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AN ESTIMATE FOR E(|S,|) FOR VARIABLES IN
THE DOMAIN OF NORMAL ATTRACTION OF:
A STABLE LAW OF INDEX a, | < a < 2

By WiLLis L. OWEN
University of Oklahoma Health Sciences Center

An estimate of the expected value of the sum of independent identi-
cally distributed random variables in the domain of normal attraction of
a stable law of index « is obtained. This estimate is then used to obtain a
generalization of the Helly-Bray lemma.

1. Introduction. Let X, X,, .-- be a sequence of independent identically
distributed random variables defined on a probability space (Q, F, P). Let
E(X)) =0,and let S, = X, 4 ... 4+ X,. Under these assumptions, Von Bahr
and Esséen [4] have proved that for 1 < r < s <2

E(S,") = 207 (E1X )

In particular, if X, X, ... are in the domain of normal attraction of a stable
law of index a, 1 < a < 2, this result becomes
E(|S,]) < K(B)n# for 1 <f<a,

where K(B) is a constant for fixed 8. In the investigation of certain optimal
stopping problems, one wants an estimate of this form for the case « = #. This
cannot be obtained from the Von Bahr-Esséen result. It is the purpose of this
note to establish such a result and use it to obtain a generalization of the Helly-
Bray lemma.

2. The estimate. Let Y be a stable random variable of index a, 1 < a < 2,
and let V' be the distribution of Y. Let X, X;, - - - be a sequence of independent
identically distributed random variables which are in the domain of normal
attraction of V. We also assume that E(X,) = 0. Let F denote the common
distribution of the X,. As usual, we let S, = 0, S, =X+ --- + X,. Our as-
sumption about the X, implies that there is a constant a > 0, such that S, jan"
converges in distribution to Y, where r = 1/a. Since none of our arguments
depends on the value of the constant a, we will take @ = 1 for ease of notation.

Much is known about the distribution ¥ and F (see, for example, [1]). In
particular, we know the form of F, from which it is clear that there must be
some constant C > 0 such that F(x) < C|x|~*if x < 0 and | — F(x) < Cx~« if
x > 0. Throughout this note, C will denote this constant.

We will use r to denote 1/a.

We may now prove our first lemma.
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LEMMA 1. There exist positive constants K and s, both independent of n such that,
fort> s,
(1) P(S,Jr| > 1) < Kjr= .

Proor. The proof is by truncation. For fixed n and ¢ > 1, define Y, =
X, I(|X,| < tn"), where I denotes the indicator function. Let Z, = X, — Y,, §,, =
Y4+ .-+ Y,,and S,, = Z, + --- + Z,. Note that

@) P(|S,[n| > 1) = P(ISw/n7] > 1) + P(S,, # 0) .
Since P(S,, #+ 0) < nP(Z, + 0) and P(Z, # 0) = P(|X,| = tn"), we get
(3) P(S,, # 0) < 2CJr".
Note that since E(X;) = 0,
E(Y)) = (pzar x dF .
So, integrating by parts and using our remark about F, we get
E(Y,) < Clt==in=" 4 Cl(a — 1)r==tnt=r .

So, E(S,,/n") < aCt~%/(a — 1). Since @ > 1and ¢t > 1, we must have |E(S,,n")| =
aC/(a — 1). Let B = aC/(a« — 1)and let s = 1 + B. Henceforth, we take ¢ > s.
Then

(@) P(S,,/n7| > 1) < P(|Syu/n” — m=E(Y,)| >t — B).
From Chebyshev’s inequality, we get
©) P(1Sy,/nm — mTE(Y,)| > ¢ — B) < (t — B)™ Var (/') .

Now, Var (Y;) < E(Y?) and Var (S,,/n") = n*~*" Var (Y}). Moreover, {1, x*dF <
1 < (tn7)*~=, and integrating by parts, we can get

; b X2 dF < [1 + 2C/(2 — @)](tn)="
- §" 2t dF < [1 + 2C)(2 — a)](en)=* .

Hence, there is a constant K’, independent of n, such that Var (Y)) < K'(tn")*~.
So, from (4) and (5), we get

©6) P(IS,,/m] > 1) < K'(1 — B .

If we let K = K'(1 — B)~ + 2C, then«(2), (3), and (6) give the result. []
The next theorem gives our estimate for E(|S,]).

THEOREM 1. For each real number g with 0 < q < a, there exists a finite positive
real number Q, depending on q but independent of n, such that

(7 E(|S, /") = Q.
In particular, there exists a constant M, independent of n, such that

) E(S,|) < Mn .
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Proor. For the proof we integrate by parts and use the estimate of the previous
lemma.

Since the result is clear for ¢ = 0, choose ¢ such that 0 < ¢ < a. Let Kand
s be as in Lemma 1. Then

E(S,/n]?) = §3x0 dP(S,/n"| < x) + {2 x0 dP(S,[n"| < x) .
Now {s x?dP(|S,/n"| £ x) < 5% and we can integrate by parts to get
o xtdP(IS,[r] = x) = 5" + Ks"™*q[(a — q) -

Letting Q = 257 + Ks*~*g/(a — q) gives (7). Equation (8) follows from (7) with
q = 1. D

Although convergence in distribution does not imply convergence in p-mean,
it is possible to make this conclusion in the particular case studied here.

Meyer ([3] Theorem 22, page 19) proves that if H is a set of integrable random
variables and if there exists a function G: [0, co) — 0, co) which is increasing
and satisfies G(f)/t — oo as t — oo and sup {E[G(|f|)]: fe H} < oo, then H is
uniformly integrable. We use this fact to prove a moment-convergence result
for §,/n".

THEOREM 2. Asn — oo
©) E(S,[n") — E(Y) .
Moreover, for all g with 0 < q < a, we have
(10) E(|S,/n7|?) — E(|Y]) -

Proor. It is known [see, e.g., Loéve, page 183] that the result will follow if
we can show {S,/n"} is uniformly integrable. Since {S,/n"}is uniformly integrable
if {|S,/n7|} is, it is only necessary to show {|S,/n"|*} is uniformly integrable.

The result is clear if ¢ = 0; so let ¢ > 0 and choose s, such that 0 < g <
s < a. Let u = s/qg and let G(¢) = |#|*. Then G(¢)/t — oo as t — co.

Moreover, sup E[G(|S,/n"|?)] = sup E[|S,/n"|"] where the supremum is taken
over all positive integers n. So, from (7), we get

sup E[G(|S,/n"|")] < oo .

Hence {|S,/n"|?} is uniformly integrable, and we are done. (]
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