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SOJOURN TIME PROBLEMS

By LaAjos TAKACS
Case Western Reserve University

It is supposed that in the time interval (0, oo) a stochastic process is
alternately in states 4 and B. Denote by a1, p1, az, Bz, « - - the lengths of
the successive intervals spent in states 4 and B respectively. In this paper
the distribution and the asymptotic distribution of the total time spent in
state A4 (B) in the interval (0, ¢) are determined in the case where (a1, 1),
(a2, P2), - -+ are mutually independent and identically distributed vector
variables.

1. Introduction. Let{n(u), 0 < u < oo} be a stochastic process with state space
A 1y B where A4 and B are disjoint sets. If y(u) € 4, then we say that the process
isin state 4 at time u, and if »(u) € B, then we say that the process is in state B
at time ». Let us assume that in any finite interval (0, 7) the process changes
states only a finite number of times with probability one. Let P{5(0) e 4} =1
and denote by a,, B, a,, f,, - - - the lengths of the successive intervals spent in
states 4 and B respectively in the interval (0, co). Denote by a(7) the total time
spent in state A4 in the interval (0, f) and by §() the total time spent in state B
in the interval (0, 7). Obviously a() and B(f) are random variables and a(f) +
B(t) = tforallt = 0.

In this paper we determine the distributions of a(f) and j(f) in the general
case, and the asymptotic distributions of a(r) and f(f) in the case where (a;, 8,),
(@3 By)s +++5 (&g By)s + - - are mutually independent and identically distributed
vector random variables which belong to the domain of normal attraction of a
two-dimensional distribution function. The case where {a,} and {3,} are inde-
pendent sequences has been considered earlier by the author [3].

2. The distributions of a(¢) and 3(f). Let us introduce the notation y, = a; +
ay+ -+ +a,forn=1,2,...andy, = 0, furthermore, 6, = 8, + B+ - - - + B.
forn=1,2,...and §, = 0.

THEOREM 1. If 0 < x < ¢t, then
(1) Pla() <x}= T [Plr. < x0,, <1 —x} =Py, <x,0, =t — x]]
and if 0 < x < t, then ‘
) PO =xp= 0[P, = X7, <t —x} = P{3, < X, 75, <1 — x}].

Proor. Since P{a(t) < x} =1 — P{B(7) < t — x}for 0 < x < ¢, it is sufficient
to prove (2). For 0 < x < t denote by ¢ = (¢t — x) the smallest u € [0, o) for
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which a(u) = t — x, provided that such a u exists. Then 75(r) € 4 and we have
(3) (B < 3} = (8(r) < %

This follows from the following identities

@ (B =x =) S a@) = (e =(a@) + H0) < g = (B() < %) -

Here we used that a(f) + p(f) = ¢ for all # > 0, and that a(f) and j(f) are non-
decreasing functions of ¢ for 0 < t < oo.
Since f(r) =4, (n=0,1, ..)if yr, <t — x < 7,,,, it follows from (3) that

©) P{A(t) = x} = N7, P{d, < x and 7, <1 — % < 7o}

for 0 < x < t which proves (2).
If for each + > 0 we define w(¢) as a discrete random variable taking on positive
integers only and satisfying the relation

(6) {o(t) < n} = {0, > 1}
forallt >=0andn =20, 1,2, ..., then we can write that
O] Pla(r) < x} = P{ry-n < X}

for 0 < x < t. We note that P{w(0) = 1} = 1.
If for each t = 0 we define p(¢) as a discrete random variable taking on non-
negative integers only and satisfying the relation

(®) ey <nt={r.z1
forallt >0and n = 1,2, ..., then we can write that
) P{() < x} = P{0,—) < X}

for 0 < x < t. We note that P{p(0) = 0} = 1.

3. The asymptotic distributions of a(f) and (). Formulas (7) and (9) make
it possible to determine the asymptotic distributions of a(¢) and 5(f) as t — co
if we know the asymptotic distribution of 7, ,, as t — co or the asymptotic dis-
tribution of 9,,, as t — co. In our case the asymptotic distributions of a(r) and
() can be determined by Theorem 2. In Theorem 2 and in the rest of the paper
if we say that a family of distribution functions converges to a limiting distribu-
tion function then by this we mean that the distribution functions converge in
every continuity point of the limiting distribution function.

THEOREM 2. Let us suppose that either 0 < d <1, D, >0, D, >0 or d = 1,
D, =0,D,>0. If

1 To — Dt —_
(10) hmt—woP{_%zt‘i_l‘éx}—P{aéx}a
then

. — Mt
11 llm_,mP{a(L_J_SX}ZRX ,
(11) t ot < x} = Reo
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and if

. 0,, — Dt
12 llme{.M_—1£x}=P0£x,
(12) : st S X =P =X
then

. — Mt
13 llmﬁmP{LSx}=Rx,
(13) ; S 3 = RO

where the constants M,, M,, m and the distribution function R(x) are given in the
following table.

TABLE 1
d M M, m R(x)
d>1 1 Dy1/d -‘17 P{—0-Vd < x}
D6
_ e LA
d=1 0 1 1 P{1+D20=x}
D, D, <
d<1 14D N d P{o < x}

Proor. Both (11) and (13) can be proved in a similar way. Let us prove (13).
Let us define

(14) u=-=1-+ Dt + xD,t
for + = 0. If x is such that u > ¢, then by (9) we have
(15) P{(u) < u — t} = P{d,,, < Dt 4+ xD,t%} .

Ifd>=landx>=00rd< 1, —oco < x < oo, and ¢ is sufficiently large, then
u =t is satisfied and ¢t — oo as ¥ — co. Thus we have

(16) lim,_.. P(8(x) < u — 1} = P{6 < x)
where t = (), which satisfies 0 < ¢ < u for sufficiently large 4, can be obtained
by (14).
If d > 1, then D, = 0 and for x > 0 we obtain that
(17) - (L)’fd + o(uv
xD,
as u — co. Thus by (16)
(18) lim, _ P {ﬁ(u) <u— <L>w} —P{f<x
xD,

for x > 0.
If d = 1, then D, = 0 and for x = 0 we obtain that

u
1+ xD,

(19) t=
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for u = 0. Thus by (16)

(20) lim, . P { B(u) < %} — P{0 < x)

for x > 0.
If d < 1, then D, > 0 and we obtain that

21 _ u _xD, u d d
1) =110, 1~|-D1<1+D1> +o@)
as u — oo. Thus by (16)
. D,u xD u d
22 1 P < 1 2 =P{i < .
22)  lm. {ﬁ(")—1+pl+1+pl<1+pl>} 0=x

The limit relations (18), (20), (22) prove (13).

Our next aim is to find the asymptotic distributions of y,,, and d,,, as t — oo
in the case where (a,, $,), (@, B5), - - +» (@,, B,), - - - are mutually independent
and identically distributed vector random variables which belong to the domain
of normal attraction of a two-dimensional distribution function F(x, y). In this
case we have

. — Ayn 0, — Bn
23 hmwp{lﬂ__l_gx,i_l_s }:Fx,
(23) Am = B =Y =f®y)
where the normalizing constants satisfy the conditions § <a < 1,4, >0, 4, >0
ora>1, 4,=0, 4,>0and 1 <b< 1, B,>0, B,>0o0r b>1, B =0,
B, > 0.
We shall use the following auxiliary theorem due to F. J. Anscombe [1].

LEMMA 1. Let us suppose that v(t) (0 < t < oo) are discrete random variables
taking on nonnegative integers only and that

(24) lim, " — ¢

in probability where c is a positive constant. Let {(n)(n = 0, 1,2, -..) be a sequence
of real random variables for which

25) lim,_, P { &m < x} = 0o(x)

b(n)
and
(26) lim,_,liminf, _ P{max, . cmse [£(7) — C(m)] < eb(m)} =1
for some d(e) > 0 such that 6(¢) — 0 as ¢ — 0. Then
. v(t
@7 lim,_., P {%[_% < x} = Q(x)
regardless of whether {v(t)} depends on {{(n)} or not.
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F. J. Anscombe [1] demonstrated that if {(n) is the nth partial sum of a se-
quence of mutually independent and identically distributed random variables
and if 0 < Q(0) < 1, then (26) is satisfied and thus Lemma 1 is applicable. We
can easily show that Lemma 1 is still applicable if Q(0) = 0 or Q(0) = 1.

THEOREM 3. Letus suppose that (a,, 8,) (n = 1,2, - - -) are mutually independent,
and identically distributed vector variables for which (23) holds witha = 1 andb = 1.
Let

(28) (s, 9) =\ § e d,d, F(x, y)
forRe (s) = 0and Re (q) = 0. Then
1 7’0) p—
(29) lim, ., P {W = x} = Q(x)
exists and
1
30) - extd = o x*dV
(30) 55 400 = T ay ¥ )
for sufficiently small |Re (s)| where
1
log ®( —, O)
5 s

log @ (1)
K
for Re (s) > 0.
Proor. In proving this theorem we may assume without loss of generality
that 4, = B, = 1. Let

(32) U(s, g) = Eferon=tea)
for Re (s) = 0 and Re (¢9) = 0. By (23) it follows that
i S AV o
(33) lim,_, [‘If (na, n,,)] (55 9)
and
i LA 1} — log ®(s,
(34) lim,_, n l:llf <n“’ n") og O(s, q)

for Re (s) = 0 and Re (9) = 0. We note that necessarily log @(s, 0) = — As¥°
and log ®(0, ) = — Bg"* where 4 and B are positive constants.

For simplicity let us write §(f) = r,,,, for = 0 and denote by I(4) the indicator
variable of the event A, that is, [(4) = 1 if A4 occursand I(A4) = 0 if 4 does not
occur. By (6) we have
(35) Ele~*¢®} =1 — [1 — W(s, 0)]M(t, 5)
for Re (s) = 0 where
(36) M(t, 5) = Yo Elesl(0, < 1)} .
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If we express the sum in (36) in the form of an integral, then we can write that
(37) M(1*, st%) = 1 §5 E{exp[— 17,0} (Opun < 1)} du

for Re (s) = 0 and ¢ > 0.
We shall prove that if Re (s) = 0, then

(38) lim,_,.. —M(—t,ji_—/b) = lim,.. A_l(’"t;") = u(s)
exists and
(39) ((s) = § Ble=rI(3 < u=")} du
where P{y < x,d < y} = F(x, y).
For Re(s) = 0 we have
(40 o) S #0) = §5 P S i = Bp) = g

where the last equality follows from E{e~*?} = e~2'/* for Re(s) = 0.
Since by (34) lim,_, ,[1 — ¥(s, 0)]s~V* = 4, it follows from (35) and (38) that
(41) lim, ., E{fexp[—s&(f)t=*1} = 1 — As“°u(s)
for Re(s) = 0.
It remains to prove (38). First, let s = 0. Since
1
1 — %(0,q)
for Re(q) > 0 and since lim,_,,[1 — ¥(0, q)]g"¥* = B, it follows from a
Tauberian theorem of O. Szasz [2] that
M(t, 0) _ 1
pb BT(1 + 1/b)

(42) $o e dM(t, 0) =

(43) lim,..,

This proves (38) for s = 0.

By (23) it follows that if # — oo, then the integrand in (37) tends to the in-
tegrand in (39) for # > 0 and Re(s) = 0. Since (38) holds for s = 0, we can
conclude that for any K > 0 and Re(s) = 0 we have

(44)  |§2 Efexp[—st=7(nl(Oun < 1)} du| < §5 P{opun < '} du
— (2P0 S u}du as t— oo,

and the extreme right member is arbitrarily close to 0 if K is sufficiently large.
Thus by the dominated convergence theorem it follows that in (37) the integral
tends to y(s) for Re(s) = 0 as t — oo. This proves (38).

By (40) it follows that the right-hand side of (41) tends to 1 as s — 4-0. Thus
by the continuity theorem of Laplace-Stieltjes transforms we can conclude that
the limiting distribution

(45) lim, ., P {i‘;@ < x} — Q(x)

/b
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exists, and
(46) § e dO(x) = 1 — As“u(s)
for Re(s) = 0. However, we can also obtain Q(x) in another way.
By (35) we have
w e - 1 — ¥(s, 0)
47 e tEfe—tW}dt =1 — —_— _\2 7
(47) q 55 {em} T (s, q)
for Re(s) = 0 and Re(q) > 0. Now let v be a positive real random variable
which is independent of the process {{(f), 0 < ¢ < oo} and for which P{v < x} =
1 — e=#if x = 0. Then by (47) we have
1 -0
1 — ¥, q)

for Re(s) = 0 and ¢ > 0. By (34) and (48) we get

(48) E{e—ce(v/q)} =1

[1 — W(sq**, 0)]g~*
[1 — W(sq**, q)1g~""
log @(s, 0) 1
—1_098%sY) _ p(L
log @(s, 1) d < )

N
for Re(s) = 0 where we used the definition (31).
If &, v, v, are mutually independent random variables for which P{§ < x} =
Q(x) and P{y, < x} = P{y; < x} = 1 — e~ for x = 0, then by (49) we have

(49) lim,_, E{fexp[—sq**€(v/q)]} = 1 — lim,_,

(50) P{év, " < x} = V(x)
for x > 0. Hence it follows that
(51) E{ER, B} = §7 x* dV(x)

for sufficiently small |[Re (s)|. This proves (30). From (30) we can obtain Q(x)
by Mellin’s inversion formula.
In the particular case when a = b we have

62y jo 00 dQ(x) = SRS (oo xe d¥(x)
TS

for sufficiently small [Re (s)|, and hence it follows by inversion that

dQ(x) _ V(xer) — V(xe™™)
dx ' 2nrix

(33)

for x > 0 where the definition of V(x) is extended by analytical continuation to
the complex plane cut along the negative real axis from 0 to co.

In the particular case when y and § are independent random variables, that
is, F(x,y) = P{r < x}P{0 < y} we have :

(54) Q(x) = P[yo=** < x}.

This follows easily from (46). Conversely, we can prove that if (54) is true,
then 7 and 6 are necessarily independent random variables.
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To prove this last statement let us suppose that the vector variable (7, J) and
v, and v, are mutually independent. Let P{y < x,d < y} = F(x, y) with Laplace—
Stieltjes transform @(s, g) defined by (28), and P{v, < x} = P{y, < x} =1 — e*
for x = 0. Then we have

(59) P{v < x, 00 < )} = @ (l, L)
x )y

for x > 0 and y > 0. Hence we can deduce that

56 Plyo-o/by 1y ¢/t < x} — axV'(x)

(56) {r v, ", < x} _[1 — V]

for x > 0 where V(x) is given by (31). If we compare (50) and (56), then we
can conclude that
axV'(x) _

(57) T =

V(x)

is a necessary and sufficient condition for the validity of (54). The general solu-
tion of (57) is

Cxl/a

58 Vix) = —
(58) 0 = e

for x > 0 where C is a positive constant. This implies that
(39) D(s, 9) = exp[—A(s"* + Cq")]

for Re(s) = 0 and Re(g) = 0. Hence it follows that C = B/A4 and that y and ¢
are independent.

Finally, the asymptotic distribution of a(f) is given by (11) where now d =
ajb, D, = 0, D, = 4,B,~*", and P{0 < x} = Q(x).

We note that in a similar way we can prove that

. 0
lim, P % __ <yl — o
(60) im, . {BEA;WM < x} 0*(x)
exists and
1
61 e x8 dQ* = e xs dV*
(61) 55 540 (0) = [ —pe gy 5 W

for sufficiently small |Re (s)| where

o log (1, 0)
(62) V) = fog o, 1)s)

for Re(s) > 0. The asymptotic distribution of j(¢) is given by (13) where now
d = bla, D, = 0, D, = B,4,7%*, and P{0 < x} = Q*(x).
We observe that

(63) Ve(x) = 1 — V(x~*?)
for x > 0.
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The following theorem contains the case a > 1, § < b < 1 as a particular
case.

THEOREM 4. If ay, ay, - - -, @,, - - - are mutually independent and identically dis-
tributed random variables for which

(64) lim,_ ., P {ﬂ_ < x} = Pfy <
A,n®

where a = 1 and A, > 0, and if

n—oo

n

in probability where B, > 0, then we have

(66) lim,_ P {% < x} — P{y < x}.

2

Proor. By (6) and (65) it follows that

67 lim,_ 20 _ 1
( ) t—oo t Bl
in probability. Thus (66) immediately follows from Lemma 1.

In this case the asymptotic distribution of a(?) is given by (11) where now
d=a,D, =0,D,=A,B"and P{f < x} = P{y < x}.

The following theorem contains the case 6 > 1, $ < a < 1 as a particular
case.

THEOREM 5. If B, By, - -+ By - - - are mutually independent and identically dis-
tributed random variables for which

(68) lim, _ P { O < xl» — P[5 < x}
o1

where b > 1 and B, > 0, and if

(69) lim, I~ = 4,

in probability where A, > 0, then we have

: 8y A
(70) lim, ., P {%ﬁ < x} — P(6 < x} .
Proor. By (8) and (69) it follows that '
71 lim,, 20 = 1
( ) lmtﬂeo t Al

in probability. Thus (70) immediately follows from Lemma 1.
In this case the asymptotic distribution of B(¢) is given by (13) where now
d=b,D, =0, D,=B,A4""and P{f < x} = P{0 < x}.
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THEOREM 6. If (a,, 8,) (n = 1,2, - - .) are mutually independent and identically
distributed vector variables for which (23) holds with § <a <1 and 1 <b < 1,
then

(72) lim, ., P {i‘%lz{d_;ﬂ’ < x} = 0(x)
exists where d = max (a, b),
O(x) = P{4,B,0 < x} for b>a,
(73) = P{A4,B,0 — B4,y < x} for b=a,
=P{—B A,y < x} for b<a,

and P{y < x, 0 < y} = F(x, y).
Proor. By (23) it follows that

Alan - BlTn
d

(74) lim, ., P {
n

< x} = 0(x

where d = max (a, b) and Q(x) is given by (73).
By (8) and (23) it follows that

i p(t) — A4 —
(75) lim,_, P {w < x} =P{—7 < x},
and
76 lim, 0 _ 1
(76) im, 20— 1

in probability. If we spply Lemma 1 to the random variables {(n) = 4,4, — B,7,
(n=20,1,2, -.), and {o(¢), 0 < t < oo}, then we obtain that

. A d,, — B
77 lim WP{ 1oow) o) < x} = Q(x).
(77) : TR i
It remains to show that (77) implies (72). This follows from the inequalities
(78) Al 5,0(“ - 1Tp(t)+1 é Alap(t) - Blt § Alap(t) - 17p(t)

for t = 0 and from the fact that
(79) lim, ., _”‘P;f;ﬂ =0
in probability. The relation (79) follows.from the inequality

(80) P {‘i;t&_l > e} < P«”p(t) — % > Kta} + 2K1Pa, > %)
1

which holds for ¢ > 0 and K > 0. Since P{a, < x} belongs to the domain of
normal attraction of a stable distribution function with characteristic exponent
1/a, it follows that

(81) lim,_., P{a, > ro}(t%)¥* = c
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where c isa nonnegative constant. (¢ = 0if @ = {.) This implies that the second
term on the right-hand side of (80) tends to 0 as  — co. If  — oo and K — oo,
then by (75) the first term on the right-hand side of (80) tends to 0. Sincee > 0
is arbitrary, this implies (79). This completes the proof of the theorem.

Now the asymptotic distribution of () is given by (13) where d = max (a, b),
D, = B,, D, = 1/4,% and P{f < x} = Q(x) is given by (73).

4. Examples. First, let us suppose that (23) holds with @ = b = 1/a where
O0<a<l,A4 =B =0, 4, >0, B, > 0 and that

(82) D(s, ) = e "

for Re(s) = 0 and Re(g) = 0 where @(s, q) is defined by (28). Then by (31)
we have

83 Vix) = X
(83) W=
for x = 0 and (29) holds with
(84) dQ(x) _ X% sin ar
dx x(1 + 2x* cos aw + x*)

for x > 0. This follows from (53). Thus by Theorem 2 we obtain that
. B,x
85 1 ﬁwp{“_(’_)g }: <___2___>
(83) e r =N =%Ug0 oy
for0 < x < 1.
Second, let us suppose that (23) holds with @ = b = 1/a where 0 < @ < 1,
A =B =0, A4, >0, B, > 0 and that

(86) D(s, ) = e +o”
for Re(s + g) = 0 where ®@(s, q) is defined by (28). Then by (31) we have
1
87 V X) = 1 _—
(87) @ = 1=
for x = 0 and (29) holds with
dQ(x) sin am

88 = for 1,
(58) dx mx(x — 1)* x>

=0 ' for x<1.

This follows from (53). Thus by Theorem 2 we obtain that

. B, x
89 lm_mP{f’i’_)g }: <__;._>
(%9) . F == ga oy
for0 < x < 1.
We note that in the second example by (62) we obtain that

(90) VEx) = -
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for x > 0 and thus (60) holds with

dQ*(x) sin an

91 = for 0 1,

el dx ax'7*(1 — x)* <x<
=0 for x>1.

Now by Theorem 2 we obtain that

92 1i qu{ﬁ_(’_)g }: x L)

2) e ;= =e <B,(1—x)

for 0 < x < 1. Of course (89) and (92) are merely different versions of the same
limit theorem.

Third, let us suppose that (23) holds witha = b = 3, 4,>0,B,>0,4,>0,
B, > 0 and that F{(x, y) is a two-dimensional normal distribution function of type

(93) ALl 11 5I1) -
Then by (72) and (13) we obtain that

‘B(t)_ATB A, B,5 — B, A
(94) lim, ,P{— T <4l _p {—li%li < x}
A4, + B,

where the random variables y and d have a two-dimensional normal distribution
of type (93). By (94) we can write also that

- B — Myt _ ) _

(95) lim, ., P {__Wl_ < x} = D(x)

where M, = B,/(4, 4 B),

(96) M, = (A’B," + B’A} — 2rA, B, 4, B,) ,
(4 + By

and @(x) is the normal distribution function of type N(0, 1).
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