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THE LIMITING DISTRIBUTION OF MAXIMA OF RANDOM
VARIABLES DEFINED ON A DENUMERABLE
MARKOV CHAIN!

By GEORGE O’BRIEN
York University

Gnedenko’s work (1943) showing the existence of a limiting distribution
for the maximum of the first » terms in a sequence of suitably normalized
independent identically distributed random variables is extended to se-
quences of random variables defined on a positive-recurrent denumerable
Markov chain.

1. Introduction. Let J,, J,, --- be an aperiodic, irreducible positive-recurrent
Markov chain with transition matrix P on the positive integers. Let X, X;, - - -
be real-valued random variables, defined on the same space as {/,}, such that,
for each i, j and n,

Q,;(x) = P(J, = j, X, £ x|J, =)
=PJ, =4 X, Ex|Jp, Xp, Iy - Xy o = 0)
Then P,; = Q,; (+oo) for eachi, j. If P,; = 0, set F,;(x) = P;'Q,;(x) for x real.
If P;; = 0, let F,; be any distribution function.

Let 8 be a probability measure on the states of {J,}. We consider 5 asa row-
vector. Let R,, be a real constant for each pair of positive integers (k, /). The
conditional probability thatJ, = jand X, < R, ,,v = 1,2, .-, n, given that
J, has distribution B, is easily seen by induction to be the jth entry of the product
$ multiplied by the nth power of the matrix whose (k, /)th entry is Q,,(R,;).

If our Markov chain had only one state, {X,} would be independent and
identically distributed, say with distribution function F. In thiscase, the quantity
just described would be (F(R))", where R is a real constant. Gnedenko (1943)
studied limits of quantities of this type, where R has a normalization depending
on n. Our purpose is to obtain results like his in the present situation. The
X,’s are dependent but they are conditionally independent, given J,, J;, - - -.

The theorems to follow are analogues of those which Fabens and Neuts (1970)
obtained for the case of aperiodic, irreducible, finite Markov chains.

2. Statement of the results. Letz = (x,, m,, - - -) be the stationary probability
measure (row-vector) for P. Let 8 be any other probability measure (row-
vector). For any row-vector a, let ||a|| = X5, |o;| when the sum converges.
Our main result is the following:

Received October 3, 1972; revised March 13, 1973.

! This research was supported in part by the National Research Council of Canada. Much of
the work was done at the Summer Research Institute sponsored by the Canadian Mathematical
Congress.

AMS 1970 subject classifications. Primary 60F05; Secondary 60J10, 60K15.
Key words and phrases. Limit distributions of maxima, denumerable Markov chain.

103

@:]
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to é,%j:q
The Annals of Probability. STOR ®

WWww.jstor.org



104 GEORGE O’BRIEN

THEOREM 1. Suppose that for every i, j,n = 1,2, - -, there exist real constants
a,;, and b;, such that

lim, o, [F (@50 X + b;;)]" = @yi(x) -
Let T, be the (denumerable) matrix whose (i, j)th entry is Q,(a;;, R;; + b;,). Define

X = 115520 [P (R )]70id
where we define 0° = 1. (If this product diverges, it must go to 0; then we define
x = 0.) If ||=T,||* — yx, then ||BT," — yz|| — 0 asn — oo.

The distribution functions @,; may be some of Gnedenko’s extreme value
distributions or may be degenerate.

Let A4,(i, j) be the event that X, < a,;,R,; + b,;, for those v < n such that
J,_,=1iand J, =j. For “most” paths of length n, J,, = iand J, = jabout
nr; P, times. Thus P(A4,(i, j)) = Fri¥i(a,;, R, j+b,;,) = [F15(a,ju Rij+ b,5,) 6 —
[®@;,(R;;)]"*"is. In view of the conditional independence of the X,’s given
Jo Jys -+, J,, one might expect P(N, ; A,(i, /) — x = I1.,; [Di;(R;;)]"4. But
P(N.,; A, j)) = X3; (BT,™);; thus one might guess 3, (87,"); — x, which is
implied by and related to the conclusion of the theorem.

Suppose R, ;, a,;,, and b, ;, are independent of / and j; call them R, a,, and b,.
In that case, what limiting distributions can P(X, < a,x + b,,v=1,2, .-, n)
have? Even without the assumption of the theorem that (F,;(a,x + b,))" —
®, (x), the only possible limits are the usual extreme value distributions and
degenerate distributions. This is shown by Resnick and Neuts (1972) for finite
Markov chains and by O’Brien and Denzel (1972) for denumerable chains.

The condition ||zT,||* — x is discussed below in terms of Theorem 2. Follow-
ing the approach of Fabens and Neuts (1970) we restate Theorem 1 in a more
general context. Replace F,;(a,,;,R;; + b,;,) by c,;, and @, (R,;) by ¢,;.

1jn

THEOREM 2. Foreachi,j,n=1,2, ..., let c;, [0, 1] be such that c};, — ¢,;

asn— oo. Let T, be the matrix defined by (T,),; = c,;, P;;. Let
© TiPyj
2= 1li=19¢:i5 "
(where 0° = 1.) If ||zT,||* — yx, then ||fT,” — y=|| — 0 as n — co.
It is convenient in the proof of Theorem 2 to replace the condition ||zT,||" — x

by more workable conditions. We use the fact that ||zT,|| = 21,; 7, Pi; ¢,

LeEMMA 1. Suppose (asin Theorem2) that c};, — ¢,; forall (i, j). Then||xT,||"— x
and y > 0 are together equivalent to
(1) lim, ., >, ;7 P (nc,;, —n—logg;) =0
(where 0log 0 = 0). Also y = 0 implies ||zT,||* — x.

Proor. First suppose y > 0. Then

[ZT|[* = x = X ;@ Py = 1 + n7tlog x + o(n™)
= 2. ;T P(nc, —n —1ogoe,;) —0.
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Now assume (1) holds. The sum in (1) is finite for some n. Consequently,
log y = 3;; 7, P;;log ¢;; > — oo, so that y > 0.

Now suppose y = 0. Lete > 0. Take /large enough that 5’ = HER O
Let 3}’ denote sums with / and j going from 1 to 7; let 3" denote sums with i or
J>1 Then ||aT,|["= (5, 7, Pij i) SLE 7, Pyt 5 7, PP =[5 7, Pyl —

n~tlogo,; + o(n7Y)) + X" 71'1P“]” =[l—n? 37, Pjlogo,; + o(n™)]" -y <e.
Therefore ||zT,|[* — y = 0. This completes the proof of the lemma.

Suppose / and j take only finitely many values and c7;, — ¢,; for all (i, j), in
the case y > 0. For each (i, j) we have =, P, (nc;;, — n — log ¢,;) — 0, which
implies (1). In our present case, (1) is essentially a weak condition of “uni-
formity” on the convergence of ¢7;, to ¢, .

We also note that in the case y > 0, (1) cannot be completely dropped. In
Section 5, we show that in one special case condition (1) is necessary for Theorem
2 to hold.

Condition (1) can be replaced by an apparently weaker condition (2) below.
This can be seen from the proof of Theorem 2 or by the method indicated below:

CoRrOLLARY 1. [In the case y > 0, ||zT,||" — y may be replaced in Theorem 2 by
(2) liminf, ., 33, ; 7, P;,(nc;;, —n —logg,;) = 0.

PrROOF. Assume (2). Then we have

2w Pjlog o, < liminf 3 «, P, (nc;, — n).
Consequently,
— 2w Pjloge,; = —liminf 3} , P, (nc,;, — n)
= —limsup 3 , P, ;(nc;;, — n)

liminf 3] 7, P, ;(n — nc,;,)

Z T; 1,]( log 901,7) ’
by Fatou’s lemma. This implies (1), as required.
The proof of Theorem 2 can be modified to yield:

v

COROLLARY 2. In the case y = 0, it is sufficient that c%;, — ¢, for all pairs (i, 7

in a set A such that
Ilisea (P:}P“ =0.

Before proceeding, we establish some conventions. Limits will mean as n
approaches infinity, unless otherwise specified. Also sums and products will be
from one to infinity. If 4 is a (denumerable) matrix, define the norm ||4|| =
sup; 33 ; |4;;/, when this is finite. If « is a row-vector and B is another matrix,
then [[4B|| < [|4]|||B|| and ||@A|| < ||«||||A|| when the right sides are defined.

We will freely use the language and properties of denumerable matrices as
discussed in Kemeny, Snell and Knapp (1966). In addition, we use their version
(due to Orey (1962)) of the convergence theorem for positive-recurrent Markov
chains.

In Section 6, we give a theorem for the case of periodic Markov chains.
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3. Some lemmas. We separate some parts of the proof of Theorem 2 as
lemmas. The first of these is obvious.

LEMMA 2. Suppose P,, = O for some (k, ). Then we may assume c,, =1 for
all n and ¢,;, = 1.

As a result of this lemma, we assume P;; > 0 whenever ¢,; = 0. The follow-
ing lemma is a special case of Theorem 2. We give it in a stronger form than
required later, since it indicates the extent to which the method of Fabens and
Neuts (1970) applies to denumerable chains.

LEMMA 3. Suppose we replace (1) by the stronger condition
(3) sup; 33 ; Pijlnc;;, — n —log gl — 0.

Then ||BT,” — x=|| — 0.

ProoF. By (3), |X;m:iPij(nci; — n—logo,)| < X7 205 Pijlneizn — n —
log ¢,;/ — 0. Thus (1) holds. By Lemma 1, y > 0. Using Lemma 2, we assume
w.l.o.g. that each ¢,; > 0. Define a matrix I' by I';; = P;;log ¢;;. Since the
left side of (3) is finite for some n, we have

r = |ITll = sup; 23, Py;{log ¢4
< sup; 3 Pyllog ¢ + n — ney,| + sup; X0 Pijlneyy, — 1
< oco.
Let A, = P + n~'I'. By (3),
T, — A,|| = n~*sup, 23| Pine,; — nPy; — Pyjlog ¢yl = o(n™).
Consequently, [|4,]| < [|T,]| + [[4, — 7| < 1 + o(a™). Thus

||Tnn - Annll
= ”Tnn - An Tnn_lll + HAn Tnn_l - An2Tn”-2H + o+ HAnn_lTn — An””
< o(n (L + o(n )™,

where goes to 0.

Let B be the denumerable matrix each of whose rows is z. For each n and
for k =0,1, ---,n, let V(k, n) = n%3)BI'BT" ... I'B, where the matrix I" ap-
pears k times. Then V,;(k, n) = n~*(3)(log x)*x;. As n— oo,

| %0 Vk, ) — Bl = || D=0 n*()(10g 2)*7 — x|
= |(1 + n7tlog )" — x|l|=|]
which converges to 0. Now
BT, — xzl] S |ITW" — A2 + (184" — Xk=o BV, n)]
+ [ X% Wk, n) — xB| .
Since the first and last of these go to 0, it is sufficient to show the middle term
goes to 0.
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Let U(k,n) be the sum of all the matrices expressible in the form
n=kPml PmI* ... I'P™ for which my + m; + ... + m, = n — k. There are (})
such matrix products. We note that 4," = (P 4 n~'')" = U0, n) + --- +
U(k, n). We will compare SU(k, n) and gV(k, n).

Lete > 0. Letp =¢(1 4 y)le77. If y = ||T'|| > 0, define a row-vector a by
a; = —||z['||(=T"),. Note that ||z['|| > 0 and ||a|| = 1. Let M be sufficiently
large that for all m = M. [|[aP™ — z|| < » and ||BP™ — r|| < 7 (see page 153 of
Kemeny, Snell and Knapp (1966)). Form = M, ||z['(P™ — B)|| < ||zT'||||aP™ —
al| < rp. Iy =0, ||zT(P™ — B)|| = 0 < 7.

A term n~*Pm['P™1 ... I'P™ of U(k, n) is said to be “good” if each m, = M.
There are ("~ V") good terms. For a good term,

|[n=*gPmol'P™1 ... 'P™ — n=*BBI'S ... I'B||
< n*||gP™IL ... TP™ — BBL'P™1 ... I'P™||
+ n~*||8BTP™ ... TPm — BBTBIP™ ... TP™|| 4 ...
+ n~*||8BT ... BUP™ — BBT ... BI'B||
< nH||gPm — z|[DP™T - .. T Pm|
+ n4||g]|[|=T(P™ — B)||[DP™T ... TP™|| 4 --.
+ n7H|B[|||BLB - - - I'||||zL'(P™ — B)|
= (k+ Dnkyky .
The total difference between the good terms of 54, and the corresponding terms
of »i»_, BV(k, n) is bounded by
Sheo Ok + Dty < 0 Dk + DI = (1 + 77 = e

independently of n.
The total difference for the terms which are not included above is bounded by

2 ke n MG — ()]

k

< 2ot 0 = (= (k- DMP) 4 25, T
since n* > n® = nl/(n — k)! > (n — (k + 1)M)*®. Choose J sufficiently large
such that the second sum is less than ¢. Then, for n sufﬁciently large, n — (k +
1)M > 0, so that n'® — (n — (k + 1)M)* is a polynomial in n of degree k — 1.
Thus, the first sum goes to 0, so can be made less than ¢. We have shown that
for n sufficiently large,

[184," — Zk=o BV(k, m)]] < 3e,

as required.

Lemma 4. If ¢}, — ¢,; for each i and j, then lim sup (8T,"); < yr; for all j.

Proor. Let ¢ > 0. We divide the proof into two cases which we later com-
bine. First suppose ¢,, = 0 for some pair (k, /). By Lemma 2, we may assume
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P, #0. For (i, j)#(k, ), let ¥,,;=d,;, = 1 foralln. Let ¥, =exp{(m, P,;)"*loge}
and let d,,, = max (c,,,, ¥}"). Let ¥’ =e.

Now suppose ¢,; > 0 for all (i, j). Let I be sufficiently large that ' < x + ¢,
where in this case ' = [[! ;, ¢;}"%. Foriand j< I, 1et¥,; = ¢,; and dijp = Cijne
Foriorj> I, let ¥, =d;, =1, forall n.

In both cases, let (S,),; = P,;d;;,. By Lemma 3, ||3S," — y'z|| — 0. For n
sufficiently large, (8T,"); < (BS,"); < 2'm; + ¢ < ym; + 2e. As ¢ is arbitrary,
the result follows.

The next lemma shows that it is enough to consider the case for which g is
the stationary measure =. The proof of Lemma 3 could have been slightly

simplified by giving the next lemma first.
LemmAa 5. If y > 0, ||BT," — «T,"|| > 0 as n — oo.

Proor. Let ¢ > 0. Since ¢;; > 0 for all (i, j) (using Lemma 2), ¢;;, — 1 for
each (i, j). Let m be sufficiently large that |[3P™ — #|| < ¢. We define two prob-
abilities on the set Q of (m 4 1)-tuples of positive integers. If x = (iy, iy, -+, i,,)
is in Q, let p({x}) (respectively v({x})) be the probability that a Markov chain
with transition matrix P and initial distribution = (respectively S) begins by
going through the states i, i, - - -, i,, (in that order). Define f,: Q — [0, 1] by
Sallos =5 i) = CoinCisign =+ * Cipp_jipme L F ={1,2, -, J}"" Q, where J is
large enough that v(F) > 1 — eand p(F) > 1 —e. Let 4; = {(ip, -+ -, i,) € Q:
i,, = j}. Finally, let n > m be sufficiently large that f,(x) > 1 — e forall xe F.
Note that §,. f,dv = (BT,");, which implies

BT, — =T, < IBT," — a T, Tl = [|BT." — =T,"|
= 25 Na; fadl — p)|
< 2DilSazorfadly — ol + 2518 as0re fudl — p)] -
The second term is bounded by (v + )(F°) < 2¢. Also

Sajorfudl — p) = u(4; 0 F) — (I — e)p(4; 0 F)
= (A)) = (A + (0 4 )(A; 0 F) 4 e+ v)(4) -
By symmetry, the same bound holds for |{,..,f,d(v — 1)|. Summing over j,
we obtain
IBT," — 2 T.0| = Xy Iv(4;) — p(4,)] + 6¢

= ||BP™ — w|| + 6e < Te,
which gives the result.

4. Proof of Theorem 2. Assume first that y = 0. By the statement ||3S," —
x'7|| — 0 in the proof of Lemma 4, we have for n sufficiently large that ||5T,"” —
wll = 25 (BT."); £ 25 (BS"); <1’ + ¢ = 2, so that lim ||BT," — yz|| = 0.

Now we consider the case y > 0. We may assume the initial distribution is
7, by Lemma 5. Let ¢ > 0. Define d;;,, ¥,;, S, and y’ as in Lemma 4 (for the

case when all ¢,; > 0), where we assume / is so large that log y" — log y < e.
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Define
A(n) = ””Snn - ﬂTnnH
4) = 204, (82" — (To")i;]
= Dligiponaip T Pigiy =+ P .
X [dioiln Tt din_linn - Cioiln e cin_linn] .

The expression in the square brackets

= (dioiln ooy i — Cigign@iyign = di i)
+ (Cigiynigign * + di _in— CigignCiyignDigign *** din_linn) + o
+ (Cioiln e cin_2in_1ndin_linn - Cioiln e Ci,n_linn)

= [(dioiln — Ciipn) (dilizn — Ciign) + 0 F (din_linn — Cipyign)] -

Substituting this back into (4) and performing the summation where possible,
we obtain
Am) = n Zy 5 7 Pij(dijn — €i5) 5
by the stationarity of . Now by (1),
2 % Pij(ney, —n) — 3, im, Pilog g, = logy .
Subtracting this from the corresponding expression for d,,,, ¥,; and 3/, we obtain
nyimPdy, —c)—logy —logy < e.

Thus, for nsufficiently large, A(n) < 2¢. By Lemma 3, lim 2. (xS, =y Thus
¥ — liminf 3}, (zT,*); = limsup A(n) < 2¢ < 2¢ + ' — x. As e is arbitrary,
(5) liminf 35, (zT,"); = 7 .

Let {n'} be a subsequence of positive integers such that =77 converges com-
ponentwise, say to a vector /. By Lemma 4, we have
(6) l; < 75
forall j. Also 0 < (xT,"); < =, forall jand n. By dominated convergence (for

the counting measure), ||zT% — I]| — 0. By (5) and (6), we must have [ = yx
and ||z T,* — yx|| — 0.

S. Example. In one very special case, ||zT,||* — x is a necessary condition
for Theorem 2 to hold. Assume P,; = 7, ¢,;, = ¢,, and ¢,; = ¢, (all independ-
ently of /). Assume ||zT,||* - 3. Then y # 0 and (1) fails, by Lemma 1.
Thus (2) also fails; there is a subsequence {n’} of positive integers such that
2T —n' —logg;) — 8 < 0.

« 2ixT); = ity igeeerin oyt iy Coin " Cipm
= (2 miCi)"
= [1 + n7X(Z,; m(ncy, — n))]"
< exp(log y + 39)
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for n sufficiently large in the subsequence. Thus,
liminf ||z T,"| < |[x=|| = x ,

which implies that ||zT,” — y=|| - 0.

More specifically, let ¢, =1 forall j. Leta e (0, 1). Let k(n) be a sequence such
that k(n) — co and ¥ 7, < a/*. Define ¢;, = 1 if j < k(n) and 0 otherwise.
Since k(n) — oo, 7, —1 = ¢@;. But(3,;¢,;, 7 P)" = (X ¢mm)" = (Dma )" <
a<ll=ny.

To obtain an example in the language of Theorem 1, let P;; ;let F,(0) =0
and F (1) = 1 for all (i, j); let a,;, = 0 and let b,;, = c;, as deﬁned above.

6. The periodic case. We now drop the assumption that the Markov chain
is aperiodic. Let its period be d. Fix one state f and separate the states into
classes e, e,, - -+, e,: jee, iff (P’““") > 0 for some n. For each k, there is a
probability measure (k) = (m,(k), nz(k) .- +) which is concentrated on e,, such
that, if 8 is a probability measure concentrated on e,, then || P"~1+* — z(k)|| — 0.
Let 7 = d(=(1) + --- + n(d)). Then, for any probability 3,

lln=* 232 (BFP%) — || = 0.

The theorem stated below is analogous to Lemma 3 in the aperiodic case. It
is possible to weaken the hypothesis (7) somewhat, but only at the cost of con-
siderable complication. The theorem is proved by watching the process at every
dth time and thereby reducing the situation to that of Theorem 2.

THEOREM 3. Foreachi,j,andn,letc;, € [0, 1] be such that ¢};, — ¢,; as n — co.
Let T, be the matrix defined by (T,),; = ¢,;, P,;. Let

ijn " ig°
1= 70
If x =0 orif
O] sup; >, ; Py,lnc,;, — n — log¢,;| — 0
then
(8) lIn=t 2252 BT — xx|| =0

for any probability measure j.

OUTLINE OF THE PROOF. Assume that y > 0. The other case follows from
this, much as in Lemma 4. Let Q = P*and S, = T¢,. Defineg,;,, = 1ifQ,; =
and (S,),;(Q,;)~* otherwise. In the latter'case, we may apply (7) to obtain (letting
m = nd)

gijn = (Qu) Zzl Srg—1 iil tt Pid_lj(czilm te cid_ljm)
=1 + m_l(Qij) Zil""*"d—l Pzzl e Pid_lj log (90121.1 (101112 tt (JDid_lj) + o(m_l) .

Thus g7;, converges. Condition (1) of Theorem 2 also follows from (7). More-

over, we have
logy = Zio,id ”io(k)Qioid log (lim g;‘oidn)
= 20:,; 7 Py log Dijos
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as desired. This is independent of k. By Theorem 2,
18T% — xR = [18S," — x=(k)|[ — O

is B is a probability concentrated on e,.
To obtain (8), we first show (again using (7))

BT — xm(k + D] —0

(where k 4 i is calculated modulo d) for 3 concentrated on e,. This is enough
to obtain the desired result.

Acknowledgment. I am indebted to Professor R. A. Schaufele for suggesting
the problem and for offering many useful comments on the solution.
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