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A NOTE ON THE DISTRIBUTION OF HITTING TIMES!

By DoNALD GEMAN
University of Massachusetts

We show that ‘““hitting times’ associated with stationary processes
have an absolutely continuous distribution, except, possibly, for an atom
at the origin. The density is then identified in several special cases.

0. We show that “hitting times” associated with stationary processes have an
absolutely continuous distribution except, possibly, for an atom at the origin.
Several examples are given.

1. Let R(R,) denote the real line (half-line [0, co)) with Borel sets <#(<%,).
We use m for Lebesgue measure. Let 6, te R, be a group of measurable,
measure-preserving transformations of a probability space (2, &, P). In ad-
dition, assume (¢, ) — 0,(w) is & x & measurable. We will consider Borel sets
M(w) indexed by Q and satisfying

(i) M(0,0) = M(w) — tforall teR, e Q and

(ii) sup M(w) = + oo a.s.

The hitting time of M(w) is t(w) = inf{t > 0: t € M(w)}. Note that r(w) > ¢
implies 7(w) = t + 7(0,w), the so-called “terminal” property of . Assume 7 is
measurable.

THEOREM. The distribution of t is absolutely continuous except, possibly, for an
atom at 0.

This theorem, as well as Section 2, is a direct consequence of the following
equation:

(*) §7 I(r(0,0)) dt = §pvp(x, ®)dx + 0((T") §¢ Lo)(z(0, @)) dt , I'ez,
where v,(x, ®) is the number of solutions of 7(§,0) = x for 0 < ¢t < T and g, is
unit mass at 0.

The proof of (*) is elementary. For each » € Q, the paths (¢, ) are right-
continuous with left-hand limits on R,, and have ‘“‘saw-tooth” appearance, with
possibly infinitely many “teeth” in a finite interval. With w e Q, b > 0 and
T > 0 fixed, it is fairly apparent that {¢: 7(6,®) = b} meets [0, T] in at most

finitely many disjoint (possibly degenerate) closed intervals, say J;, J;, - -+, J,,
such that
(1) m(J) = §3 vk, x, ©) dx k=1,2,---,n

where v(k, x, w) is the number of solutions (necessarily finite) of 7(6,w) = x for
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teJ,. Summing (1) over k = 1,2, ..., n we find that
§ i, (7 (0, 0)) dt = (7 vp(x, @) dx .

Incorporating the case & = 0 we obtain (*) for any I' € &Z, of the form I' =
[b, 00), hence for any I' ¢ <Z,. Taking expectations with T = 1 in (*) gives the
theorem:
P(z eT') = § Ev(x) dx + 0(T")P(zr = 0), ez, .
(Notice that P(r = 0) = Em(M n [0, 1]) if M(w) is right-closed a.s.)
2. By (*), the family of additive functionals

Bu(x, @) = (P( = 0) § Lo(=(0,0)) ds x=0
= (Evy(x)) W, (x, ®), x>0

is an “‘occupation-time density” for the process = o §,. (By an additive functional
we mean a right-continuous, non-decreasing process a,(w) for which a, = 0 and
a,,, —a, =a,o0,a.s. for each s, 1.) Specifically

§e Bulx, 0)P(r e dx) = §; I(z(0, 0)) ds

for all teR,, weQ, T'e Z,. A straightforward calculation (which we will
omit) shows that the family of Palm measures (of 3,(x))

Pyof(A) = E51,(0,0) dB(x, w), xeR,

isaregular version of the family of conditional probabilities P*(.) = P(+ |7 = x),
xeR,. Indeed, if % is separable, P,,, = P* a.e. (m).

3. In general, the density Ev,(x) of the positive part of = does not admit a
smooth version. For instance, let #(x) = 0, x > 0, be any non-increasing, in-
tegrable function and let X,(w) be the semilinear Markov process with charac-
teristic {a, A(x)}, « = 0. When 4(0+) = oo, X, has a unique, stationary initial
distribution (see Horowitz [1]), under which the distribution of the first passage
to 0 is

(a + & A(x) dx)~Yad(dx) + h(x) dx) .

4. When M(w) is discrete, say countable and clustering only at + oo,
the additive functional n,(») = lim,,v,(x, ®) counts the number of points in
M(w) n (0, ¢] and is a stationary point process. When En, = a < oo, the
(normalized) Palm measure P of n,(w) is a probability and £z = lja. A now
well-known inversion formula (see e.g. Ryll-Nardzewski [2]) is

(2) E¢ = aE \;* £0,0)ds,  for any random variable & .

Denote by ¢(2) and ¢(2) the Laplace transforms of = under P and P respectively.
From (2), ¢(2) = a(l — ¢(2))/2 and consequently a(l — P(r < f) is the density
of r under P.

5. As a final example, let N, be a Poisson process with unit intensity and
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X, = N,,; — N,. This is a strictly stationary (non-Markov) process; we will
compute the distribution of r(w) = inf{r > 0: X,(») = 0}.

Let T, T,, - -+ be the times between the jumps of N,. Clearly P(r = 0) =
P(T; > 1) = e7* and for t > 0,

Pe=t)=PT>1)+ 2o, =1, -, T, =1, T, >1, 20T, =0)

= e (1 + X u(1))

where u,(1) = §, -+ § (exp — 27 x,) [[7 dx, and D,(#) is the region {(x;, Xy, - - -,
x): 0= x, <1, 7 x;, £ t}. Observe that u(f) = 1 — exp[—min (1, 7)] and that

U, () = (Pin @0 e=oy (t — x) dx, n=1,2,....
Summing over n = 1, 2, - .. results in the renewal equation
3) u(t) = u(t) + §ou(t — x)duy(x),  u(t) = L u(1) -

Evidently, u(¢) is continuously differentiable for ¢ = 1; thus P(z < ¢) is abso-
lutely continuous on (0, co). In fact, an easy computation with (3) leads to

Eerr =+ 4 120
T Ageri’ =

(For intensity 6 we get e=%(0 + 2)/(2 + e"~%).)

REFERENCES

[1] HorowiTz, J. (1972). Semilinear Markov processes, subordinators, and renewal theory,
Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 24 167-194.

[2] RyLL-NARDZEWSKI, C. (1961). Remarks on processes of calls. Proc. Fourth Berkeley Symp.
Math. Statist. Prob. 2 455-466.

DEPARTMENT OF MATHEMATICS AND STATISTICS
GRADUATE RESEARCH CENTER

UNIVERSITY OF MASACHUSSETTS

AMHERST, MASSACHUSETTS 01002



