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MORE ON EQUIVALENCE OF INFINITELY
DIVISIBLE DISTRIBUTIONS

By W. N. Hupson AND J. D. MAsoN
University of Utah

Any infinitely divisible distribution on R» with infinite absolutely con-
tinuous Lévy measure and no Gaussian component has a density which is
positive a.e. over its support.

1. Introduction and summary. The main result of this paper states sufficient
conditions in terms of its Lévy measure for an infinitely divisible distribution x
in R* with no Gaussian component to be equivalent to Lebesgue measure. This
result extends the work of Hudson and Tucker in [3] which considers the case
of infinitely divisible measures on the real line. However, the method of ap-
proach here is quite different and the topological properties of additive semi-
groups play a main role in our proof. Also an elementary proof of an extension
of a necessary and sufficient condition for infinitely divisible measures to be
continuous is indicated here. This result is originally due to Hartman and
Wintner in [2] and was independently discovered later by Blum and Rosenblatt
in [1].

Our main result is given by the following theorem.

THEOREM 0. Let p be an infinitely divisible distribution on R* with Lévy measure
v. Assume that yu has no Gaussian component, that v(R*) = oo and that v is abso-
lutely continuous with respect to n-dimensional Lebesgue measure 2. Then p is
equivalent to 2 on its support.

If (x,y) = ¥ x,»; and |x| = (I * x,*)t denote the usual inner product and
norm of x = (x, +--,x,) and y = (y,, ---, y,) in R*, g will have a charac-
teristic function of the form

. s 1 iU, X) > }
exp {z(u, @) + § (e - 2 )uan)

where v is a Lévy measure on R* (i.e. § |x|*/(1 + |x*)»(dx) < oo and »({0}) = 0).
We say a measure a, is absolutely continuous with respect to another measure
a, and write @, < a, if whenever a,(4) = 0, then a,(4) = 0. Two measures «,
and a, are equivalent, a, ~ a,, if @, € @,and @, € a,. The support of a measure
a will be denoted S(a) and is the smallest closed set whose complement S(a)’
has a-measure zero. It is well known that S(«) is the set of all points of in-
crease of a (see [6]). (A point x in R" is a point of increase of a if every neigh-
borhood of x has positive a-measure.) :
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The second section of this paper is devoted to the study of supports of infinitely
divisible distributions with infinite Lévy measures and to the proof of the the-
orem stated above. Such supports are of the form G + 4 where G is an additive
semigroup. It is shown below that A(0(G 4 A4)) = 0. We begin with some
preliminary facts about compound Poisson distributions.

2. Supports of infinitely divisible distributions. Let ¢ be an infinitely divisible
distribution on R with characteristic function exp{§ (e!*® — 1)v(dx)} where
we assume that the Lévy measure v satisfies the condition §, ., |x|v(dx) < co.
If y(R™) < oo, then p is called a compound Poisson distribution and can be
written in the form

k
= Xiaer It

where y = y(R"), 5 is the normalized Lévy measure on R*, i.e. = y~', and
o* denotes the k-fold convolution of § with itself. (It may make some of our
results more intuitive to note that x is the distribution of a random sum,
¥, X;, where X, X,, - - N are independent, N is a Poisson distributed integer-
valued random variable with parameter EN = ¢, and where X, X, - .- are iden-
tically distributed with common distribution ©.) Here i* = g, the distribution
concentrated at 0. Note that the compound Poisson distribution has an atom
at zero of mass > e~7. '

For infinitely divisible distributions on R', Hartman and Wintner have proved
that y is continuous if and only if v(R") = co. This result goes over to R*. If
vy, and v, denote the discrete and continuous parts of v, then Ito, (Chapter 0
Section 5) shows that v,(R") = oo implies y is continuous. A proof that v, (R") =
oo implies ¢ is continuous can be given which is similar to the proof of Lemma
2.3 below.

Our first lemma can be found in [7].

LeEMMA 2.1. Let ¢ and ¢ be functions on R* with ¢ integrable and ¢ bounded.
Then the convolution, ¢ x ¢, is a continuous function.

We consider first the case that ., |x|»(dx) < co and specify that z have
characteristic function exp{§ (¢*“* — 1)v(dx)}. The Lévy measure v is assumed
from now on to be absolutely continuous with respect to Lebesgue measure A
on R* and to have infinite total mass. We use A~ to denote the closure of the
set 4 in R™.

PRrOPOSITION 2.2. The support S(u) of p is given by
S(p) = {Ufa D S} -

We omit the proof. It should be intuitively clear how to proceed by taking
limits of random sums.

LEMMA 2.3. p K A
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ProOF. Suppose that A(4) = O for some Borel set 4. Let p, be the distribu-
tion whose characteristic function is exp{§,sim (¢**® — l)v(dx)}. Then for
some distribution «,,, ¢ = g, * a,,. Now g, in a compound Poisson distribu-
tion; hence, for x ¢ R*

(A = %) = Z0 e T 5004 — ).

Since A(4) = (A4 — x) = 0and 5, € 4, (§,)* € A for k = 1 and

,um(A — x) = e-TmBO(A — X) <em.
But
/J(A) = S ﬂm(A - x)am(dx) =e’n

and y({x: |x| > 1/m}) = 7,, — o0 as m — co. It follows that p(4) = 0. []

Now let dv/d2 be the Radon-Nikodym derivative of v with respect to 2 and
define f(x) = min (dv/di(x), 1). We denote the k-fold convolution of f with
itself by f*:*. By Lemma 2.1, f** is continuous for k = 2. Set §=
Uz, [f** > 0]. -We use 4° to denote the interior of a set 4 in R*. A set 4 in
R* is called a semigroup if A + A C A.

LEMMA 2.4. The set S is an open semigroup and S— = S(y).

ProoF. Since f** is continuous for k > 2, S must be open. Suppose x and
y are any two points in S. Then for some integers j and k = 2, f*i(x) > 0 and
f*¥(y) > 0. This implies that f**+#(x 4 y) >0 and x 4 yeS. Thus Sisa
sernigroup. Now v(R") = oo s0 0 € S(v). Hence S(v) C S(v) + S(v). Let 5(4) =
{.fdA. Clearly v ~ 5 and S(o*) = [f** > 0]- = S(+*). Thus

S() = (Uiz D S¢))” = (Ui SE)” = (UiL [/ >0~ = 5. 0
LEMMA 2.5. Let G be an open semigroup such that 0 ¢ G°. If A is any set in R
then (G + A)™° = G + A.

Proor. Thecase G 4+ A4 = G is in Hille and Phillips (Theorem 8.7.2, page
266). A similar proof works here. []

From Lemma 2.5, it follows that 9((G + 4)7) = (G + 4) — (G + A)° =
9(G 4 A), where 9(B) denotes the boundary of B.

We now show that if G is an open semigroup in R” such that 0 € G-, then
A(9(G + A)) = 0 for an arbitrary set 4. Suppose that n = 1. Then Lemma
2.6 will show that either [0, co) or (—'0, 0] is contained in G-. Consequently,
(G + A)~ must be an interval of the form (—co, a], [a, c0), O (—o0, 0). In
this case it is clear that 2(d(G + 4)) = 0. Consequently, Lemma 2.7 will be
proved for n = 2.

LEMMA 2.6. If G is an open semigroup in R™ and if 0 € G-, then there is a vector
X in R* such that |x| = 1 and {tx: t = 0} C G~.

Proor. This is Theorem 8.7.4. of Hille and Phillips. []
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LeMMA 2.7. Let G be an open semigroup in R such that 0 € G=. If A is any set,
then 2(9(A + G)) = 0.

Proofr. The proof will proceed by contradiction. Temporarily, we denote
n-dimensional Lebesgue measure by 2,.

Since G is an open semigroup, we have
(1) (G+ Ay + G (G+ A).
Now suppose that 2,(3(G + A)) = 0. Then (G + A) has a point of density 8
(see [5] page 288). It follows that there exists a cube J centered at 8 with sides
of length 2/ such that 1,[6(G + 4) n J] > .94,(J). Without loss of generality
we may and do assume that {(¢,0, ---, 0): r = 0} € G- and that the sides of J
are parallel to the coordinate axes. Let B, = {(xy, -+, x,): (X, X,, - - -, X,,) € B}
denote the x cross section of B. Then there is a point x in [B — [, B — .6l]
such that

) Aad(G + A 1 9)] 2 51

(Otherwise, 2,[(G + A)~° n J] > .52))**(.4l) = .14,(J) contrary to the choice of
J.) Since 0 € G~ we can choose a vector &« = (a,, - - -, a,) in G of length |a| <

min {(.1)n"*2l), x — 8 4+ I}. From (1) and Lemma 2.5 it follows that G +
((G + 4~ nJ) c G + A. Now roughly speaking, if we translate (G 4+ A)- n J
by a small vector a € G, we cannot move many points of (G + A)~ into or out
of J. More precisely, it is not difficult to see that

(3) 2”_1[((G + A) n J)z+al] g ('4)(21)"—1 *

But (¢,0,---,0)eG- for t =0 and so (G + 4) nJ+ (4,0, ..--,0) c G for
t=>0. Since 8 — 1< x+ a, £ B — .4l it follows that

4) [B—4LB+11%((G+ A) Ny C(G+ A J
and hence
(5) (G + 4) 0 J] = (.T)2D)(4)2D) > .12,(J) .

Since G is open, G + A is disjoint from 0(G + A4). Therefore (5) implies that
2,(0(G + A) n J) < .94(J) which contradicts the choice of J. []

We summarize our results for the first case in the following theorem.

THEOREM. 1. Let v be a Lévy measure on R™ such that (. |x|p(dx) <
co. If p is the infinitely divisible distribution whose characteristic function is
exp{§ (e — 1)(dx)}, then S(x), the support of ., is a semigroup and y ~ 2 on
S(y), where 2 is n-dimensional Lebesgue measure.

ProOF. We have already shown that S(x) is a semigroup in Lemma 2.4.
Since 4(0S(¢)) = 0 and g « 2, it suffices to show that 2 ¢ ¢ on S = S(¢)°. Let
V'(A4) = §, fv(dx) again and let p’ have the characteristic function exp{§ (et —
1)'(dx). Since v(R") < oo, g’ is a compound Poisson distribution. Since
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v < v, v — v is also a Lévy measure and

exp{§ (¢"™* — 1)v(dx)}
= exp{§ ("™ — 1)/(dx)} exp{§ (" — 1)(v — v')(dx)} .

It follows that 2 = g’ x a for some distribution @. Now suppose A4 is a Borel
set in $ such that p#(4) = 0. Since

0= pu(A4) = § /(A — x)a(dx),
we have
H#A—x)=0 for a—a.e.—x.

In fact, p'(4 — x) = O for all x in some dense subset of S(a). Let {x,: de D}
be a countable dense subset of S(a) such that u'(4 — x,) = 0 for all de D.
Since :
, - . 7,/ k V' k
Y= Yiee’ %<7> s
()4 — x;) =0 for k = 2. But S')* = [f** > 0]~ and hence (»')* ~ 2 on
[f** > 0]. Thus (4 — x;) n S) = O0forde D. Since 4 is translation invariant,

AAN(S+x)=0 deD.

ButS + S(a) € Ugen (S + x;). Toseethis, let x € Sand y € S(a). Since Sis open
and {x,: d € D}is dense in S(a), we can choose an x, such that x + (y — x,;) € S.
Then x + y=x 4+ (y — %) + x4€ Uaen (S + x;). Now (v — v')(R") = oo s0
0e S(a). Thus S < S + S(a). Then

HA) £ Taep (AN (S + x))) = 0
and 1 € p. [0

We now consider the general case where v is any Lévy measure such that
v(R™) = oo and that v € 4. Then p may have a characteristic function of the
form exp{{ (¢! — 1 — i(u, x)/(1 + |x[))v(dx) + i(u, a)}. We now prove
the theorem stated in the introduction. Define v,(A4) = v(4 n {|x| > 1}) +
{40 0z1sy |X[¥(dx) and let g, have characteristic function exp{§ (e?™* — 1)y (dx)}.
Since v, < v, it follows from the Lévy representations of the characteristic
functions that p, is a factor of y; that is, there is an (infinitely divisible) distri-
bution @ on R* such that 4 = p, x a. Now by Lemma 2.3 », € 2 and hence
¢ & 4. It remains to show that 2 € # on S(¢). It is easy to see that S(x) =
(S(#;) 4 S(@))~- Suppose that A4 is a Borel subset of S(x) such that p(A4) = 0.
Then § 1,(4 — x)a(dx) = 0 and so for every x in some countable dense subset
{x4: d e D} of S(a) (A — x) = 0. Let § = S(g,)’; then S is an open semigroup
such that 0 € S-, (Proposition 2.2 and Lemma 2.4). By Theorem 1, g, ~ 1 on
S(¢), s0 .

H(A4 = x) 0 S(m)} =0, deD,
or
A0 (S) + x)] =0, deD.
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According to Lemma 3.3, S(#)’ = S + S(a)and since S + S(a) C Ugepn (S + x,)s
we have '

p(A) = oA 0 S()) S Taep (A 0 (S + x,)) = 0.
Thus 2 € ¢ on S(z)°. But according to Lemma 2.6, 2(dS(¢)) = 0 and hence
A & g on S(u) which proves the theorem.

The question arises as to what sets are possible supports of infinitely divisible
distributions. In the case of R', if {, ., |x|v(dX) = oo, v « 2, Hudson and
Tucker [3], show that the support must be the whole real line. It is easy to°
see that S(x) = R whenever S(v) contains a neighborhood of 0. In this case,
the smallest semigroup containing S(v) is R* and so # has a factor with support
equal to R".
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