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GROUPS OF TRANSFORMATIONS WITHOUT
FINITE INVARIANT MEASURES HAVE
STRONG GENERATORS OF SIZE 2!

By Amy J. KunTz
The Ohio State University, Columbus

A size 2 generator of a measure space (X, 5, p) under a set S of trans-
formation of X is a partition {4, A¢} of X such that & is the smallest ¢-
algebra containing {s-14: s S} up to sets of p-measure zero. Let S be a
semigroup of invertible nonsingular measurable transformations on a
separable measure space (X, %, p) with p(X) = 1. Suppose that .S does not
preserve any finite invariant measure absolutely continuous with respect
to p. Then .# has a size 2 generator {4, A} and the orbit of 4 under S is
dense in 5.

1. Introduction. U. Krengel (1970) (see also Jones and Krengel) has shown
that if 7 is a nonsingular invertible transformation on a finite separable measure
space (X, ., p) such that T does not preserve any finite measure absolutely
continuous with respect to p then there exist strong generators of size 2, in fact,
sets with dense orbits in .. In this paper I will extend Krengel’s result to the
following for groups of invertible transformations: Let G be a group of nonsin-
gular transformations on a finite separable measure space (X, .5, p). Assume
that §, a subsemigroup of G, does not preserve any finite measure absolutely
continuous with respect to p. Then .+ has a generator of size 2 whose orbit
under S is dense in 5. Note that if T is as above: a nonsingular invertible
transformation without a finite invariant measure then .o/ has a generator of
size 2 under § = {7%: i = 1}, i.e. a strong generator.

2. Definitions. By a generator under S of size 2 for a g-algebra > I mean
a partition of X': {4, 4°} such that the smallest g-algebra containing {s~'4: s S}
is .». A weakly wandering set under S is a set W for which there exists a
sequence (s;)>, in S such that the sets 5,7 are pairwise disjoint. 4 A B (the
symmetric difference) is (4 N B°) U (4° n B). In this paper S will always be a
semigroup of invertible nonsingular transformations on (X, ., p), a finite
measure space with p(X) = 1.

3. Weakly wandering sets. Y. N. Dowker (1955) showed that for an inverti-
ble nonsingular transformation 7" a necessary and sufficient condition that there
exist a finite T-invariant measure m equivalent to p is that for every measurable
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set A such that p(4) > 0 we have liminf p(T"4) > 0 as n — co. Hajian and
Kakutaini (1964) proved that the existence of a finite invariant measure is
equivalent to the nonexistence of weakly wandering sets. Hajian and It (1969)
extended these previous results to groups G showing that the following are
equivalent:

(i) inf{p(gA): ge G} =0,
(ii) G has no finite invariant measure equivalent to p,
(iii) there exists a weakly wandering set under G.

In Lemma 1 I shall use similar methods to show:

Lemma 1. If S is a semigroup of nonsingular invertible transformations on a finite
measure space X, p(X) = 1, then S has no finite invariant measure absolutely con-
tinuous with respect to p if and only if for all e > O there exists a weakly wandering
set W such that p(W) > 1 — e.

Proor. If there exist weakly wandering sets with measure arbitrarily close
to 1 then any set of positive measure contains a weakly wandering set hence no
set of positive measure can be the support of a finite invariant measure for S.
Now suppose that S has no finite invariant measure absolutely continuous with
respect to p. Following Hajian and It6 and Dowker I define L,(X) operators
U, such that U/(r(x)) = r(s7'x)w,} where w, is the Radon-Nikodym derivative
of ps~' with respect to p. U, is a unitary operator and U, U, = U,,. Let T =
{U,1:5€8,1(x) = 1 for all xe X} and let 7* be the closed convex hull of T in
Ly(X). LX) is a uniformly convex Banach space. So there exists a unique
element ¢, in T* such that ||¢|| = inf {||¢]| : 1€ T*} (Wilansky (1964) page 110).
Since we have UT* c T* for all se S we have that U,t, = ¢, Let m(E) =
§zt:dp. Then

m(s7E) = §,-p i’ dp = §p (s X)W, dp = §, (Ut dp = § 1" dp = m(E)

so that m is a finite S-invariant measure absolutely continuous with respect to
p. Since t, is a strong limit of convex combinations of U,1, §,t,dp =
inf {{, U,1dp: seS}. By the Cauchy-Schwartz inequality we have:

m(E) = Y t'dp = (§ . dp)*[p(E) = (inf,es §» U, 1 dp)*/p(E) .

Since m is a finite S-invariant measure m must be identically zero. So 0 =
m(X) = inf,.s §, U,1 dp and there exists a sequence U, 1 which converges to 0
pointwise a.e. Egorov’s theorem implies that for all e > 0 we can find a set
X’ such that p(X") > 1 — eand U, 1 converges to 0 uniformly for x in X’. Then
p(s;7'X’) = §4 (U, 1)* dp converges to 0 so inf {p(s'X"): s€ S} = 0. Let W =
X — (U 57X U Uy U 8;57Y, 5, chosen so that p(s,~! X’) < d where d,
d < e[2'*1, is chosen so that if p(4) < d then p(s; A) < efi2i*' for j=1,2, ---,
i — 1. Then W is a weakly wandering set under s, and p(W) > p(X') — e >
1 — 2e. (cf. Hajian and Kakutani (1964).)



GROUPS OF TRANSFORMATIONS 145

LemMMA 2. If for all e > O there exists a weakly wandering set W under S with
p(W) > 1 — e then for any decreasing sequence of positive numbers e, there exist
weakly wandering sets W, and transformations s, in S such that:

(@) p(W) > 1 —¢,
(i) p(s;7's, W) < e, [2* for i < k
(i) p(s, (Uice 5 W) < €,
Proor. Suppose that W;*-1, 5,, 1 < i < n — 1, have been chosen so that:
@) P >1—e(l — 1279, 1<isn—1
(i) p(s;'s, W) < ef2h, j<isn—1
(iif) p(s; (Uic; s Wi ™) <ejpl=j=n—1.
Choose W,™ so that p(W,") > 1 —d where d < e,/2 and p(4) < d implies
p(s;1A) < e, 2" < e/2~**1 for i < n. Choose s, so that s, W, is disjoint from
w,* and p(s,”*W,") < d. Then we have for W,* = W,*~' n s, 'W, ™

1) p(W™ > 1 —e(l — 12", 1 <i < n(since p(s;,'W,") > 1 — ¢, [/271H1)
(ii) p(s;7's; W) < e,f2%, j < i < n (since p(s, W,") < d)
(i) p(s, " (Uica 5: W) < e, (since s; W;* C W,").
Let W, = N, W," then p(W,) > 1 — e, and W, satisfies 2 and 3 since W, C W ",
n =i

4. Generators.

THEOREM. If S isa semigroup of invertible nonsingular transformations on a finite
separable measure space (X, ", p), p(X) = 1, where S does not preserve any finite
invariant measure absolutely continuous with respect to p then % has a generator of
size 2 in F under S and the orbit of that generator under S is dense in .7,

Proor. Without loss of generality assume that (F,)72, is a dense generating set
for & (i.e. (F,), is dense in & and & is the smallest g-algebra which con-
tains (F,);2,) and that every F, appears infinitely often in the sequence (F,):2,.

Let 4 = Ui, 5,(F, n W,) where W,, s, satisfy Lemma 2 for a sequence e,

which decreases to 0. Then (s,7'4)7_, is dense in (F;);, since
P AN F) < p(Fy — Fo 0 W) + p(Ui<s 8775 Wo)
+ Zipsi PTIW) < e,
So {A4, A°} is a generator for % under S'and the orbit of 4 under S is dense in

. As in the case for a single transformation these generators are a dense G,
in the symmetric difference topology on .~ (cf. Krengel (1970)).
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