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CONVERGENCE TO TOTAL OCCUPANCY IN AN INFINITE
PARTICLE SYSTEM WITH INTERACTIONS!

By THOMAS M. LIGGETT
University of California, Los Angeles

Let p(x, y) be the transition function for an irreducible, positive recur-
rent, reversible Markov chain on the countable set S. Let 7; be the infinite
particle system on S with the simple exclusion interaction and one-particle
motion determined by p. The principal result is that there are no nontrivial
invariant measures for 7; which concentrate on infinite configurations of
particles on S. Furthermore, it is proved that if the system begins with an
arbitrary infinite configuration, then it converges in probability to the con-
figuration in which all sites are occupied.

1. Introduction. Let p(x, y) be the transition function for a Markov chain
on the countable set S. In [5], Spitzer introduced the infinite particle system
on § with the simple exclusion interaction as the strong Markov process with
state space X = {0, 1}* whose infinitesimal generator Q is obtained in the fol-
lowing way. Define Qf for functions f in C(X) which depend on only finitely
many coordinates by

(1 . 1) Qf(?) = Z?](Z)=1,77(11)=0P(x’ .y)[f(vzy) - f(‘r])] ’

where 7,, denotes the configuration which satisfies

77:61/(") = 77(”) if u * X,y
= n(x) if u=y
= () if u=x.
It was proved in [2] that this operator has a closure which is the generator of
a strong Markov process on X, provided that p satisfies

(1.2) sup, 33, p(x, y) < o .

This assumption will be made throughout the entire paper.

This process describes the behavior of particles on § whose basic motion is
that of independent continuous time Markov chains with transition probabilities
given by p(x, y) and exponential waiting times with constant parameter one.
Superimposed on this motion is the simple exclusion interaction, which prohibits
transitions to occupied sites. A particle which attempts a transition to an oc-
cupied site is required to remain where it is until it next attempts a transition.

The ergodic theory of the process 7, was studied by Spitzer and the present
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author in [3], [4], and [6] under the assumption that p(x, y) is irreducible and
symmetric. The results obtained there are of two types. First, the class of
invariant measures of 7, is described in terms of the functions on § which are
harmonic for p. Then necessary and sufficient conditions on the initial distribu-
tion of the process are given in order to have convergence to any of the extreme
invariant measures.

The symmetry of p played a crucial role in these considerations. One of the
key places at which this assumption was used was in the reduction of the study
of the infinite particle system to the study of a corresponding problem involving
only finitely many interacting particles. Part of the motivation for the present
paper is to study ergodic properties of the process 7, in a context in which the
result which permits this reduction (e.g., Theorem 1.1 of [3]) fails to hold. A
further point of interest is that the behavior of the process in the present context
is quite different from what it is in the symmetric case.

Our concern here is with the case that p(x, y) is positive recurrent. If S is -
infinite and p is irreducible, then p cannot be both symmetric and positive re-
current, so there is no overlap with the previously studied case. In order to
state the main result, let . be the set of all invariant (probability) measures
of 5,, and let .7, be the set of extreme points of . Let y,and g, be the point
masses on the configurations in which, respectively, all sites are vacant or all
sites are occupied. Then p,e _#,. If p is positive recurrent, and has (finite)
stationary distribution {z(x), x € S}, then it is called reversible provided that
z(x)p(x, y) = =(y)p(y, x) for all x, y e S. Examples of reversible, positive recur-
rent Markov chains are provided by positive recurrent birth and death chains
on the nonnegative integers.

(1.3) THEOREM. Assume that p is positive recurrent, irreducible, reversible and
satisfies (1.2). Then

(@) For each positive integer, n, there is a unique p,c ” which satisfies
taln | Zen(x) = n} = 1.

(b) &, ={¢.]0 < n < oo}

(c) If pe X and 3, 7(x) = oo, then for all xe S,

limt_m P”[r]t(x) = 1] =1.

If the initial configuration of 7, is finite (say of size n), then the process is
simply an irreducible Markov chain on the set of all subsets of S of size n, so
(a) says merely that this chain is positive recurrent. The ordinary convergence
theorem for positive recurrent Markov chains then says that the process con-
verges in distribution to p, whenever the initial configuration is of size n.
Therefore (c) describes the ergodic behavior of the process in the only nontrivial
case. '

Section 2 is devoted to the proofs of several monotonicity results which permit
the reduction of parts (b) and (c) of Theorem 1.3 to problems involving only
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finitely many particles. These are independent of the assumption of reversibility.
Theorem 1.3 is proved in Section 3 by using the additional observation that if
p is reversible, it is possible to exhibit explicitly a collection of measures in _#
which concentrate on {y e X| X, 5(x) < oo}.

We conjecture that Theorem 1.3 is true without the assumption of reversibility.
The proof in that generality will be more difficult, because it appears to be im-
possible in the nonreversible case to produce an explicit collection of invariant
measures for the process. In Section 4, however, Theorem 1.3 will be proved
by a different technique for a class of nonreversible cases. In Section 5, some
comments are made concerning the general nonreversible case. A conjecture
concerning Markov chains which arises in this connection is also stated there.

2. The general case. Let S(¢) be the semigroup of contractions on C(X) whose
generator is Q. Let

A ={feCX)|L e X, L= 7=f(C) =f()},
where the inequality relating { and » is interpreted coordinatewise. The following
monotonicity result is similar to ones obtained in [1] for a different model of an
infinite particle system.

2.1) THEOREM. If fe # andt = 0, then S(t)f € .

Proor. Since _# is closed and S(¢)f = lim,_,, (I — (¢/n)Q)~"f for each fe
C(X), it suffices to prove that if fe 2(Q), f —1Qf =9, 2= 0, and ge .#,
then fe _# also. Take such an f, g, and 2. Since f is continuous, it suffices to
prove that { < 5= f({) < f(y) for finite configurations { and 5. For fixed
n=1,let

& ={neX| X, n(x) = n},
“# be the collection of all bounded functions on & with the supremum norm,
and .

& = {he Z|h(n) = f({) whenever 7 = (}.
& is nonempty, since it contains all sufficiently large constant functions. Define
a transformation T on <% by

Th(n) = (1 4+ 20)™H9(7) + 2 Zymr=1,01=0 P(%> Y)A(s,)
+ k(1) 2 ymr=1,9m=1P(%s Y)} -
Then ||Th, — Thy|| < An(l + An)~Y||h, — ||, so T is a strict contraction. Since
f — 2Qf = g, the unique fixed point of T is given by the restriction of f to ..
Therefore, it suffices to prove that T leaves & invariant. In order to do this,
consider an he <. If ne & and » = {, then g() = 9({), k() = f({), and
h(n,,) = f(C,,) for all x and yeS. It follows from these inequalities that
Th(y) = f(€), and therefore that Th ¢ &°, which completes the proof.

ReMARK. The proof of Theorem 2.1 could also be accomplished by construct-
ing a Markov process (£, ;) on {({, 7) € X X X|{ < »} in such a way that both
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marginals {, and 7, are Markovian with generator Q. The desired result would
follow immediately from this construction since S(¢)f(y) = E"[ f(y,)]. This ap-
proach is similar to that used in [1], and is used also in the case of finite con-
figurations in the proofs of Lemmas 4.2 and 4.6.

(2.2) CoRrOLLARY. If{,neX,{ <9, and x,, -+, x, €S, then

@) Pn(x) =1for1 i< n] < Pp(x;)=1for1 <i<n]forallt >0,
and hence

(b) liminf,_, P[p(x)) =1 for 1 <i < n] < liminf,_, PYp(x) = 1for1<
i< n].

Proor. This follows from an application of Theorem 2.1 to the function
f(n) = T1#. n(x;), which is in _Z

Assume now that p is irreducible. The process 7, restricted to {y € X| 3], n(x)=
n} is then an irreducible Markov chain (see, for example, the proof of Lemma
2.1 of [4]), which will be referred to as the n-particle process. Whenever it is
positive recurrent, let g, be its (unique) stationary distribution.

(2.3) CoROLLARY. If p is irreducible and the n-particle process is positive recur-
rent for each (finite) n, then

tafn € X|9(x) = 1} £ prapufn € X|9(x) = 1}
foreach xe S.
Proor. Let, re Xsatisfy { <7, >1,{(x) =n,and 3, 7(x) = n + 1. Then
ta{n € X|9(x) = 1} = lim,_, P[p(x) = 1],
and
tuan € X|9(x) = 1} = lim,_, P7[7(x) = 1].
Therefore the result follows from part (b) of Corollary 2.2.
(2.4) THEOREM. Assume that p is irreducible and the n-particle process is posi-
tive recurrent for each (finite) n. Assume in addition that
(2.5) lim, ., (7€ X|5(x) = 1) = 1
foreach xe S. Then .

@) if pe S and pfye X| 35, 9(x) =00} = 1, then pp = pt,,, and
(b) lim,_, P[n(x) = 1] = 1 forall xe S and y e X such that 3, 7(y) = oo.
Proor. Part (a) follows from part (b) and the bounded convergence theorem.

To prove (b), let » e X with Y], 7(x) = co. Fix n = 1 and choose { € X such

that { < p and )}, {(x) = n. From part (b) of Corollary (2.2), it follows that
liminf,__, P7[p,(x) = 1] = lim,_,, P[7,(x) = 1] = p{r e X|7(x) = 1}.

Since n is arbitrary, (b) now follows from (2.5).
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3. The reversible case. Throughout this section, we will assume that p is
irreducible, positive recurrent, and reversible, so that z(x)p(x, y) = n(y)p(y, X)
forall x, y € S, where = is the stationary distribution of p. The reason that the
reversible case is easier to deal with than is the general case, is that it is possible
to compute the n-particle stationary distributions explicitly.

3.1) THEOREM. For p > 0, let p1, be the product measure on X with marginals
given by
23 77€X x) =1} = .—B@—_
Are Xins) = 1) = £70
forxeS. Then

@) p,e S, and

(®)  afneX|Z.9(x) < oo} =1.

PROOF. A probability measure ¢ on X is in _# if and only if § Qf dp = 0 for
all fe Z(Q). Since Q is the closure of its restriction to functions depending on
only finitely many coordinates, it suffices to verify this only for such functions
f- So, suppose F is a finite subset of S, and f depends only on the coordinates
in F. Then
(3:2) Qf(n) = Zeoryer 201 — 2(0)1P(* Y)f(7,)

- ZxorueF 77("")[1 - 77(.};)]P(x’ y)f(’?) ’

since the contributions to the sum in (1.1) which correspond to other pairs x, y
vanish, and both sums in (3.2) converge by assumption (1.2). Let p = p, for
some p > 0, and g,, be the probability measure on X obtained from g by in-
terchanging the x and y coordinates. Then

§ [Zzoryer 2O — 2()]P(x, Y)f(1.,)] dpe

= Lzoryer P56 VS 201 — 9(»)1/(7.,) 4]
= 2izoryer PO VY 2L — 7(x)]f(n) dpe,,]
= Zizoryer P(Vs O[§ 2()[1 — 9(»)1/(n) dpe.,] -

For fixed x, y € S, let g be the function which depends only on coordinates in

F\{x, y} such that

f(m) = 9(n) whenever 7(x) =1 and 75(y)=0.
Then, since »(x), 7(y), and g(y) are independent relative to g,,,

§ 7([L — 2(01f(0) dpray = § 71 = 7(9)]0() dpe,

— o7()) du .
[T+ ex)IL1 + pec 2P 4

Similarly,

1— dp — pm(x) dy |
§ 2(0[1 — n(»)1f(y) dp TF o7l T o70)] § 9(n) dp

Therefore, since p is reversible, { Qf dp = 0. To prove part (b), it suffices to
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note that

§ Sen()dp, = Tepfne X|n(x) = 1} = Do f;x?z)(x)',

which is finite since ), #(x) = 1.
3.3) COROLLARY. The n-particle system is positive recurrent, and p, is given
by
(3.4) ta(A) = p(As T (%) = )L 0(x) = 1) -
Proor. This follows immediately from the observations that

tine X| X, n(x) =n} >0 for each =n,

{neX| X.n(x) =n}
is invariant for the process 7,.

and that

3.5) COROLLARY. Forall xe S,
lim, . p{neX|9(x) =1} =1.

Proor. By Corollary 2.3, this limit exists. By (3.4) and part (b) of Theorem
3.1, foreach p > 0

pr(x)  _ —
m = p{n € X|n(x) = 1}
= X0 ta{n(x) = N T 9(x) = 1}
= lim, ., pa{7(x) = 1} .
Since lim,_,, pr(x)/(1 4+ pn(x)) = 1, the required result follows.

Theorem 1.3 is now an immediate consequence of Theorem 2.4 and Corollaries
3.3 and 3.5.

4. A nonreversible example. In thissection, we take S = {0, 1, - --}; p(0, x) =
p, where ¥,p, = 1, 3], xp, < o0, and p, > 0 for infinitely many x; p(x, x — 1) = 1
for x > 1. This makes p positive recurrent, irreducible, and nonreversible. Our
aim is to show that the conclusions of Theorem 1.3 hold for this class of examples.

(4.1)  LemMA. If pe 7, then
un e X|n(x) = 1 for infinitely many x and
n(xy = O for infinitely many x} = 0.
ProOF. Since pe #, §Qfdp =0 for all fe Z(Q). For any ze S, f() =

>1z_,7(x) depends on only finitely many coordinates, and hence is in Z(Q).
For this f,

Qf(n) = n(z + DI — 7(2)] — 2(0) Ty p[1 — 211> so

#nln(z) = 0,9(z + 1) = 1} = Bienp,rfn|2(0) = 1, 7(y) = 0}
é Z;=2+1Pv *
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Since };, xp, < oo, it follows that

Ztnln(2) = 0,9z + 1) = 1} < oo,
and the required conclusion follows immediately from the Borel-Cantelli lemma.

4.2) LEMMA. For each n > 0, there is a unique ., € 7 such that
#nb?lZw 7(x) = n}=1.

Proor. The n-particle process is irreducible, so it suffices to prove that it is
positive recurrent. The proof is by induction on n. For n = 1, it is true because
2i: Xp, < oo. In order to prove the induction step, assume that it is true for
n —1 and false for n, where n > 2. Then if 7 and { are configurations of size
n’

4.3) lim, , P7[y, ={]=0.
Let (X(#), - - -, X,(1)) be the Markov chain on M = {x e S"|x; # x, for i +J}
which moves according to the following rules:

(2) The chain has exponential waiting times with parameter 1/n.

(b) At each transition, a coordinate is chosen at random—each with proba-
bility 1/n—and if the ith one is chosen, then a point u € § is chosen according
to the probabilities p(x;, ). '

(¢) If u + x, for all j + i, the ith coordinate changes to u; if u = x; for some
J < i, the vector x remains unchanged; if # = x; for some j > i, the ith and Jjth
coordinatesare interchanged. Thenif 1 < k < n, the motion of the set {Xi(@, -,
Xi(1)} has the Markov property, and has the same transition probabilities as the
k-particle process. By the induction assumption, the distribution of x@, ---,
X,-1(7)) remains relatively compact as ¢ — oo, while by (4.3),

lim,_, P[X(1) = yy, -+, X,(1) = y,] = 0
for all x, y e M. Therefore
(4.4) lim, ., PX[X, (1) =y]=0
for all y e S. Now define a function g on M by
0(%) = 2, P(%as )0 — %) + T2 [P(%er %) — pls %)](%: — %) -
This is just the generator of the chain X(#) applied to the function f(x) = x,,s0
(4.5) ENX,()] = %, + 1 E*(X,(5), - - -, Xo(s)) ds
Note that g is bounded and satisfies A
limzn_m 9(x, o+ v, x,) = —1
for fixed x,, -+ -, x,_,. Therefore
lim, .. EXg(X,(5), -+, X,(s)) = —1,
which contradicts (4.5), since EX[X,(#)] = 0.
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(4.6) LemMmA. If pe ” and p{n|n(x) = 0 for at most finitely many x} = 1,
then p = p,.

Proor. This proof is similar to that of Lemma 4.2—the main difference is
that we concentrate on the vacant sites rather than on the occupied sites. If 7,
begins in {7 € X|5(x) = 0 for exactly n points x € S}, it remains in it for all
t > 0. (In general, this is a consequence of (1.2).) Therefore it suffices to prove
that if », {e X and 3, [1 — 5(x)] = X, [1 — {(x)] = n, then
(4.7) limt_m P”[)yt = C] =0.

In order to do this, consider the Markov chain (Z(?), ---, Z,(f)) on M = {x ¢
S"™|x; # x; for i # j} which has infinitesimal parameters given by

PYZ(t) = z, for i=j, Z,(t) = u] = p(u, z;)t + o(¥)
ifl <j< nandu =+ z forall i,

PZ(t) =z, for i+ j, k, Z(t) = z;, Z\(t) = z;] = p(2s, 2;)t + 0(2)

if 1 <j < k < n, and P{Z(t) = w] = o(?) for all other choices of w = z. For
every 1 < k < n, the motion of the set {Z,(#), - - -, Z,(#)} has the Markov property,
and has the same transition probabilities as the process obtained from 7, by fol-
lowing the set of empty sites, if the initial configuration » has exactly k empty

sites. The Markov chain Z(f) is transient, since [[y.,(l + p,)* > 0, so
lim,_,, P*(Z,(f) = w) = O for all z, we S. Therefore,

PHZ\(1), -+, Zu()} = {0y -+ s wH] = DI PUZ() = W)
tends to zero as t — co. It follows then from the identification of the chain Z(z)
in terms of the set of empty sites for the process 7, that (4.7) holds.

In order to complete the proof of Theorem 1.3 in the present case, it suffices
by Theorem 2.4 to prove the following result.

(4.8) THEOREM. Forall xe S,

limn—»oo lln{77|ﬂ(x) = 1} =1.

Proor. By Corollary 2.2, the functions p,{y|7(x;) =1for1 < i < k} are
monotonically increasing in n for x,, - - -, x, € S. This, together with the com-
pactness of X, implies that there is a probability measure v on X such that
¢, — v weakly. Since g, e ” for each n,ve * also. If fe # |fdp, in-
creases to § fdv by Theorem 2.1. Therefore, since the indicator function of
{n] Zicon(x) 2 k}is in 7, ’

v{n| Xioem(*) = k} = | Dizon(x) = k} -

Letting z tend to co, we see that v{y| 3, 7(x) = k} = 1 for each k, and therefore
v{| 3, n(x) = oo} =1. By Lemmas4.1and 4.6, v=p.. But g {p|n(x)=1}=1
for any x € S, so lim,_,, ¢, {n|n(x) = 1} = 1.

5. Comments and conjectures. As mentioned in the introduction, we conjec-
ture that Theorem 1.3 is true without the assumption of reversibility. Even the
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problem of proving that the n-particle process is positive recurrent is open in
general. The idea used in Lemma 4.2 generalizes significantly by replacing the
function f(x) = x, by f(x) = E®x(r), where r is the hitting time of a fixed point
in S for the one-particle process. However, it does not appear to suffice for the
general case. The proof that lim, . p{ye X|7(x) = 1} = 1 will probably be
harder, and the idea used in Lemma 4.1 seems not to generalize very much at
all.

It is interesting to note what part (c) of Theorem 1.3 would say for special
initial configurations 5. Suppose for example that » has only one vacant site.
Then the conclusion would be that the Markov chain obtained by following the
empty site is either null recurrent or transient, but not positive recurrent.
Therefore a special case of Theorem 1.3 in the general nonreversible situation
is the following result which we conjecture to be true:

Suppose g(x, y) satisfies

(i) g(x,y) =0 for x,ye S,
(ii) sup, 3, 9(x, y) < oo, and

(iif) sup, X. 9+ ) < oo.

Let X(¢) and Y(#) be the Markov chains on S with infinitesimal parameters given
by PY(X(t) = v) = q(u, v)t + o(t), and P¥(Y(t) = v) = q(v, u)t + o(¢) for u =+ .
Then if S is infinite and the chains are irreducible, not both of the chains can
be positive recurrent.

If S is finite, then of course both of the chains are positive recurrent. In this
situation, we make a more quantitative conjecture which, if true, could serve
as a means of proving the above:

Assume in addition to (i), (ii), (iii) that either

(iv) 23, 9(x, y) is independent of x, or
(v) X.4q(x,y) is independent of y.

If S is finite and the two chains are irreducible with stationary distributions
m,(x) and 7,(x) respectively, then

(5:1) T m(m < -

with equality holding if and only if both (iv) and (v) hold. If both (iv) and (v)
hold, then =,(x) = m,(x) = 1/n, so (5.1) is immediate. In the reversible case.
m(x)my(x) is constant, so (5.1) is a consequence of the Schwartz inequality.
Furthermore, direct computations lead to a verification of (5.1) if n = 2 or
n=3.

ADPDED IN Proor. Harry Kesten has provided the following example of a
positive recurrent chain on the nonnegative integers for which the two-particle
process is not positive recurrent. The transition probabilities are given by
p(x, x + 1) = p(x, 0) = p, and p(x, x) = 1 — 2p, where p, is monotone decreas-
ing, 0 < p, <%, 25 (2°p,)"' < o0, and 3] (r°p,)* = oo for all r < 2.
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