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THE EXPECTED NUMBER OF COMPONENTS
IN RANDOM LINEAR GRAPHS

By RoBerT F. LING

University of Chicago
Exact, approximate, asymptotic, and computational formulas are de-
rived for the expected number of components of any given size in a random

linear graph. A theorem generalizes some asymptotic results of Austin,
Fagen, Penney, and Riordan.

1. Introduction. Let 7, , denote the set of all linear graphs having n given
labeled vertices and r edges; that is, the graphs are nondirected, without slings
and without parallel edges. Throughout this paper, expressions of the form (é’ )
will be denoted by N(p, g). The number of elements of T, , is N(n, r). In this
paper, a random graph I, | is defined as an element of TM chosen at random,
so that each of the elements of T, , has the same probability of being chosen,
namely, 1/N(n, r). Such a model has been considered by Erdos and Rényi (see,
e.g.,[2],[3],[4],[5])- Austin, Fagen, Penney, and Riordan[1]considered a similar
definition of random graphs, where both vertices and edges are labeled and two
vertices can be connected by more than one edge; namely, the edges of their
random graphs are considered as samples with replacement from () edges. Gilbert
[6] considered random graphs with labeled vertices but with a fixed probability
p for each edge, independent of the number of vertices in the graph. This de-
finition is different from the previous two in that the number of edges in the
graph is random. According to Erdos and Rényi ([4] page 20), the probabilistic
properties of I, , under the first two formulations of random graphs are in general
(if the number of edges r is not too large) asymptotically equal. In Section 2,
exact, approximate, and asymptotic formulas for the expected number of com-
ponents of size j (the number of connected subgraphs of T', , with exactly j
vertices) are presented. More asymptotic formulas and two computational for-
mulas for the expected number of isolated vertices of a random graph are given
in Section 3. The results in this paper can be interpreted as the probable struc-
ture of certain cluster analysis problems (see [8]).

2. Expected Number of Components of I, ,. Let C, . denote the number of
connected graphs of 7, .. The range of nonvanishing C, , can trivially be seen
to be r = n — 1(1)(#). This range will be implicitly assumed in subsequent ref-
erences to C, ,. It follows from a result of Riddell and Uhlenbeck ([9] page 2060)
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that

(1) C,,=>r

n,r m=1

(_lr;);i pak n! ™ <Z7cn=1 (@")) .

nln! ... r

where 3}’ sums over all m-part partitions (or compositions) of n; that is, over
all nonnegative integral solutions of > n, =n,n,<n < --- <n,,.

THEOREM 1. Let I', , ; denote the number of components of T, . of size j, then

(2 EQL,, ;) = N((n?)r) 22 CiuN(n —j,r—1),

where C; | is defined by (1). Alternatively,

= s CaHUE) +jin = )), 1 ()
3 EF’nrj — 1 " o R bl
) o) =G X <(2]) in j)>
l

where H is the hypergeometric distribution defined by
H(l[s,r, 1) = DGZDIG) -

Proor oF THEOREM 1. Consider random graphs of n labelled vertices V7,
Vy ---, V, and r edges. Without loss of generality, let , be the number of
edges associated with the vertices (V,, V,, - -+, V,); r, be the number of edges
associated with (¥, -+, V,); and r, be the edges between (¥, ---, V;) and
(Vi » s Va)y r =1+ ry, + ry. Then (ry, ry, r;) has a multivariate hypergeo-
metric distribution (see Johnson and Kotz ([7] page 301), namely,

P(ry = ny, ry = ny, ry = ny) = N(j, n)N(n — j, nz)(j%«;j))/N(n’ r),

with n, 4 n, + n, = r. The probability that (V;, V,, - - -, ¥;) is connected by !/
edges and isolated from other vertices is easily seen to be

Pry=10Lr,=r—1,r,=0).C, /N(j,l)=C;,- Nn— jr—1)/Nn,r).
s P((Vy, -+, V) is an isolated component)
=>,C;,-Nn—j,r—1)/N(n,r),
from which (2) follows. (3) is obtained by the substitution of the following
identify into (2):
N(n — j,r — I)/N(n, r) = <(3) — @) —Jn = j)>/N(n, "

r—1
= HIG) + jin — ) s @) (@ T =),

The proof of Theorem 1 is complete.

If we approximate E(", , ;) by enumerating only those components of size j
that are connected by (j — 1) or j edges (that is, trees or connected subgraphs
containing exactly one cycle), we have
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CoROLLARY 1.1. Forj = 3,
E(T,,,.)) = ()N, 1) {N@ — jr = j+ 1) - j=

+ N —jor— pY = )(+j+2’—f+---+;jji_;)z)}'

THEOREM 2. Letr = an, a« > 0. Then for large n,

Q) ET,,.;) ~ O @™ 0 = D
For j small in comparison to n and n large,
©) ET,,,,;) ~ n2imjiztai=temi(j — 1)L

Proor oF THEOREM 2. Approximating E(I, , ;) by the first nonvanishing term
given in (3), we have

ET,,;) = Q) H( = 16) + jin = j), an, <">>/ ( O ]("1_ ”)

For n large or an small compared to (2), H(j — 1|(§) + j(rn — Jj), an, (3)) admits
the binomial approximation

an N (jn = J) + QY (1 _ Jn= )+ @y
()= (=g 8)
= () = J) + YOG
The above, together with
(D7D~ (@) + Jn = 4G = !
] Fa—
yield (4) of the theorem. For n large and j small compared to n, we have the
Poisson approximation
H(j = 1]() + jn = J), an, (3))
M. O A I — DY Can @) A S — )
(e G =) (6 = prenp (—an B GE=0))
~ (2aj)i= exp (= 2aj)/(j — 1)! -

Furthermore,
<n>/< 9 + jin = D)~ m(j—!_n
j j—1 JUgm

ET,,,) ~ ji (m)j(_;‘ "i‘*’lﬁf =D 7 = n2i~1jizlqile=ti](j — 1)!

Thus,

The proof is complete.
For the special case r = n (that is, @ = 1), (4) and (5) become
ET,,,.;) ~ OG0 6™ and
ET,, ) ~n- 27 e (] — 1)!
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These special cases were derived in ([1] page 754), using an approach very
different from that used in this paper.

The following corollary, which gives better insight into the magnitude of
E(T,, ;) is easily derived from (5) through the use of Stirling’s approximation:

CoROLLARY 2.1. For j small in comparison to n and n large,

n
ET,, ;) ~ W J

“texp{(1 — 2a + log2a)j},

where r = an, a > 0.

Table 1 gives some comparisons of the exact E(T', , ;) given by Theorem 1 to
the approximations given by Corollary 1.1 and Theorem 2. The values in the
Table are rounded to four significant figures. The notation a(b) means a x 10¢,

3. Special case: Expected number of isolated vertices. Using the same nota-
tions as in the previous sections, we have

THEOREM 3.
6) ET,,)=nHQ|n —1,r,2)) forall n,r.
(7) B, ~n(1=2), r=o(n).
n
(8) ET, , ) ~ ne*, r=an,a>0.
) ET, ,,) ~ n72, r=anlogn,a >0.
(10) ET, ,,) ~ nexp(—2an’), r=ant’, a >0,0< < 1.

Proor oF THEOREM 3. (6) is a special case of (3), since C,, =0 for / > 0.
For r small compared to (}), HO|n — 1, r, (3)) is adequately approximated by
the binomial probability

OF =) =02

07\ () ) n

from which (7) follows. (8), (9), and (10) are results of applying the following
fact to (1 — 2n7Y)":

<1 -+ fﬂ:_”)_)“ —pw €Xplabg(n)]  if $(n) = o(n).

Following are two easy corollaries of (6) stated without proof. These give
computational formulas for E(T', , ). Each formula avoids the use of binomial
coefficients which could easily overflow in machine computation if n is not small.

CoOROLLARY 3.1.

=1
E(Fn,r+l,1) = <1 - (:,:) — r) E(Fn,r,l) ’ r Z 1 .
COROLLARY 3.2.
—1
ET,,)= ’;1<1—,~—'—',—:_—=> r=1.
Ta,r) = n 11550 O =k =
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