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MARTINGALES AND BOUNDARY CROSSING PROBABILITIES
FOR MARKOV PROCESSES!
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Robbins and Siegmund have made use of the martingale
§5 exp(yW() — 40y dF(y), 120,

to evaluate the probability that the Wiener process W(f) would ever cross
certain boundaries which are moving with time. By making use of mar-
tingales of the form u(X(f), #), we apply the Robbins-Siegmund method to
find boundary crossing probabilities for other Markov processes X(#). The
question of when u(X(#), f) is a martingale is first studied. We generalize a
result of Doob based on semigroups of type I', and we examine in particu-
lar the situations for stochastic integrals and processes with stationary
independent increments.

1. Introduction. In [13], Robbins and Siegmund have proved that if ¢ > 0
and Z(1), t = h, is a nonnegative martingale satisfying certain conditions, then

(1)  P[Z(1) = ¢ for some = h] = P[Z(k) = ¢] + € § 50 Z(B) dP .

For the standard Wiener process W(r), they have used this fact and the mar-
tingale {7 exp(yW(t) — ty’/2)dF(y), t = h, to evaluate the probability that W
ever crosses a boundary g for a certain class of boundaries g. These boundary
crossing probabilities play an important part in certain sequential statistical
procedures such as power-one tests, confidence sequences and selection and
ranking problems (cf. [12], [14]).

In Section 5 below, by making use of martingales of the form u(X(?), ¢), we
shall apply the Robbins-Siegmund method to find boundary crossing probabili-
ties for other Markov processes X(), This procedure first raises the following
question: When is #(X(?), f) a martingale? Suppose X(r), 0 < ¢ < ¢, is a con-
tinuous Markov process with lifetime { < oo and state space M which is a locally
compact, second countable, Hausdorff space. If u: M x [0, co) — Risa continu-
ous function such that u(X(#), ¢ + r) is a martingale with respect to P, for all
x€ M, r =z 0 (assuming the usual convention that u(X(#), /) = 0 if ¢+ = ), then
u is harmonic for the corresponding space-time process Z(r) and consequently
Z/u = 0, where 7/ is the characteristic operator of Z(r). In particular, if Y(?)
is a diffusion on R? corresponding to the diffusion coefficients a,;(x), by(x),
i,j=1,...,dand ¢(x) = 0such that the matrix a is uniformly positive definite
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MARTINGALES AND BOUNDARY CROSSINGS 1153

and the coefficients a,;, b, and ¢ are bounded and uniformly Holder continuous
on R?, then the set of continuous solutions of Z7u = 0 coincides with the set of
solutions of class C** of the equation :
o’u
0x, 0x;

(2) %l‘:‘ + Zf,,-=1 aij(x) + Z‘iz=1 bZ(X) _ C(X)u -0

ox,
(cf. [10]), where C** stands for the set of all continuous functions # on R? x
[0, o0) such that du/dt, du/dx,, 3°u[ox, dx; (i, j = 1, - - -, d) are continuous. The
partial differential equation (2) is called a backward parabolic equation (cf.
page 172 of [6]); we can reduce it to the usual parabolic equation by a change
of variable t' = —.

To find martingales u(Y(7), f), we would therefore consider solutions of ).
However, do such solutions necessarily give us martingales? Now u(Y(), 1),
t = 0, is martingale if # admits the following integral representation

3) u(x, s) = Spau(y, tp(t — s, x, y)dy, xXeRL,0<s<t.
From the theory of parabolic equations, if u € C>! is a solution of (2) and satis-
fies the growth condition
MaX,g, <7 [U(X, 1) = o(exp(e|x[’))
as |x| > o0 forany ¢>0,7>0,

ou
xl

then u has the integral representation (3). Furthermore, the integral represen-
tation (3) holds for any nonnegative continuous solution of (2) (cf. [6] page 48).
In the case where Y() is the standard Wiener process, integral representations
of nonnegtive solutions for the corresponding heat equation were first proved
by Widder [16]. Recently, Robbins and Siegmund [14] have obtained a prob-
abilistic proof of Widder’s theorem. They have also applied a similar probabilis-
tic argument to study the equation
ou | 1 3% 1 0u _

“4) E+—2‘W+x -a;_O, | x>0,
which corresponds to the Bessel process r(f) = (8,X(f) + B(f) + BL(D)t, i.e.,
r(7) is the radial part of the 3-dimensional Brownian motion (8,(7), B,(?), Bs(1)).
The result turns out to be strikingly different from that of the Wiener process.
In particular, for the positive solution u(x, f) = x'exp(—+/2 x — 1) of 4),
u(r(z), t) is not a martingale.

For a general Markov process X(t); 0 < ¢t < {, with transition function
P(t, x, A), state space M and lifetime { < oo, clearly u(X(¢), #), t > 0, is a mar-
tingale if  admits the following integral representation:

3) u(x, sy = Yu(y, )P(t — s, x, dy) , xeM,0<s<t.

We want to find the class of functions # which admit the above integral re-
presentation. Doob [4] has proved that when the transition function induces a
semigroup of type I' with infinitesimal generator 4, then u admits the integral
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representation (5) if u(x, ) = e~*g(x) and Ag = Ag, or if u(x, t) = g(x) — At
and Ag = 2. The semigroup formulation requires one to find an appropriate
Banach space. For a standard It6 process on the real line with bounded diffu-
sion coefficients o(x) and (x), Doob [4] has shown that if the Banach space is
chosen as the space of all continuous functions f on the real line with ||f|| =
sup, |f(§)le™¥ < oo (v > 0), then the infinitesimal generator of the correspond-
ing semigroup coincides with D = 1¢*(x) d*/dx* + p(x) d/dx on the space C, of
all twice continuously differentiable functions f such that outside some finite
interval, f has a third continuous derivative with sup, e=*¢/| f"(§)| < co. Thus
by introducing the weight function e~*' (which in fact means imposing a
growth condition on the functions in the corresponding Banach space), Doob
has proved that for a standard Ité process X(#), if g € C,, then Dg = g implies
that e~*g(X(f)) is a martingale, while Dg = 2 implies that g(X(z)) — At is a
martingale.

In Section 2 below, we shall extend the above approach of Doob to general
Markov processes X(7) and to more general functions u(x, r). We first derive
certain properties of semigroups of type I' and then use them to generalize
Doob’s result to obtain the integral representation (5) for solutions u of (4 +
d/of)u = 0. In Section 3, we examine in particular the situations for processes
with stationary independent increments. It is well known that if X;,j =1,
2, .-, are independent random variables such that EX; = ¢ and Var X; = ¢*
for all j, then letting S,, = X, + - - - + X,,, {S,, — mp, m = 1} and {(S,, — mp)* —
mo®, m = 1} are martingales with zero expectations and these martingales are
related to the moment identities of Wald for randomly stopped sums in sequ-
ential analysis. Generalizations of this to the case where the X,’s are martingale
differences and n > 2 have been studied by Chow, Robbins and Teicher [3] and
Brown [2]. Hall [8] studies Wald’s equations for processes with stationary inde-
pendent increments by making use of certain analogous martingales in continuous
time. In Section 3, we shall characterize all the polynomial martingales associ-
ated with a process X(r) with stationary independent increments. In Section 4,
we shall return to the standard It6 processes and more generally, we shall con-
sider martingales associated with stochastic integrals.

2. Semigroups of type I' and the associated martingales. Contraction semi-
groups play a very important part in the study of Markov processes. Since we
shall work with a function space induced by a weight function instead of the
space of all bounded measurable functions, we have to resort to semigroups
which do not have the contraction property. We shall consider semigroups
{T,, t = 0} of bounded linear operators mapping a Banach space <7 into itself
such that

(6) For every de(0, 1), SUPs<e<yys || Tl < oo -

Doob [4] has called a semigroup satisfying (6) and certain subsidiary conditions
asemigroup of type I'. In the case of contraction semigroups, and more generally
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semigroups satisfying
@) SUPgs,<; || T|| < o0 forany 6 >0,
it is well known (cf. [5] pages 22-23) that the set
8) Gy = {f e F:s-lim, , T, f = [}

is a closed subspace of <#and coincides with the strong closure of the domain
of the infinitesimal generator of {T,, > 0}. (The notation s-lim denotes strong
limit.) However, for semigroups satisfying (6), ||T,|| may not be bounded as
t | 0 and the set <%, may not be closed. Define

9) B, ={feB:slim,_, T,f=T,f forall h>0}.

From (6), it easily follows that <7, is a closed subspace of <& Also <&, c <,
and T[] C & for any ¢ > 0. Let A be the infinitesimal generator of the
semigroup and let its domain be Z(4). Obviously, Z(4) C <&, and it can be
shown by imitating the proof in the contraction semigroup case (cf. Theorem
2.1.3 B of [5]) that Z(4) is dense in <Z,. Hence the strong closure of Z(4) coin-
cides with the strong closure of Z,. The following lemma contains some further
properties of semigroups satisfying (6) which we shall use in the sequel.

LemMA 1. Let (T, t = 0} be a semigroup of bounded linear operators mapping a
Banach space 7 into itself such that condition (6) is satisfied. Let A be the infini-
tesimal generator of the semigroup and its domain be Z(A). Let the subspace <5,
be defined by (8) and <&, by (9).

@) If f,e % and s-lim, _, f, = f, then there exists sequence t, > 0 such that
lim,_ t, = 0 and s-lim,_,, T, f, = f.

(b) If ¢:(0, 00) — Fis a strongly differentiable function and its range lies in
Z(A), then T, (1) is strongly differentiable for all t > 0 and

(10) LT = Tag) + L giry.

Proor. To prove (a), for each n, we can choose ¢, ¢ (0, 1/n) such that
[|Te, fa — fall < 1/n. Therefore s-lim, T, fo=s-lim,_, f, =f.

To prove (b), since ¢(s) e Z(A) c &, for all s > 0 and £, is a closed sub-
space of &7, it follows that (d/df)¢(t) € £Z, and A¢(r) ¢ <B,. Therefore for t > 0,
s-lim,_, T, (AQ(?) + (d/dt)p(t)) = T(AP(r) + (d]dt)¢(tr)). For |e| < t/2, we have

S

= SUP,acasaena || |

S+ 9 — 90} — L g0

—0 as ¢—0.
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We note that for + > 0 and ¢ > 0,
T (1) — To Pt — ¢))
= T [(BL = 4) 90|+ T [ 2000 = 9t — ) = 2 900

3

+ Tt (490 + 5 909))

It is now clear that the left derivative (d-/df)T, () is equal to the right-hand
side of (10). The right derivative (d*/df)T, §(t) can be computed similarly. []

As an application of (10), we let e Z(A) such that Af = Af for some real
number 1. Define ¢(f) = e *f. Then by (10), for t > 0, (d/dt)T,¢(t) = 0 and
so there exists g € & such that T,¢(r) = e™*T,f = g for all + > 0. Since
feZ(4) C &5, s-lim,,T,f=f. Hence g =f andso T,f = e¥f. If h*c F
such that T,h* = h* for all # > 0, then we can similary use (10) to prove that
Af = Ah* implies that T,f = f + Ath* for any ¢ = 0. If furthermore <% is a
o-complete Banach lattice and T, is positivity-preserving, then using (10), we
see that Af > Ah* implies that T, f > f + Ath*, while Af = Af implies T, f > e*f.
Thus (10) gives an alternative proof of Doob’s result ([4] Theorem 1.1) in a
more general setting.

THEOREM 1. Let (X(t), &, P,) be a Markov process with lifetime { < oo, state
space M and transition function P(t, x, A). Suppose ¢: M — R is a measurable
function satisfying:

(W1) inf,.y o(x) > 0;

(W2) limsup,,, § o(y)P(t, x, dy) < oo for any x € M,

(W3) sup,gics-15UP,en (9(X)7'§ 0(§)P(t, x, dy) < oo for any 6 € (0, 1).

Let <% be the Banach space of all measurable functions f on M such that ||f|| =
SUP,ex | f(X)/@(x) < oo, and let {T,, t > O} be the semigroup of bounded linear
operators defined by

T f(x) = Su fO)P(@, x, dy) .
Denote the infinitesimal generator of this semigroup by A and its domain by Z(A).
Suppose u: M X [0, co) — R satisfies for all t = 0

(11) u(s, 1) € D(A)

Ny u(e, ) —u(s,t) _ ou . _
(12) llml)és—vt s — ¢ E( ’ t)” —_ 0 .
Then if forall t > 0,
(13) aa_l;(x, f) 4+ Au(x, 1) = (=)0

holds for all x e M, {u(X(?), t + r), & ,, t = O} is a martingale (submartingale) with
respect to P, forall a e M and forall r > 0, and (13) also holds at t = 0. Conversely
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if {u(X(t), 1), &, t =0} is a martingale (submartingale) with respect to P,, then
(13) holds for all t = 0 and x ¢ M — N,, where P,[X(f) e N,] = 0.

LEMMA 2. Let {T,, t = O} be the semigroup defined in Theorem 1. Suppose u
satisfies (11) and (12). Then given t = 0, there exists a sequence of positive numbers
¢, — 0 as n — oo such that for any x ¢ M,

(14) lim, (T, 500 1+ ) — u(x, O)fe, = Au(x, 1) + 2 (x, ).

ProorF. We note that condition (W3) guarantees that the semigroup satisfies
(6). From (11) and (12), (0u/dt)(+, t) can be written as the strong limit of a
sequence f, € &, i.e., s-lim,_, f, = (0u/dt)(+,?). By Lemma 1(a), we can
choose positive numbers ¢, — 0 such that s-lim,_, T, f, = (9u/dr)(-, ). Since
u, € 2(A), s-lim,_, ¢, (T, u, — u,) = Au,, where u, = u(+, t). Using (W2), we
also have

T, (a  {He e, (¥) — us(X)} — fu(X))|
-1 ou
é ( €n (ut+sn - ut) - E(" t)” +

as n — co. Therefore the desired conclusion follows. []

g—l;*fn )SSD(}’)P(S,.,X,dy)_)()

ProOF OF THEOREM 1. Take any xe M and & > 0. Setting u, = u(., t) as
before, we define G, ,(f) = T,u,,,(x) for + > 0. By conditions (11) and (12),
Lemma 1(b) is applicable and we have for ¢+ > 0,

d
(15) Gon(t) = T, (As() + 5 () -
Since u, € Z(A), s-lim, , T,u, = u,. Also by (W2) and (12),

T (uy 4 (%) — (X)) < |#eyr — wil| § (P)P(2, x,dy) -0 as ¢ 0.
Hence it is easy to see that
(16) lim“o G:c,h(x) = u(x’ h) .

Suppose (0u/0f)(+, t) + Au(+,t) = 0 for all + > 0. Then (15) implies that
G, .(?) is non-decreasing for r > 0, and using (16), we obtain that G, ,(f) = u(x, k)
forall + > 0. From this, it follows that {u(X(¢), t 4 r), &, t = 0} is a submar-
tingale with respect to P, for all ae M and r > 0. Also since T,u,(x) = u(x, 0)
for all ¢+ > 0, it then follows from Lemma 2 that Au(x, 0) + (du/dr)(x, 0) = 0.
Likewise we can show that if (0u/0f)(., t) + Au(., t) = O for all # > 0, then the
integral representation (5) holds and so the desired conclusion follows.

Now suppose that {u(X(¢), t), &, t = 0} is a martingale (submartingale) with
respect to P,. Take any ¢ > 0. Then by Lemma 2, we can choose ¢, | 0 such
that for any xe M, (14) holds. For each n, there exists N, Cc M 'such that
P[X(f)eN,] =0and if xe M — N, then

(A7) T, u,, (%) = E[u(X(t + &,),  + )| X(t) = x] = (Z) u(x, 1) .

€n
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Let N, = Uy N,. Then P[X(f)e N,] = 0, and if x ¢ N,, then (17) holds, and so
by (14), Au(x, f) + (du/ot)(x, 1) = (=)0. [T

Condition (12) is obviously satisfied in the case u(x, t) = f(f)g(x) or u(x, t) =
f(t) + g(x) where f is a differentiable function and g € <. In the case when
0"u[of exists everywhere and sup,, ., sup, . [(9°2/0*)(x, t)|/o(x) < oo for every
T > 0, then using the mean value theorem, one can easily see that (12) is again
satisfied.

Suppose the weight function ¢ satisfies (W1) and the following condition:

(W2a) "There exists a Borel function ¢ : [0, co) — (0, co) such that
§o e *(t) dt < oo

for a > a, (= 0); and § o(y)P(t, x, dy) < o(x)¢(¢) for all + >0, xe M; and
SUPy<i<r ¥(f) < oo for all T > 0.

The corresponding semigroup then satisfies condition (7). We note that
(W2a) implies both (W2) and (W3). In this case, for @ > a,, we can define
G,. &— FbyG,g= ;e ~T,gdt. Since (7) implies that <7, is closed, it
can be shown by a similar argument as that given in ([5] page 25) for contrac-
tion semigroups that for a > a,, Z(4) = G [, G, is injective and 4 = a —
G, Also for @ > «,, Ag = ag implies that g = 0, but we may be able to find
nontrivial solutions of Ag = ag for a < «,.

3. Polynomial and exponential martingales for processes with stationary
independent increments. To illustrate some applications of the results of Sec-
tion 2, let us consider the Poisson process N(f), t = 0, with parameter 2 > 0.
Let (k) = e** (v > 0) be a weight function, and let <2 be the Banach space of
all functions g on {0, 1, 2, - - -} such that sup, |g(k)|/¢(k) < co. Then

(18) Sk p(n)e 2ty +|(n — k)! = p(k) exp(de(er — 1)).

Since {7 e **exp(At(er — 1))dt < oo for a > A(e* — 1), condition (W2a) is
clearly satisfied. It is easy to show that the infinitesimal generator 4 of the cor-
responding semigroup is given by Ag(k) = A(g(k + 1) — g(k)) with domain
Z(A) = . Supposeu: {0,1,2, .-} X [0, c0) — R satisfies the following three
conditions:

(19) utk, +) € C~[0, o) for every fixed k;
(20) SUPo<i<r SUPkso € *Flu(k, 1) < oo forevery T >0;
1) ,z(u(k+1,:)—u(k,t))+%i:~(k,t):o, k=01,...,6=0.

We note that (20) and (21) imply that du/dt also satisfies (20). This in turn
implies, upon differentiating (21) with respect to ¢, that 9%/ds? also satisfies (20).
Hence by Theorem 1, u(N(¢), t + r), t = 0, is a martingale with respect to P,
forall r>0and x =0,1,2, -...
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Let us now consider solutions of (21). Let u(0, t) = f(¢). Then fe C=[0, o)
and fork = 1,¢t =0,
(22) ok, 1) = f()) = 22QF (@) + 27E)1(@) — -+ + (D))
In particular if f(rf) = * (n = 1), then it follows from (22) that
(23) utk, t) = t* — (kA" 4 (Bk(k — 1A —

4+ (—1)k(k — 1) -+« (k — n 4 1)a—".

Since u defined in (23) is a polynomial of degree n in k and ¢, it obviously satis-
fies (20) and so u(N(f), t 4 r), t = 0, is a martingale for any r > 0. Now suppose
that u(0, r) = f(¢) is an analytic function, i.e., f(f) = a, + X 7 a,t"*, t = 0. Then
it follows from (22) that
(24) ulk,t) = a, + Xy a,u,k, 1),

where u,(k, t) is the expression on the right-hand side of (23). Given r = 0,
x=0,1, ..., we have seen that u,(N(f), ¢ + r) is a martingale with respect to
P, for any n > 1. It can be shown that

17 |@u| EL|u (N (F), t + 1)| < o0 forall t=0.

Hence by the dominated convergence theorem for conditional expectations, it
follows that for u defined by (24), u(N(¢), t + r), t = 0, is a martingale with
respect to P,. As an example, set f(f) = cos A¢. Then from (22),

(25) u(N(t), t) = cos At + (V) sin At + (V§P)cos At + - - -

is a martingale, where we define (*) = 0 if > n. As another example, let § be
any real number and let § = e — 1. Setting f(r) = e~*%*, we obtain from (22)
that

(26) u(N(t), 1) = et (N{t))ae—wt 4o GV ema0t
= exp(EN(f) — A1(et — 1))
is a martingale, and this is the familiar exponential martingale involving the
moment generating function exp(2#(ef — 1)).
The martingale u(N(t), t) with u defined by (23) is closely related to the mo-
ments of the Poisson distribution. It is an example of polynomial martingales

defined below. Theorem 2 studies polynomial martingales for processes with
stationary independent increments.

DErINITION. Let{X(f), & ,,t = 0} be astochastic process. Suppose {V(¢), &,

t = 0} is a martingale such that fori = 1, - - -, m, there exists b,: [0, c0) — R
for which with probability 1,
(27) V(t) = by(t)X™(t) + by()X™ () + - -+ + b,(?) » forall +=0.

Then {V(t), &, t = 0} is called a polynomial martingale (of degree < m) as-
sociated with the process {X(¢), &, t = 0}.
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THEOREM 2. Suppose X(t) is a process with stationary independent increments and
is continuous in probability. Assume that X(0) = 0 and E|X(1)|™ < oo for some
positive integer m. Let p, = EX"(1) and forteR, j=1, ---, m, define

!
(28) Pilt) = Do —1) - Eg oo (457)

where Q; = {(iy, ---,i,): 1 = r<j, 1 Zi, <jand iy + --- + i, =j}, i.e., Q;
is the set of all ordered partitions of j into positive integers, and (**17') =
C+r—10)@+r—2)---t/(r). Also set hyx,t) =1, hy(x, t) = x + py(¢) and
in general for 2 < n < m, define

(29) h(x, 1) = X" + @p()x"7 4 GO + -+ pa(0) -

(i) Let, be the o-field generated by {X(s), s < t}, and let U,(t) = h,(X(?), 1).
Then {U,(t), & ,, t = 0} is a martingale with zero expectation forn =1, ..., m.

(ii) Suppose {V(t), &, t = 0} is a polynomial martingale of degree < m associ-
ated with process X(t). Then with probability 1, {V(t), t = 0} is a linear combination
of the martingales {Uy(t), t = 0}, - - -, {U,(?), t = 0}. Consequently, with probability
1, V(¢) = h(X(2), t), t = 0, where h(x, t) is some polynomial of degree < m in x, t.

(iii) Letting p1,(t) = EX™(t), we can express p,(t) in terms of p;, 1 < j < n, by
the following recurrence relations:

m(t) = it
(30) £a(t) + OO ptaa(t) + -
+ GE)Paa(D(t) + pu(t) =0, n=2,..-,m.
(iv) Forj=1,...,mands, teR, the following combinatorial identity holds:

(Bl pit+ ) =pi(0) + QPia(P(8) + @Ops-o(OOPo(8) + - -+ + Ps(9) -

Proor. The characteristic function of X(¢) is (¢(u))’, where ¢ is some
infinitely divisible characteristic function and therefore vanishes nowhere.
Hence for all u € R, e™*®({(u))~*, t = 0, is a martingale. Since E|X(1)|" < oo,
it follows that ¢‘(u) is continuous for all real » and ¢*™(0) = i"y,, and
{(9"ou™)(e"X P (Pp(u))~*)|y0s F ¢» t = O} is @ martingale with zero expectation for
1 < n < m. We now proceed to show

(32) T G@) )| = ih(x,0)

To prove (32), using the Leibnitz rule of successive differentiation, we have

o
ou™

(33) + @ T gyt -

(g u))™) = (re=(@w) + @i re 2 ()

+ e T gy
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By induction, we can prove that for any real number tandj =1, ..., m,
07 B
(G4) S5 = D=1y e g0 o ) ()

where Q;, (“*77%) are as defined in (28). Form (34), weseethat forj=1, ..., m
and ¢ real,

(35) % (P@)~*| = iip(r) -

Hence we have proved (i). To prove (ii), we note that since the characteristic
function ¢(u) is infinitely divisible, either P[X(r) = 0 V¢ = 0] = 1 or the support
of the distribution of X(¢) for any ¢ > 0 is not reducible to a finite set of points.
Let {¥(t), &, t = 0} be a polynomial martingale of degree < m associated with
the process X(), i.e., with probability 1, ¥(f) can be represented by (27). In
the case where P[X(f) = 0 V¢ = 0] = 1, there exists a constant ¢ such that
P[V(t) = ¢Vt =z 0] = 1. In the other case, the fact that {V(s), &,,r = 0} isa
martingale implies that b(f) = by(1) for t > 0, and it can be proved by induc-
tion on m that with probability 1, {¥(r), t = 0} is a linear combination of the
martingales {Uy(?), t = 0}, - - -, {U,(¢), t = 0}.

(iii) is an immediate corollary of (i). We now give a probabilistic proof of
(iv). Suppose h(x, ) is a polynomial in x, ¢ such that {h(X(¢), 1), &, t = 0} is
a martingale. Then it is easy to check that for any real numbers x and s,
{r(X(2) + x,t + 5), &, t = 0} is also a martingale. In particular, consider

(36)  A(X(1), 1 + 5) = X*(t) + ()pu(t + X" + - oo+ palt +9)

It is easy to see that (31) holds for j = 1. Now assume that (31) holds for
j = n — 1. Then the martingale defined by (36) can be written as

h(X(1), t + 5) = U(t) + OPrOVasa()) + - -+ + (2)Paa(8)Ui(0)

(37) + {Pa(t + 5) — [pa(0) + (?)PI(S)pn_l(t) + .-
+ (n,’il)pn—l(s)Pl(t)]} M
Now Eh(X(t), t + s) = h(0, 5) = p,(s) and EU,(f) = ... = EU,(tf) = 0. There-

fore it follows from (37) that (31) holds for j = n. []

Theorem 2 (i) can be applied to derive higher-order Wald’s equations as con-
tinuous-time analogs of the results of Brown [2] who first introduced sets like
Q; to describe moment identities for randomly stopped discrete-time martin-
gales. The exponential martingale e®“*¥(¢(u))~* used in the proof of Theorem 2
completely characterize the process X(t) itself. More specifically, we have the
following lemma:

LemMMA 3. Suppose ¢ is a complex-valued function on the real line such that
¢(u) # O forallu. Let {X(t), & ,,t = 0} be a stochastic process.” If {€** ) (¢(u))™,
F 1t = 0} is a martingale for all u, then X(r), t = 0, has stationary independent
and is continuous in probability, and

EeiuX(t) — (¢(u))tEeiuX(0) .
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4. Standard Ito processes and stochastic integrals. Suppose X{(7), t = 0, is a
standard It6 process (as defined in [4]) with bounded diffusion coefficients
o(x) > 0 and p(x). Let e’ (v > 0) be a weight function and let <% be the
Banach space of all measurable functions such that || f|| = sup, e=*"#!|f(x)| < oo.
Doob [4] has shown that the infinitesimal generator of the corresponding semi-
group coincides with the differential operator D when restricted to the space C,
referred to in Section 1. It follows from (2.9) in [4] that = e*"IP(z, x, dy) <
2L(t)e*'™™, where L(t) = exp(k + kvt 4 kv*), k being a bound for both ¢(x) and
p(x). Hence {5 e *L(f)dt < oo if @ > @, = kv + kv?, and so condition (W2a)
is satisfied. By Theorem 1, u(X(¢t), t 4+ r), t = 0, is a martingate with respect to
P, for all xe R and r = 0 if the following four conditions are satisfied:

(38) u(s,t) e C¥(— o0, co) for any fixed 7> 0;

%(x, t)l) < oo for any fixed 7> 0;

(39) sup, e~#l <[u(x, 1| +

(40) SUPy<e<r SUP, €7

ou f X
W(x,t)<oo orany T >0;

o’u ou . ou
41 '(x) I% M.
(41) 30°(x) o T ) S+ =

Let us restrict our attention to those solutions u(x, t) of (41) such that ou/or,
0ulox, 0’u[0x* are jointly continuous in x, . Since X(¢) is a stochastic integral,
It6’s lemma (cf. [11] Section 2.6) is applicable. The following theorem shows
how It&’s lemma together with a suitable growth condition on the solution of
(41) yields martingales u(X(z), f) associated with X(¢). We shall in fact treat
stochastic integrals in a more general setting and refer the reader to [11] for the
definitions and notations.

THEOREM 3. Let S, denote the class of all nonnegative definite symmetric (d x d)
matrices with real entries, and let B(t) = (B,(t), - - -, B4(?)) denote the d-dimensional
Brownian motion. Let a: R* x [0, 00) — S; and b: R?* x [0, co) — R? be bounded
Borel functions. Let y be the nonnegative definite symmetric square root of a. Sup-
pose Y(t) € R* satisfies

Y()) = x + §57(¥(), 9) dB(s) + §4B(Y(s), 5) ds, r20.

Let u be a solution of

0'u ou ou
42 L4 a(x,t b(x,t)y —+ —=0
(42) 3 208 5-1a(x )Bxi o, + 2l bi(x )axi + o
such that fori,j =1, ..., d, 0u/ox,, 0’u0x, 0x; and Ou[ot are continuous on R? x
[0, o) and
43) 7 ) 2L (v, 0| < exp{(l + v}, xeR% 120,

ox;
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where v(t) is bounded on every compact subset of [0, c0). Then u(Y(t), t), t = 0, is
a martingale.

ProOOF. Let |y ;(x, )] + |by(x, )] < cforall xeRé, ¢t = 0andi,j=1,...,d.
Then |§§ b(Y(s), 5) ds| < dict. Also for any real a,
(44)  Eexp(al§s 1(Y(s), ) dB(s)]) = E exp(la| Li = 156 7:5(Y(5), 5) dB;(s)])
< 2¢exp(a’cd®t[2) .
The last inequality above can be easily checked when each 7,;(Y(s), 5) is simple
non-anticipating, and the general case then follows by an application of Fatou’s

lemma. Without loss of generality, we can assume the function v in (43) to be
measurable. Then it follows from (43) and (44) that for all + > 0,

E §|r(Y(9). ) 2% (¥(s), 9 ds
(45) < §o Eexp{2v(s)(1 + [Y(s)])} ds
< LB exp(2(s)(1 + x| + |5 7(¥(0), o) dB(a)| + dPes)} ds < oo .
Now from It6’s lemma and (42), we have

(46) W(Y(0), 1) = (%, 0) + sy $h7:5(¥ (), 5) 22

ax;

(Y(s), 5) dB;(s) -

Since (45) holds, it then follows that (Y (¢), t), t = 0, is a martingale. []

We point out that without regularity conditions like (45), a stochastic integral
§6 £(s) dW(s) may fail to be a martingale. To give an example, consider the
Bessel process R(t) of order m (where m is any real number > 2), i.e., the tran-
sition function of R(?) is given by
Pt X, y) = X)) Ly sy [y exp(— (6 4 p)[20), x>0,
where I,(z) is the modified Bessel function of the first kind of order r. Now
R(#) can be written as a stochastic integral:

R(?) = R(0) + W(1) + §i(m — 1)[(2R(s)) ds .
Hence if u is a continuous solution of
Ly mo vy ou_
2 \ox? x  0x
then u is of class C~, and by It6’s lemma,

W(R(1), 1) = w(R(0), 0) + §; g_i (R(s), 5) dW(s) .

(47)

Although u(R(t), t) has this stochastic integral representation, it does not neces-
sarily follow that u(R(f), ), t = 0, is a martingale. In fact, consider the C~
solution u(x, t) = e~#x*""?K,, ,_,((22)tx) of (47), where 2 > 0 and K,(z) is the
modified Bessel function of the second kind of order r. It is easy to check that
u(R(1), 1), t = 0, is not a martingale with respect to P, for any x > 0.
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The function g,(x) = x'"™K,, 4((24)}x) is the positive decreasing solution of

1 /d*9 , m—1dg\ _

(49) (et @)=

We have pointed out that e~*g,(R(f)), t = 0, is not a martingale. On the other
hand, for the positive increasing solution g,(x) = x*~™2I, ,_,((24)¥x), it is easy
to check that e~*g,(R()), t = 0, is a martingale. This phenomenon is in fact
common to all regular one-dimensional diffusions on (7,, r,) where r, is an en-
trance boundary and r, is a natural boundary. In[10], we study the asymptotic
behavior of the first passage probabilities near the boundary points and use this
to establish the above phenomenon for general regular one-dimensional diffusions.

5. Evaluation of boundary crossing probabilities. We begin by evaluating
certain boundary crossing probabilities of one-sided stable processes and obtain-
ing the upper half of the law of the iterated logarithm as an immediate corollary.
Let X(), t = 0, be a one-sided stable process with right continuous increasing
sample paths and X(0) = 0. The Laplace transform of such a process is of the
form Ee-**® — exp(—£&2*t), 0 < v <1, § > 0 (see pages 31-33 of [9]). The
case v = 1 corresponds to X{(f) = &¢ and is trivial; so we shall only consider
0<v< 1. Let us write 7 = v}, ¢ = §77. Let F be any measure on (0, o)
such that 0 < f(0, 1) < oo, where we define

flx, 1) = {7 exp(—cxy” + ty) dF(y) .
Then f(X(f) + x,t), t = 0, is a martingale for any x > 0. For ¢ > 0, define
A(t,e) = sup{x = 0: f(x,t) = ¢}. Given ¢ > 0 and d > 0, since lim,_, f(x +
or, t) = 0, we have for all large ¢
PLf(x + X(1), 1) 2 €] < P[X(r) < 3r7] = P[X(1) < 0].

Since lim,, P[X(1) < 9] = 0, it follows that f(x + X(¢), ) —>P’0, and so by the
martingale convergence theorem, f(x + X(?), ) — 0 a.e. From the path prop-
erties of X(¢), it is easy to see that the sample paths of f(x + X(¢), ), t = 0,
have the property (*) of Remark (d) on page 1417 of [13]. Hence by [13] (page
1415), forany x =0,z = 0,
(49) P[X(t) + x < A(t,¢) for some ¢ = 7]

= P[X(z) + x = A, )] + €7 §xorso>ace,on fIX(7) + x, 7) dP .

In the case where F is the degenerate measure putting unit mass at the point
a > 0, we have

(50) A(t, ¢) = (§[@)*t — (§[a)> loge .
Now write e* = e,, loglog y = log, y, etc. Suppose n =2, > 0 and
(51) dF(y) = ¢(y) dy for 0<y<lle, and =0 elsewhere, where
¢(y) = {y(log y™) - - - (log,, y~)(log, y7)**}*.
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Then as t — oo,

(52) A, €) = v(EO){(1 — v)[log, t +  log, t + X 3tilog, t + dlog,,, ¢
+ log (e(2wv)~t) + o (1))}~~~
We shall show (52) in the case n = 2. Letting B be defined by the equation
A(t, &) = t7/(cyB™7"), it is easy to see that B— co and B = o(f) as t — co. Take
7 > 1. Then for all large ¢,
¢ = ¢(rB/7) §§** exp{y(1 — (¢7"y")/(nB"~)} dy

(53) = (B[t)¢(rB[t) §§ exp{Bz(1 — z77[7)} dz

~ (BIO)p(rBlt){2x/(B(p — 1)} exp(B(1 — 77}  as t—oo.
The last expression above follows from Laplace’s asymptotic formula (cf. [15]
Section 7.2). Letting y 1 1, we obtain

. exp{B(1 — 77} _ .
GO P (g i) log, iy /(B0 = DI = e

From (54), it follows that B = O(log, #) as t — 0. Let a, = (log, /)~*. Take
7€(0, 1) and let k > »¥=% (> 1). Then for all large ¢,

(55) e = (i7" exp{ty — (t7y")[(nB"V)}p(y) dy

= 58 + Si2b + N3k + Simye -
The integrand exp{ty — (z7y7)/(»B7-! is omitted hereafter for the simplicit
( g p{ty — (y)[(n o(y plicity
of notation.)

Since B = O(log, 1), it can be proved that {§:2”* = 0(1). Also, by the dominated
convergence theorem, {4, = o(1) as t — co. We also note that

$igsie = ¢(a. BJt) §§ (B|1) exp{B(z — z7[n)} dz

7 log, ¢ o
= Tlog (B~ Tog, 1)j{log, (1B Tog, pp+ P B0 — 1/}

Using Laplace’s asymptotic formula as in (53), it can be shown that

S o o lon e (2RI (By — (L + 0(1)

From these results and (55), it follows that upon letting 7 1 1,

exp{B(1 — 77")} — )
(36) e < liminf, Tog 15108, (B B" {2z/(B(yp — 1)} .
From (54) and (56), we obtain (52) in the case n = 2. A similar argument gives
(52) for n > 2.

The relation (52) has been established by Robbins and Siegmund [13] in the
case £ = 2t and v = } using the “dual” results for Brownian motion, and their
argument obviously does not carry over for a genenral v. Since f(X(f) + x, t) — 0
a.e. as t — oo, it follows that P[X(t) = A(t, ¢) for all large r] = 1 forany ¢ > 0,
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and so (52) implies that with probability one,

(57) lim inf, .. 200 (108 LY
v \1 — v

Thus we have obtained one half of the law of the iterated logarithm for non-
decreasing stable processes with exponent v < 1, which says that in fact equality
holds in (57). This law of the iterated logarithm has been proved by Fristedt
[7] and Breiman [1] using different methods.

We now consider the Bessel process R(f) of order m > 2. Let p = m/2 — 1,
h = 0, and define

filx, 1) = §7 () 7?1 (xy) exp{—4y*(t + B} dF(y),  x>0,:20,

where F is any measure on (0, co) such that 0 < fi(x, f) < oo for all x > 0,
t = 0. Then f,(R(?), t), t = 0, is a martingale with respect to P, for any a > 0.
Given ¢ > 0, let A(t,¢) = inf{x = 0: fi(x, f) = ¢}. It can be shown that
fi(R(t), t) —> O a.e., and so by [13], if ¢ > 0, = > 0, then

v

P,[R(t) = A(t, ¢) for some = 7]

(38) = Po[R(7) 2 A7 )] + 77 §8 Stncor gm0 OR(2) L (YR(7))
X exp{—4y*(z + h)} dP, dF(y).

In the case where dF(y) = y™*dy, y > 0, we have fi(x, t) = (t + )~V X
exp{x*/(2(t + k))}, and so

(59) Aty €) = {2(t + h)[log ¢ + m log (¢ + )]} .

Suppose that the measure F is given by (51). Then it can be shown that as
t — oo,

(60) Ay(t, ¢) = {2t[log, t + (1 + 4m)log,t + > 3tilog, ¢ 4 dlog,,, ¢
+ loge + (3m — 1) log2 4 o(1)]}¢,

which is an upper-class boundary of the iterated-logarithm type for the Bessel
process R(?).
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