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A NOTE ON MARTINGALE SQUARE FUNCTIONS

By Jia-ArRNG CHAO
University of Texas at Austin

In this note we show that the Littlewood-Paley argument also applies
to the martingale square function.

Let (Q, %, P) be a probability space. Let f = (f,, f;, ---) be a martingale
relative to a non-decreasing sequence of sub-¢-fields of %" %], %, --- and
{di}i=1 be the difference sequence of f. (i.e., f, = >1%_,d,, n = 1.) The square
function of f is S(f) = (3.1 4,°)! and the maximal function of f is f* =
sup, | f,|- Denote S,(f) = (Lio 4}t and f,* = sup,_,.,. |ful, n = 1. For 0 <

p < o0, let ||fll, = sup, ||f.Il, where ||f,]l, = (E|f.)"*. fis said to be L-
bounded if || f]|, is finite.

THEOREM. If fis an L*-bounded martingale with 1 < p < oo, then there exists
an A, > 0 such that ||S(f)||, < 4,||f],-

The result was established by Burkholder [1]. (See also [2].) S(f) was re-
ferred in Stein [4] as the Littlewood-Paley function of the martingale f. Our
purpose is to show that the argument of proving the similar inequality for the
Littlewood-Paley function in the Lie group setting ([4]; Chapter II) can be also
applied here. It should be noted that the studies in both settings originated in
Paley [3]. Our result gives further insight into the subject. Note also that
Taibleson [5] applied the same idea in the local field setting where a sort of
regular martingale was considered.

We need the following preliminary results:

1) If*ll, = Plfll,  for 1<p<oo,  where I/p4 1/p"=1.
) P(S(f) > 4) = 327/l » A>0.

(1) is Doob’s inequality; (2) follows immediately from the identity lemma of
Burkholder [2].

ProoF. From the orthogonality of {d,} it follows that || S(f)||, = ||f|l.- Apply-
ing the Marcinkiewicz interpolation theorem to this and (2), we have, for 1 <

p <2,
(3) SOOI, = BlIfl, for some B, > 0.

Now suppose p > 4 and let ¢ be the conjugate index of p/2. Let {e,},., be
the martingale difference sequence of g € L¢ with l9ll, =1, i.e., g, = 25_, e,
where g, = E, g is the conditional expectation of g relative to .%7,. Since 1 <
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g < 2, by (3) we have

4) IS@)Il. = B,llgll, = B, -

For an Lr-bounded martingale f, since E|f._,f.9.—1| = |IfI219]l, < o0,
k> 1, we have E(fi_fi0u-1) = EE, i(fi-1fu9s-1) = Elfu-10u-1Er-a(f0)] =
E(f}_,9,_,) and similarly, E(f,_,d,9) = E(f,_.d.9,). Hence, for k > 1,

E(fradier) = E[fi-i(fi9r — frma0h — [ibia + fraa0i0)]
= E[fiear [e9k — fi104]
= E(f,-,d,9) .
Thus, by repeatedly applying Holder’s inequality with (1) and (4) (and the
convention of f, = 0), we have
|E[S.(N)9]] = IE(f." — 2 Zims fead)9]l
= |E(f9)] + 2/E(XD =1 fe-d,e)]
< [1f3ll71191l 4 2ELf*Su(£)Su(9)]
= I£all* 4 201 SO I1Sa(@)] g
S fally" + Cllfallo 1SN, where €, = 2p'B, .

ISU(NN* = 118" (Nl = SUPge Laign =1 [ELSHH(N)I]]
é Ilf’n”zz2 + Cp”fn”p”S'n(f)”? *

Hence there exists 4, > 0 such that ||S,(f)||, < 4,||f.ll,- Therefore, by letting
n — oo, we have

So

IS = AlIf 1l for p>4.

Applying the Marcinkiewicz interpolation theorem again, we obtain the
desired result.

REMARK. By tracing the constants in the proof, we have 4, = O(p) as p —
co. This estimate is not as sharp as 4, = O(pt) obtained in [2].
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