows that the epsilon entropy in the sup norm of a wide
variety of processes with continuous paths on the unit interval is finite.
In fact, the class coincides with the class of processes for which proofs of
continuity have been given from a covariance condition. This suggests
the conjecture that the epsilon entropy of any process continuous on the
unit interval is finite in the sup norm of continuous functions. The epsilon
entropy considered in this paper is defined as the minimum Shannon en-
tropy of any partition by sets of diameter at most epsilon of the space of
continuous functions on the unit interval, where the probability is the one
inherited from the given process. The proof proceeds by constructing
partitions and estimating their entropy using probability bounds.

1. Introduction. The concept of epsilon entropy introduced in [4] was applied
to stochastic processes on [0, 1] considered as subspaces of L,[0, 1]. This was
further developed for Gaussian Processes in [5]. Here we consider processes
with continuous paths and their embedding in C[0, 1]. This leads to a different
value of epsilon entropy, for this entropy depends on the metric as well as the
probabilistic structure of the process. [3] relates the concept of epsilon entropy
to information theory.

Epsilon entropy was defined as follows in [4]: Let X be a complete separable
metric space with metric d and probability measure x such that open sets are
measurable. For ¢ > 0, an epsilon partition U = {U} is a finite or denumerable
collection of disjoint measurable sets in X, each of diameter no greater than e,
which together cover a set of measure 1. The entropy of this partition is

(1) H(U) = X (U log [1/p(Uy)] = o .
The e-entropy of X is
(2) H/(X) = inf H(U)

over all e-partitions U. This may be infinite.
Since the uniform norm on [0, 1]is at least as large as the L, norm, the epsilon
entropy of a process in the L, norm gives,a lower bound for its entropy in C[0, 1].
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EPSILON ENTROPY 675

Here we prove some upper bounds, showing that H,(X) is finite for the processes
considered. The point of departure is an assumption about the covariance func-
tion of the process, which implies that the paths are continuous. To estimate
the entropy, quantitative statements about the probability with which a certain
modulus of continuity is assumed are needed. Hence proofs of continuity which
can be found elsewhere are repeated here to obtain this extra information. See
[2] for a recent summary on continuity of Gaussian processes.

The results (Theorems 1 and 2) suggest that any simple condition on the covari-
ance which guarantees continuous paths makes the epsilon entropy finite. This
raises the question of whether any process with continuous paths has finite
entropy. A construction was given in [4] for processes with infinite entropy in
L,[0, 1], which can have continuous paths. However, for Gaussian processes,
the L,-epsilon entropy must be finite [5], so the question is open for the Gaussian
case. In fact, it may, as far as we know, now be true that the epsilon entropy
of a Gaussian process on the unit interval in any norm whatever may be finite,
if the sample functions have finite norm with probability 1 and a set of sample
functions of probability 1 is continued in a linear subspace of L,[0, 1] separable
in the given norm.

2. Preliminary lemmas. Here some statements about the modulus of continuity
of sample paths are proved which will be used later to get bounds on H,(X). In
each lemma, the hypothesis is actually an assumption about the covariance
function

3) R(s, t) = E[x(s)x(1)] ,

since
E[x(s) — x(t)]} = R(s, s) + R(t,t) — 2R(s, 1) .

The first lemma concerns general mean-continuous stochastic processes. The
other two lemmas deal with Gaussian processes only.

We assume that the processes we deal with are separable and have finite second
moments. The property of separability implies that any inequality such as (5)
need only be proved on some dense set of points of [0, 1] ([1] Theorem 2.2,
page 54).

LeMMA 1. Let a separable stochastic process x(f) on [0, 1] have finite second
moments for all t € [0, 1], and suppose there are positive constants A, a such that

@ E[x(s) — x()F < Als — 1]+
forall s, te[0,1]. Then for M > 0,

oM . 2\ 8
(5) ]X(S) - X(t)l é HT_a)z IS - t] (10g2 |S — tl> 10g2 1°g2'|‘:y-_—tT

for all s, t, except on a set of x of probability at most BA|M?, where B is a universal
constant.
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Proor. It follows from (4) that for § > 0
Pr {|x(s) — x(¢)] > 0} < A|s — #]*+2¢/5% .
Let s = j/2", t = (j — 1)/2", 6 = 27"*Mnt log, (n + 1):
i () - +(55)
Summing over n and j,

2in=1 e Pr ﬂx(zj—n> — x<j ;1>‘ > 27"*Mn* log (n + 1)} < %

e 27" 4
> 27 Mn log, (n + 1)} = Mn[log, (n + 1)IF

where
1

B=>%r, — - .
25 ilog, (n + 1T

Hence, except for a set of paths of measure at most B4A/M?, we have
(6) Ix <ZL> —x (J;_1>] < 2-"Mnt log, (n + 1)
forallm>1and 1 <j <2

It will be shown that if s and ¢ are two dyadic points (rational numbers whose
denominators are powers of 2 with |s — ¢| < 1, then (5) is valid for any path
satisfying (6). To do this, we decompose the interval (s, ¢) into a finite number
of disjoint subintervals by a sequence of points t, = s, t,, t,, - - -, t,, = t such that
each interval (#,_,, t,) is an interval of the form ((j — 1)2-*, j2-*), and apply (6)
to the right side of the inequality

™ () — ()] = X x(B) — X(t)] -
If we take the sequence for which m has its minimum value (for given s/t), it
can be shown that each possible distance 2" occurs at most twice among the
numbers |f, — #,_,|. Furthermore, the longest subinterval has length < 2",
where
27 s — o] < 27,
The application of (6) to (7) implies
[x(s) — x()| = 2 X5, 27" Mnt log, (n + 1) .
Using the inequality
n’!logz(n—f—1)§n0510g2'(n0+2)(n—n0—|-1), n=nm=1,
which is easy to show, we get
x(s) — x(0)] < 2Mni} log, (n, + 2) K7o,, 27" (n — n, 4 1)
_ 2Mng} log, (n, + 2) - 27%™
(I — 27y
2M
<= |s—t¢*(lo
= gy 10— (0w
This completes the proof of Lemma 1.

2
s —1

8
s—1

)i log, log,
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LEMMA 2. Let a separable Gaussian process on [0, 1] with mean zero have the
property that for some positive constants A, f3,

(8) E[x(s) — x(e)] = Als — ¢,
for all s, te [0, 1]. Then for M > (44 log 2)},
2M 2\
) = X0 = (g o — o (low . 2)

for all s, t, except on a set of paths of probability less than

8 (L)exp (=21,
M \2x 24
PROOF. x(s) — x(f) is normal, with mean zero and variance bounded by (8).
Hence for ¢ > 0
0

Pr {|x(s) — x(1)] > 9} < @ (m> ,
where

D(u) = 2/n)t §2 e ¥ dy < (2/n)tute 1

for u > 0. It follows that

il () (150> o =0 () < () 55 e - (5)-

Put 6 = 2=**Mn? and sum over n and j:

e mare o (4) = (52> 2w} <

where
a0 = (24) mo 2 exp (-

<(2) 2o ()1 2en ()]

if exp(— M?/24) < 4. In particular, if M > (44 log2)?,
exp(—M?24) < L,

nM”)

and
100 < 37(3) e (-37):

Except on a set of paths of probability less than g(M), we have

©) ’x(%)—x(j;—”lﬂgr”ﬂMni, n>1,1<j<2.
Now we proceed to estimate |x(s) — x(#)| for a path satisfying (9), when s, t are
dyadic points with |s — ¢ < 1. If

27% Z s — f] < 27™0H
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then n, > 1, and we get
[x(s) — x()] = 2 X7, 27" Mn?
< 2my $5o,, 27 M(n — 1y + 1)
2M 2M 2 \}
==  pi2ml < T —tp<10 > .
(1 =277 " T (1 =2 Is = 1 (log: s — ¢

This completes the proof of Lemma 2.

LemMA 3. Let x(t) be a separable Gaussian process on [0, 1] with mean 0 and

E[x(s) — x()F < A4 <log ; 2 ; >'°

for all s, te [0, 1], where A and a are constants with a > 1. Let B and M be positive
numbers such that

M? > 442,
and define
7 =13Ba—1).
Then x(t) has a modulus of continuity w,(0) satisfying the inequality
(10) 0,0) = 2 (1og-)-ren

1 — 277
for 6 < exp(—2"), except on a set of probability at most
(2/11\/{/”)& S gq 2RI expl:zjﬂ (2 — 2%: 2—aﬂ>:| X
Proor. By hypothesis, if |s — #] < 2e7#,
E[x(s) — x()] < Ap~.
x(s) — x(f) is normal with mean zero. Hence

— 24y 1 _gr
(11 Prlxs) — X0 > 9} < (%) g exe (—45).
if ¢ > 0.

A sequence of partitions of the unit interval, such that each is a refinement
of the preceding, will be constructed. We define a sequence of positive integers
k, and associated quantities d,, s, such that

d, = 1/k, = 2e~n n>1,

by induction, taking k, to be the first positive integer such that

i) =27,
(ii) k, is a multiple of k,_, if n = 2.

Then for all n,
e ¥ < d, < 207,
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Also, putd, = 2/e, #, = 1. The nth partition is to be a partition into k, intervals
of length d,.
Let Q, be the set of pairs of vertices (s, ¢) of the nth partition such that

s—t=d, .

Then by (11), if (s, 1) € Q,,,

Pr Jx(s) — x()] > g} < (24 qﬁ% exp (L152).

There are less than k,? elements in Q,. Hence, if we take qg=2"mM,
p. = Pr {max(,,t,e% [x(s) — x(¢)] > 27™M}
< (ﬁ)i 2k, exp <————2_27"M2ﬂ 7‘“) ,

T/ My 24
which implies
24\ 1 M?
L) . 2rm—tapin-l) ox |:2ﬂn+1 _ M 2_277;.‘_“,5(,,_1{]
Pn << T ) M P 2A4
= <2_14)i L 2-4pn+iap epr:Zﬂ'ﬂ <2 _ M_z_ 2—nﬂ>] .
r/ M 24

Suppose that s and ¢ are two points of [0, 1], such that each is a vertex of
some partition. The set of such points is dense on [0, 1], so it is sufficient to
consider the modulus of continuity of x(¢) on this set. If

d,<|s—1<d,_,,

there is a finite set of points {t, = s, 1,, 1,, - - -, 1, = t} such that each pair (t;_,, t;)
is in some Q, with n > n,, and there are at most two pairs in each Q,. If x(r)
lies in the set of x for which

MaX . i) eq, |X(s') — x()| = 27"M, nzn,,

then

©o —-rn J— 2M —rm

[x(s) — x()| =2 X5, 27"M = T 270,
We have
2% > logd, = > log|s — #|*.

Hence .

2M 1 —7/8
12 x(8) — x(8)] < <lo > .
(12) s) = x()] = = (log 1=

If N is any positive integer, (12) holds wherever |s — ¢| < d,_,, except for a
set of x of probability less than 35, p,. Thus, except with this probability,
inequality (10) is valid for

0 < exp[—2/¥-D],

This completes the proof of Lemma 3.
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3. Upper Bounds. Theorem 1 below gives bounds for H,(X) for stochastic
processes whose covariance function satisfies the condition
R(s, s) + R(t, ) — 2R(s, 1) < Als — 1]** .

Two lemmas which will be proved next cover the Gaussian and general cases
separately, and give preliminary bounds which are quite different. These are
used in the proof of Theorem 1 to get a bound which is the same for both cases,
when valid. This is reminiscent of Theorem 9, [4], which gives an asymptotic
bound for the epsilon entropy of a general mean continuous process which is
sharp for Gaussian processes which satisfy the hypotheses there.

LeEMMA 4. If a separable Gaussian process x(t) on [0, 1] has x(0) = 0, mean zero,
and
E[x(s) — (O = Als — 1*

for all s, te[0, 1], where A, B are positive constants, then the paths are continuous
with probability 1, and in the uniform norm, the e-entropy of the process is at most

Ab? AR\26
o) g [1+ (e )
for ¢ < A}, where C(B) depends only on .

Proor. The ¢-entropy of x(¢) is the same as the ¢/ A entropy of x(¢)/ 4%, which
satisfies the condition

B[R - sk

Thus it is sufficient to prove the lemma when 4 = 1.

Let S, be the set of x(7) whose modulus of continuity , satisfies the inequality

0, (0) = — 25 <1og23>*, 0<os<l,
(1 —27#y 0
forn=1,2,.... Applying Lemma 2 with M = 2"+!(> (4 log 2)}), we have
(13) Pr (X — S,) < 2-"/(2x)te~#" .
Let T, = S, and
T,=S,—S,1, nx=2.

By considering e-partitions of X which are refinements of the partition into T,
T,, - - -, we can show ‘

H(X) = 23 A(T,)[log A(T,)™" + H(T,)] .
By (13), forn = 2

Pr(T,) < Pr(X —S,.,) < 2'7"/Q2n)te™" "
Hence

(14) H(X) < et + H(T) + (27)~t Y., 2i-re~ 22
X [27 4 (n — 1)log 2 + log (2n)} + H(T,)] -
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Define 6, < 2e~%¢ by

_Enfi:_ 5,° <log2 2’.)5 =5,
(1 — 27 3 4

n

Thenin §,, 0,(3,) < ¢/4. Let C,, C,, - - - denote constants dependixig on 8. Then
we have

log, 2/6, < C\6,7¢,
s0 0,2 > C,2 "

log2 <14+ 2( —|—logzi>

n B Cze
and
1_ [_ZL 1 <10g2 Eﬂw
5, LO—2% < 5
(15) < C,e-vipni [1 + %(n + log, Lﬂw
&

< e—l/ﬁzn/ﬂ[c ni/2e (‘ (log 5—1)1/2;;]

S, can be partitioned into e-sets as follows: Map each curve x(7) into a polygo-

nal curve x(r) with vertices at t = ¢; = j3,, j = 0,1, ..., [1/3,] such that
¥0) =0,
X(t;) — %(t;.) =0 or +e/4,
X(f) = const. for t=11/s,],

1%(1;) — x(t;)] = /8.
This is possible because x(f) varies by at most ¢/4 in each interval (¢ t;41). We
have |x(f) — X(#)| = ¢/2. Hence the set of x(#) which map into a given x(¢) form
an e-set. Use these sets to partition S,.
Restricting this partition to 7, gives an e-partition of T,. It contains at most
3% sets. Hence

H(T, <o, 1log3.
Combining this with (14) and (15),
H(X) < e 4 2V VP log 3[C, + C(log e~1)/%]

+ (2n)h o, 2imne-int {22”—2 +(n—1)log2

+ log (27)} + 2 1og 3 [C,n/ + Cy(log 5—1)1/2,:1]}
=G, + Cre™Vf 4 Css‘l/ﬁ(log S RE
= Coem[1 + (log 1) 28]
for ¢ < 1. Lemma 4 is proved.

LeMMA 5. Ifa separable stochastic process x(r) on [0, 1] has finite second moments,
x(0) = 0, and
E[x(s) — x(O] £ Als — i+
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for all s, te]0, 1], where A and a are positive constants, then the paths are continuous
with probability 1, and the e-entropy of the process in the uniform norm satisfies the
inequality

H, < C(a)(A}[e)[1 + (log (4¥/¢))"*(log log (A%[e))/%]
for e < A, where C(a) depends only on a.

PrOOF. We can assume 4 = 1, as in the proof of Lemma 4. Let S, be the
set of x(¢) for which
2n+2

2\4
,(0) < m 0« (log2 7) log, log,

L3
5
By Lemma 1,
Pr(X —S,) <2"?B4.
Proceeding from here as in the proof of Lemma 4 leads to the given inequality.

Next we prove two lemmas which will be applied to the decomposition (21)
used in the proof of Theorem 1.

LEMMA 6. Let x(t) be a stochastic process with continuous paths.
(i) Suppose x(t) = 3.7_, x;(t), where each x (1) is a stochastic process with con-
tinuous paths, with the probabilistic metric space X, ;- Thenife= 37 ¢;,¢; >0,
Hs(X) é Z?=1 Hej(Xi) *
(ii) Let the range of t be partitioned into n intervals I, - - -, I,.
restriction of x(t) to I, then
Hs(X) é Z?=1 He(XJ) ¢

If x(¢) is the

Proor. The proof depends on Lemma 3 of [4], which states the following:
If Y is a probability space which is a product space,

Y = I Y,

and we consider the Y;’s as measure spaces under the marginal distributions of
Y, then for any partition U of Y which is a product of partitions U, of Y, we

have
HU) < 3 HU,) .

To prove (i), take Y = J] X;. The measure on Y is the joint distribution of
X,(1), + - -5 X,(7). Let U; be an ¢;-partition of X;, with H(U,) = H, (X;) (this exists
by Theorem 2 of [4]). Then for the product partition of ¥ we have

H(U) < ¥ H (X)) .
Define a metric d, on Y by
Ay((X1 =5 %,), (05 -5 %)) = d(x, %) + - 4 d(x,, %) -
Then the sets of U have diameters < ¢, so H(Y) < H(U), and
H(Y) = X H. (X)) . -
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The natural mapping of Y into X,
O = (X, ooy X,) DX+ e A X,

does not increase distances: if &, &’ ¢ Y,

d($(£), $(§)) = dy(§, €') -

The measure on X is that which is induced from the measure on Y by ¢. From
these facts it is easy to show that

H(X) = H(Y),
which proves (i).

To prove (ii), we proceed similarly. Here we need to consider the linear
subspace Y’ of Y in which the components x,, ..., x, are the restrictions to
I, ---, I, of some continuous function.

For (ii) we start with e-partitions U; of X; such that H(U;) = H/(X;), and
define distance in Y by

dy((X1s =+ o5 %), (1, -+ o5 X)) = max {d(x;, x,'), - -, d(x,, X))} -
Then the product partition U is an e-partition of Y. The measure in Y is con-
centrated on Y’. Restricting the sets of U to Y’ we get an e-partition U’ of Y,
with
H(Y") < H(U') = HU) £ %, H(X;) .
Now the mapping
P (X oo X)) o,
where x(¢) is the function which equals x,(r) on I, j =1, ---, n, is a mapping
of Y’ into X which does not increase distance and is consistent with the measures.
Hence we conclude
He(X) é Hs(Y,) ’
which proves (ii).
Lemma 7. Let {x,, - - -, x,} have a joint distribution with finite second moments,
such that E(x;*) < C, and
E[(Xj+1—xj)2]§c, j=1a2a"',n_1,
where C is a fixed constant. Then there is a bound h,(C) for the 1-entropy of this
process in the norm '
d(x, x') = max |x;/ — x,|, j=1,-.,n
which depends only on C and n, such that h,(C) = O(n) as n — co.
Proor. It is sufficient to show this result for n = 2%, k = 0, 1, 2, - .., since
if 28 < n < 2¥*1) we can take
h, = Rgks1 .

Let X be 2*-dimensional space, with a probability distribution satisfying the
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given conditions. Express X as a product space,
X = Xl X Xz )
where X, = {(x,, - - -, Xp-1)}, X3 = {(Xgk-141 - - +» Xat)}. If we define

yj :xj+zk—1 ‘_‘xgk—la ]: 1, "':zk_l:
then
X2 = (xzk—l’ R xzk—l) + Yz s

where Y, = {(y1, - - -» yw-1)}. X, and Y, are spaces of dimension 2¢-! satisfying
the given conditions of the lemma. It follows from this way of decomposing
X that

(16) H . (X) = H (X)) + H,(Y:) + H, ({xX-1}) -
The hypotheses imply
E(xy-1) < 2%2C.
It follows from [4], Lemma §, that

H,({x-1)) < B(1 + log?*

2k-1CH )
&y ’
where B is a universal constant. Let K, be the supremum of possible (1 — 2#-1)-

entropies of 2¥-dimensional spaces satisfying the hypotheses. Then taking ¢, =
1 — 2%, ¢, = 271 in (16) implies

K, < 2K,_, + B[1 + log* (2*C?)], k=1,
so that
K, < 2K, + B T4, 271 + log* (24CH)]} .
Since
H({x}) < B(1 + log* 2C?),
we have

K, < 28B 317,271 + log* (20%'CH)] .
The lemma follows from A, < K,.

THEOREM 1. Let a separable stochastic process on [0, 1] have finite second mo-
ments, and suppose there are positive constants A and a < 2 such that

Ex(0y» < 4,
(17) E(x(s) — x(0)) < A|s — ¢, s, te[0,1].
Under either of the following conditions:

(i) the process is Gaussian,

(i) a> 1,
the e-entropy satisfies the inequality
(18) H(X) < C(a)AYec—?/"

for ¢ < A}, where C(a) is a number depending only on a.
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PrOOF. As in the proof of Lemma 4, we can assume 4 = 1.

For a given positive integer k, define the process z(¢) as follows:

(@) z(jlk) = x(jlk) — x(0), 0 = j < k
(ii) z(f) linear, (j — )k < t < jlk; 1 < j < k.

Put z; = z(j/k). Thenforl <j<k

. — . 2 = _]__ pa— ]_‘::_l :|2 —a

(19) Ez; — 2;.,) E[x<k> x< . ) <k

by (17), and if s and ¢ both belong to the same interval [(j — 1)/k, j/k],

(20) E[2(s) — 2(0F = [k(s — OFE(z; — 2, < |s — 1I°-
Define the stochastic process y(f) by

(21) x() = x(0) + y(1) + z(?) .

Then by Lemma 6,

(22) H(X) = H (X)) + Hy(Y) + H(Z)

where X, is the 1-dimensional space of values of x(0), and Y and Z are C[0, 1]
with the measures induced by the processes y(7), z(¢).

In Z, the measure is concentrated on the k 4 1-dimensional subspace of po-
lygonal curves with vertices at the points j/k. In this subspace, two curves z(¢),
7'(t) have distance

d(z, 7') = max, ;g |z; — z;| -
If we map this subspace into the (k 4 1)-dimensional space Z* by

()= = (S tn)= G L)

and take the measure on this space which is induced by the mapping Lemma 7
can be applied. We have E({,;) = 0, and

EQC; — §;o0) = 9%k, 1<j<k,
by (19). The mapping multiplies all distances by 3/e, hence
(23) H,{(Z) = H(Z*) S hy (9% .

X, is the 1-dimensional space of x(0), which has second moment < 1. Hence
by [4], Lemma 5,
(24) H, (X)) < B[1 + log™ (3/e)] ,
where B is a universal constant. It remains to consider the space Y.

Note first that we can easily reduce the proof to the case where x(¢) has mean
zero. For, if Ex(t) = m(t), and x'(t) = x(t) — m(¢), the identity

E[x'(s) — x'()] + [m(s) — m()] = E[x(s) — x(1)]
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shows that the process x'(¢) satisfies the hypotheses of the Theorem, and this new
process has the same c-entropy, since x(f) — x'(f) is an isometry.

Let y,(#) be the restriction of y() to the interval [(j — 1)/k, j/k]. This process
induces a measure on the space Y; of continuous functions on the jth interval.
By Lemma 6,

(25) H(Y) = Zia Hop(Y5) -
For s, te[(j — 1)/k, j/k] we have from (17) and (20)
(26) E[y(s) = y,(0F = 4fs — 1.

Now we make a change of scale to map the interval of definition onto [0, 1].
Define

, t i — 1
yj(t)=y,~<~3%—), 0o<r<1,

with the associated function space Y;/. Clearly Y, and Y,/ have the same e-
entropy. From (26),

E[y;'(s) — yi(OF < 4k=°ls — 1°, s, 1e[0,1].
Under condition (i) of the hypotheses, if we assume Ex(r) = 0, all the hy-

potheses of Lemma 4 are satisfied by y;/(f), with § = a/2, 4 = 4k=*. The con-
clusion of that lemma takes the form

(27) H,,(Y;) < F(a, ¢k*”[6)
for e < 6k—*2, where F is a function which is monotonic decreasing in the second
argument. Under condition (ii). (27) is valid according to Lemma 5, with a
different function F.

We estimate the terms on the right in (25) by (27):

H,(Y) < kF(a, ¢k*?[6) .

Combining with (22), (23) and (24),
(28) H(X) < B[1 + log* (3/e)] + hy41(9¢7%k~®) + kF(a, ¢k°/*[6) ,
for ¢ < 6k—°7,

Assume ¢ < 1 and put k = [(¢/6)7*%]. Thenk =< (¢/6)7** < 2k, 0 9e~%k~* L 22
and ¢k*2/6 < 1. From (28) we have
(29) H(X) < B[l 4 log* (3/e)] + hia(2°7%) + F(a, 1)(¢/6)7%.
According to Lemma 7,

by 1(2°7%) = O(k) = O(c™%?) .

Thus the right side of (29) is bounded by a constant multiple of e=*=. This com-
pletes the proof of Theorem 1.

THEOREM 2. If x(f) is a separable Gaussian process on [0, 1] with Ex(0)* < A and

E[x(s) —x(Nf =4 1°g< Is i 1 >_a
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for all s,t €0, 1), where A and a are constants with a > 1, then the paths are con-
tinuous with probability 1 and the c-entropy of the process in the uniform norm is
finite for ¢ > 0. In fact,

(30) H(X) < Cexp[Cle7?/ta7V]
for ¢ < 1, where the constants C, C’' depend only on A and a.
Proor.. First, we can assume x(¢) has mean zero, as in the proof of Theorem 1.
If x(0) is not zero with probability 1, and x(f) = x(0) + y(t), then by Lemma 6
H(X) = Hop(Xo) + Ho(Y) 5

where X, is the 1-dimensional space of values of x(0) and Y is C[0, 1] within
y(t) measure. The first term on the right has a bound of the form (30). Hence
if we know the theorem is true for y(¢), it is also true for x(#). Thus we may
assume x(0) = 0.

Let 8 be any positive number, and y = (@ — 1). Define S,, k=1,2, .-,
to be the subset of X on which

Qk+1 1 \—tte—D
31 5 g__(lo _)
(31 wio) = 12— (log

for § < exp(—2#"), where n, will be specified later. By Lemma 3, if
(32) 22k—2 > 248 4 ,
H
Pr(x —5,) < (2_’4) 2-k h I 2-45p+4ap exp[ziﬁ (2 _ _1_ 22k—aﬂ>] .
T 24

Let k, be the first value of k for which (32) is true. Then for k = k,, in this
series the ratio of each term to the preceding is at most 2772, Hence the series
is dominated by (1 — 2-#%)~* times the first term, and

(33) Pr (X — S,) < C,27F-1meexp [2™+8(2 — (2A4)712%~F)],
where C, depends only on 4, a, §.

We will choose n, so that (31) holds for ¢ < d,, where
2k+1 1 —4(a-1) e
<10g ——) = —
1 -2 0y 4
Solving for 4,,

We need to choose n, so that §, < exp(—2#"), or

2 < C, (g>2/(a—l) _q <z>ﬂ/r ’
3 3

ko1 1
nk§—+—log2—+iloggCg-
7 7 € B
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Suppose ¢ < 1, and let n, be the integral part of this expression. Then we have
from (33), for k = k,,

(35)  Pr(X — S,) < C,2-k-1k#/1¢bn1 exp[2+/re=8rC(2 — (24)~12%oF)] .

This approaches zero as k — oo, so that {S,} is an increasing sequence of sets
whose union has probability 1.

To partition S, in to e-sets, note that any x(f) € S, can be mapped into a po-
lygonal curve x*(f) with vertices at the points r = jo,, j =0, 1, - .-, [1/6,] = j,
such that

x*(0) = 0,
(o) — x*(j— 1)dy) =0 or  +e/d,  j=1,--1 ],
x*(1) = x(ju04) » 1> il s

and
|x*(jor) — x(joR)| = ¢/8, J=0, s ji.

This is possible because x(f) varies by at most ¢/4 on each of the intervals
[jdw (j + 1)d,]. The curve x*(r) associated with x(f) in this way has

[x*() — x(£)] £ ¢/2, 01,

Hence we get an e-partition of S, by grouping the curves x() corresponding to
the same x*(¢) in one set. The number of such sets is at most 3%k It follows
that S, or any subset of S, has e-entropy at most (log 3)/d,.

Let k, be a positive integer. If we define 7, = S, and

T.=8, —Si.y» k >k,

then {T, , T .1 Ty 40 - - -} is @ partition of X of probability 1. Hence we can
estimate the e-entropy of X by

H,(X) S Tf, Pr(Ty) [ log
Choose k, so that

1
Pr (Ty)

¥ HE(T,,)} :

%108 > 44 | 44 . 207,

Then k, = k,, and by (35), if £k = k&,

Pr (T,,,) < Cy27k-tkblrebltr exp[ —2C, - 28k +1/1g=#/r]

< C27F exp (—2C, 20k D/rg=bl7) |
Hence if k, is large enough that
G2 hexp (—2C,2f/1) < e,

log 3
Oy
+ 4C,Coem# Tz, 1 27T exp (—2C,204/rebIT)
+ 2C,log 3 N5, 1, 2% exp (— C,28¥/re-41r)

1

2

k—
+ 2C, NiLiy 27 exp(—2C,27e#17) log 2
3

Hx) <L+
e
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using the relations
H(T,) = log3/s,,
0, = exp(— C,20k/re=bI7)

N

Each of the three series converges uniformly for ¢ < 1, to a bounded function
of e. Hence
log 3

H(X) < 1+ Cetr
ky
= (log 3) exp (C,2k1/re=#/1) 4. C,eb/7
< Cexp(C,20kv/1e=biry |
This completes the proof.

ExaMPLE. The Wiener Process on [0, 1]has covariance E(x(s)x(f)) = min (s, f)
and so
E(x(s) — x(t)f = |s — 1] .

Then Theorem 1 can be used with 4 = ¢ = 1 to conclude

H(X) < C/é.

For L,[0, 1], [2] had

S<HM) <L,

32¢? ¢
for ¢ — 0 (the notation “A(e) < B(e)” means “lim sup A(¢)/B(¢) < 1”°). Thus,
the entropy is at most a constant times larger in the uniform norm than in the
Ly-norm, and the same comment applies for all the examples of Theorem 5 of
[5]- In information-theoretic terms, it is possible to transmit the sample func-
tions of the Wiener process on the unit interval with a finite average number of
bits in such a way that the sample functions are with probability 1 known every-
where on the unit interval, not merely at some “sampling instants,” to within e.
Furthermore, the partitions needed in Theorem 1 are constructively defined, so
that one could in principal actually carry this out.
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