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PREDICTION FROM A RANDOM TIME POINT

By GEORG LINDGREN
University of Umed

In prediction (Wiener-, Kalman-) of a random normal process {X(¢),
t € R} it is normally required that the time £ from which prediction is made
does not depend on the values of the process. If prediction is made only
from time points at which the process takes a certain value u, given a pri-
ori, (“‘prediction under panic’’), the Wiener-prediction is not necessarily
optimal; optimal should then mean best in the long run, for each single
realization.

The main theorem in this paper shows that when predicting only
from upcrossing zeros ¢,, the Wiener-prediction gives optimal prediction of
X(t, + 1) as t, runs through the set of zero upcrossings, if and only if the
derivative X’(t,) at the crossing points is observed. The paper also gives the
conditional distribution from which the optimal predictor can be computed.

1. Introduction. Prediction of a covariance stationary random process { X(?),
t € R} from a time 7, onwards is an important and thoroughly penetrated problem.
This paper deals with one side of it which does not seem to have received much
attention in the literature.

In the classical situation the process is observed in a set of times 7 C R chosen
a priori, and prediction is based on the observed values x(s), se T. Optimal
prediction can be achieved by means of the conditional distribution of X(#) given
X(5), s € T; optimal with respect to some criterion then means best on the average
over the possible outcomes of X(s) for s e T. This point of view also applies if
the set T' is chosen at random but independently of the X-process.

If the set T from which prediction is made depends on the process to be pre-
dicted the object of course must be modified accordingly: the predictor should
show a good performance over the possible occasions under which prediction
is made, but these occasions are no longer the same as above.

To be specific we will consider prediction from times 7, at which the process
takes the value 0. Similar arguments and results appear when predicting from
crossings of arbitrary but fixed levels, local maxima and minima etc.

The clue to the problem is contained in the following simple example. Let
us “predict” the value of the derivative X’(z) of a normal process with mean
zero if it is known that X(7,) = 0. If «, is a nonrandom time, the conditional
distribution of X’(z,) given that X(z,) = 0 is equal to the unconditional distribu-
tion, which is N(0, 4,}) where 2, = V[X’(f)]. Thus prediction should make use
of this normal distribution.
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If, however, the time ¢, was selected just because the process happened to be
zero there, the conditional distribution of X’(#,) is no longer normal but is a
double Rayleigh distribution with density

5‘2—2 || exp (—x¥/2,) ,

and prediction should use this distribution.

The example shows that when predicting from a time ¢, at which X{(z) =0
it can be essential whether the set T of observation times is random or not. The
result of this paper shows that the conditional distributions of the process given
X(5), s e T are the same, whether ¢, and T are random or nonrandom, if and only
if the derivative X'(#,) is a function of the observed values.

2. The model process. Let {X(f), € R} be a stationary, sample path con-
tinuously differentiable normal process with mean zero and unit variance, and
with the covariance function r(r) = C[X(¢t + 7), X(f)]. By choosing an appro-
priate time scale we can assume that the derivative has unit variance:

L=V[X()]=—-r'0)=1.
A sufficient condition for the sample differentiability is
(1) r''(t) = —24, 4+ O(Jlog|z||=®) as t—0

for some a > 1.

We are now going to construct a model process which will describe the be-
haviour of the X-process conditioned by the presence of a zero upcrossing. Let
{Q, &7} be the measurable space of continuous functions with the topology for
uniform convergence on compact sets, where & is the completed Borel o-
algebra. Define two probability measures P** and P* on {Q, 7"} by letting

Pv*(B) = lim, , P(X(t, + «) € B| X(%,) € [0, h], X"(%,) > 0)
and
P*(B) = lim, , P(X(t, + <) € B| X(s) has a zero upcrossing in [t, — A, t,])

for any finite-dimensional event B = {£ e Q; &(t,) < u, k=1, .-, n}.

The superscripts vw and hw refer to vertical window and horizontal window
conditioning; the terms were introduced by Kac and Slepian (1959). The meas-
ure P*v gives the values of the ordinary conditional probabilities P(X(#, + «) €
B| X(to), I x+(tp>0) at such outcomes for which X(#) = 0, X'(1) > 0, (/, being
the indicator function of A). The measure P** gives the Palm measure of the
X-process given the occurrence of an event in the point process generated by
zero upcrossings. As was shown by Kac and Slepian, P** also gives the ergodic
distribution of the process after a zero upcrossing, i.e. P*¥(B) is equal to the
long run relative frequency of zero upcrossings ¢, such that X(z, + +) € B, in
relation to the total number of upcrossings; see Kac and Slepian (1959), Slepian
(1962), Cramér and Leadbetter (1967) Chapter 11, and Lindgren (1970).
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Both P"* and P** are actually concentrated to the set , of continuously dif-
ferentiable functions which vanish at the origin, and there they can be described
by means of the following very simple “model process,” due to Slepian (1962).
Let & denote an element of Q, and define a random variable Z and a process
{£(1), t e R} by

Z = ¢(0),

k(f) = &(t) + Zr'(z) .
This means that the process {£(f), t € R} can be represented as

E() = k() — Zr'(v),
where, by definition, £(0) = £’(0) = 0, §(0) = 0, §’(0) = Z. As was shown by
Slepian (1962), the measures P** and P** differ only with respect to the distribu-
tion of Z: under P* the distribution of Z is one-sided normal, under P* it is
Rayleigh; it has the densities

2) f2%(2) = <72r.>é exp(—242) for z >0,
[7"(z) = zexp(—77[2) for z>0.

Further, by Slepian, the process {«(f), € R} has the same distributions under
P as under P** and is non-stationary normal with mean zero and covariance
function

3) R(s, 1) = C[x(5), £(0)] = r(s — 1) — r(s)r(r) — r'()r'(7) ,

and it is independent of the derivative Z. It is easy to see that if r fulfills condi-
tion (1) then R fulfills the sufficient condition for sample function differentiability
of non-stationary normal processes given, for example, in Cramér and Leadbetter
(1967), Chapters 4 and 9. This gives that both P*» and P** give probability one
to the set Q, of continuously differentiable functions.

Without loss of generality we can assutue ihat R is nonsingular. If it is sin-
gular our main result will still hold but the proof is considerably simplified.

We will call the process {£(f) — Zr'(t), t € R} the model process, and its distri-
butions coincide with the conditional distributions of the original process {X(f)}
given an upcrossing zero at ¢t = 0, the conditioning being in vw and Aw sense,
respectively. Especially, for fixed ¢ the P*v-distribution of x(f) — Zr'(¢) gives
the long run distribution of the X-process when observed at times ¢ after zero
upcrossings. This important remark shows that prediction of X(z, + ), where
t, runs through the set of zero upcrossings, is most efficiently performed in the
long run, if one uses the Aw-measure P** of «(t) — Zr'(f).

REMARK 1. The distribution of X(#, 4 ), where ¢, is the kth zero upcrossing
on the positive side,
t, = inf{r > 0; X(¢) = 0, X'(r) > 0},
t, = inf{t > #,_,; X(1) = 0, X'(¢) > 0},
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is given neither by P** nor by P**. The exact distribution contains an extremely
complicated condition and is therefore not readily accessible in general.

REMARK 2. Model processes similar to {x(f) — Zr'(f)} can be constructed for
the process X(z, + #) conditioned by the presence at time ¢, of an upcrossing of
an arbitrary prescribed level u or of a local maximum. To account for an up-
crossing of u one just adds a term ur(r) to §(f) and gets a model process

E,() = ur(t) + k(t) — Zr'(v),
where Z = £,’(0) has the same meaning as before, while a local maximum re-
quires a model process
€4(1) = A(r) — YB())

where B is a certain function, A(¢) is a process just a little more complicated
than £(7), and Y = £,”(0) is a random variable with a distribution that depends
on the definition used in the conditioning; see Lindgren (1970), where the model
process &,(¢) is further specialized to have the height of the maximum equal to
u. Similar results will hold and the same technique will do as in the zero-crossing
problem. :

We end this section with two examples of prediction in the model process.

ExAMPLE 1. Suppose we want to predict the value of X(z, + r) knowing only
that ¢, is a zero upcrossing. The optimal predictor in least square sense of a
random variable is given by the expectation of the variable, and since E**[x(f)] =
E*[k(t)] = 0 and

Ew[Z] = (.2_)*,

T
3
Er[Z =<_”_> , vmz]=2- T,
121 = (3 2] ;
the optimal least square prediction of £(f) = x(r) — Zr'(r) is given by

§,ult) = E[E()] = —E*[Z]r'(1) = _<%>* )
and *
buult) = E[E(0] = —E*[2)(1) = —(5) ().

respectively.

As mentioned above, the long run distribution of X(z, + r), when 7, runs over
the set of zero upcrossings, is given by P** and thus the predictor &,,(f) =
—(m/2)r'(1) gives optimal least square prediction in the long run. The mean
square error for the two predictor functions are, taking &,,(¢) first,

Bie) = 0] = B [[e) — (2= (5)) o[ |
= V()] + V[Z]r (e}
) =1—r@+ (l — _g_> r(t)? and
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E16(1) — &) = E*[IE(0) = uul) + 1) — £0(01]
= B[ — & (O] + ualt) — &P

-+ (1= 5o+ (5) - () 7

Comparison with (4) shows that the use of the inferior predictor &,,() increases
the mean square error by a quantity ((7/2)} — (2/7)})*r'(¢)".

Thus X(z, + ) should be predicted by —(z/2)!'(r) and the mean square predic-
tion error is given by (4).

EXAMPLE 2. Suppose now that, in addition to the zero crossing, we have ob-
served the derivative X’(z,) = z and that we want to use this extra information
to improve the prediction of X(r, 4 f).

In the model process the derivative §’(0) = Z is independent of £(f). Con-
ditioned on Z = z (the conditioning being in ordinary vw or Radon-Nikodym
meaning) we therefore predict £(f) = x(f) — Zr'(¢t) with the optimal least square
predictor

évu/(t) = éhw(’) = _'Zr,(t) .
Since the distribution of #(¢) is the same under P** as under P** the long run
mean square €rror now is
() B*[&0 + Zr()P] = E[e(f] = V[e@)] = 1 — () — £/(t)" -

Thus X(¢, + ¢) should be predicted by — X’(¢,)r'(f) and the mean square predic-
tion error is given by (5).

As the two examples show, the distributions P** and P** give rise to the same
predictor function if we know the derivative at the zero crossing. The theorem
in the next section shows that this is the only case in which P** and P* give
the same result.

3. Main theorem. We now turn to the general problem of prediction from a
zero upcrossing ¢, and onwards. The predictor may use observations of X(z, + s)
for 5 belonging to some fixed finite or infinite set 7. A typical example of a set
T is {s < 0}, in which case one has observations of the entire past preceding
the zero crossing. Another typical T-set is {—n, —n + 1, - .., 0}; the predictor
may then use the actual value of the process X(z,) (which is zero) and the delayed
values X(t, — 1), - - -, X(t, — n); see Section 4. This prediction problem can be
solved by use of the conditional distributions of the model process £(t) = «(f) —
Zr'(r) given &(s) for seT.

Therefore, let P* and P** be the previously defined probability measures on
the space {Q, %} of continuous functions with the completed Borel s-algebra
&, and let

NV = a{§(s), se T}
be the sub-g-algebra generated by the observed &-variables. For any Be &, let

©) Pe(B|5v;)  and  PR(B|.SY)
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be conditional probabilities of B given the g-algebra &7, i.e. % ,-measurable
functions such that

PYA n B) = §{, P{B|.>,) dP* (i = vw, hw)

for all Ae 7. Since the topology on Q is metrizable, complete and separable,
there exist regular conditional probability measures given .o, i.e. (6) defines
probability measures on {Q, &} for every fixed outcome; see Breiman (1968),
Theorems 4.34 and A.46.

Also let .57, be the completion of .o, with respect to P** and P*»,

&y ={Ade F;34d e 7, P(A A A) = P(4 A A) = 0}.

- (It follows from the definition of P** and P** that they are absolutely continuous
with respect to each other, and thus give rise to the same .977.)

THEOREM. The conditional probabilities P*(«|.57,) and P**(«|.%7}) for the
model process £(t) = k(t) — Zr'(t) coincide (almost surely) if and only if Z = £'(0)
is measurable with respect to 7.

REMARK 3. The theorem implies that the vw- and Aw-conditional distributions
give the same predictor function if and only if the derivative at the crossing
point is included in the observed variables. This is therefore the only case in
which the classical (vw) conditional-distribution predictor gives us long run op-
timal prediction; in all other cases the Aw-predictor performs better in the long
run.

Proor. To simplify notations, if f is a nonrandom function or a stochastic
process, let (f), denote its restriction to theset 7. If T = {¢,, - - -, t,} is a finite
subset of T, let (f), be the restriction of f to T™.

The if-part of the theorem is then almost trivial: if Z is measurable .97, then
it is a function of the observed variables and is therefore itself observable. The
only uncertainty in the outcome is therefore contributed by the x-process and
since that process is independent of Z and has the same distribution under P**
as under P** the conditional probabilities will be the same. To put it formally,
let B be an arbitrary finite-dimensional set of functions, define

B,=B+zr ={£€Q; & — zr'e B},
and let
9:y) = P*(k € B, | (); = y) = P*(x € B, | (k) = ))
be the joint, under P** and P*¥, conditional probability of the event £ € B, given

that (x), = y, y being a function on 7. Then g is jointly measurable in z and
y, which implies that

9A(&)r + Z(r")r)

is measurable with respect to .7, and can serve as the conditional probability
of B given (§), for both P** and P**. To see this, let 4 be an event in %), C
. Since e AN Z =z ifand only if x = € + zr' € A, A Z = z one has, for
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i = ovw, hw,

$492((6)r + Z(r')r) dP* = §.{§(ceu, 9:((x)7) dP,'} AP,
= Ve l8yes, Pk € B,|(r); = y) dP,} dP;'
= {,P({t — zr' e A} n {k — zr' € B}) dP,}
= P{k — Zr'e A} n {k — Zr' ¢ B})
= Pi({ée A} n {¢€ e B)),

which shows that g,((§), + Z(r’),) fulfills the requirements on a conditional
probability. Since it is independent of i = vw, Aw the if-part is proved.

We now turn to the more interesting only-if part. Let us for a moment con-
sider § = £ — Zr' as a process only on T, i.e. we consider (x — Zr’),. Forany
fixed value z of Z, the process (¢ — zr’), is a normal process with mean —z(r'),
and the covariance function R restricted to T x T. The process (r), is also
normal with the same covariance function but with mean zero. The theorem
will then follow from the following three lemmas.

LeEMMA 1. Either

(v — zr'), is equivalent to (k); forall z
or
(v — zr'), is orthogonal to (k); forall z 0.

LemMA 2. If (x — zr’), is orthogonal to (k), then Z is measurable 7.

LEMMA 3. If (¢ — zr'), is equivalent to (k) then the conditional probabilities
P (s | .7,) and P**(+ | 977) are different.

The only-if part of the theorem is an immediate consequence of the lemmas.

Proor oF LEMMA 1. The lemma follows from the well-known fact that normal
processes with the same covariance function and different mean functions are
either orthogonal or equivalent. This can be formulated rather nicely using the
terminology of Reproducing Kernel Hilbert Spaces (RKHS). Even though we
do not need the Hilbert space here the following notation borrowed from Parzen
(1959) is useful.

Let T ={t, ---, t,}, n = 1,2, ... bean increasing sequence of finite subsets
of T such that | T* is dense in T. Write

Rn = (R(t'i’ tj))i,:':l,---,n

for the covariance matrix of «(t,), - - -, £(¢,) and note that R, ' exists by as-
sumption. Also recall the notation (f), = (f(t,), - - -, f(t,))’ for the restriction
of a nonrandom or random function f to the set 7, and write

(7) (fs Du = 2751 f(1)R,T)i59(25)

for the scalar product of fand g on 7™ with respect to R,™.
If (), is a normal process on T with mean zero and covariance function
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(R)rxr and if (m), is any function on T then it holds that either (v + m), is
orthogonal to (x), or (¢ 4+ m), is equivalent to (x),. The criterion for the two
alternatives is simple. It can be shown (cf. Parzen, Theorem 6E) that

(m, m), = 7 o2 m(L)(R, )i m(25)
is never decreasing so that
lim,_, (m, m), = (m, m); < co

always exists. Then orthogonality between (x + m), and (), holds if and only
if (m, m), = oo while equivalence holds if and only if (m, m), < oo; see Parzen,
Theorems 6E and 9A.

We now apply this to the mean value function —z(r’),. It directly follows
that if (v — zr’), is orthogonal to (x), for some z # 0 then

lim,_, (—zr', —zr'), = 2*lim,_ (', r'), =
so that orthogonality holds for all z = 0. Therefore we have

(8) (x — zr"), is orthogonal to (), for all z = 0 if and only if (', r), =
lim,_. (', '), = oo.

On the other hand, under equivalence the probability measure P,,_,,.,, induced
by (¢ — zr'), has a density, or Radon-Nikodym derivative, with respect to the
measure P, induced by (x),. This density can be constructed from the quotient

between the finite-dimensional densities of «(#,) — zr'(¢,) and «(t,) respectively
fork=1,...,m;n=1,2,...:

f(ﬁ—zf’)”(x) — exP{—‘%(x + zr,)n’Rn_l(x + zr’)n}
f(:),,(x) exp { —%(X)”'R”"I(X)”}

) = exp{—z- (/R — 2 (MR,

= exp{—z C(x, 1), — —22—2 (' ")»} )

where we used the notation (7). Since we have assumed equivalence the limit
lim,_ (', '), = (', r), exists finite, and so does lim,_,, (x, '), = (x, r'), for
almostall x (P,,,). Therefore the likelihood ratio (9) has a limit exp{—z-(x, r'), —
(2*/2)(r", r');} which is then the desired Radon-Nikodym derivative. We sum-
marize (cf. Parzen, Theorem 9A):

(10) (k — zr'), is equivalent to (x), for all z if and only if (#',r), =
lim, . (7', '), < oo; the density is then given by
dP(x—zr')r — { ’ 22 ’ ’ }
W(x)_exp z-(x, 1)y, —2—(r,r)T .
Proor oF LEMMA 2. We have to show that if lim, ., (#', r'), = oo so that
(x — zr'), is orthogonal to (x), for all z 0, then Z = £’(0) is (almost surely) a
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function of the observed variables (§),. This is actually an estimation problem:
we want to estimate the parameter Z in the process (¢ — Zr'), perfectly, i.e.
without error. To achieve this we construct an estimator as a limit (as n — oo)
of the maximum-likelihood estimator

! 1
z”*=_('x’r)n=_ x).’R —Yx
. r,)“( )’ Ry7H(X)s
based on the likelihood ratio (9) for the observations (x), = (x(t,), - - -, x(t,))’-
Since « has mean zero and the covariance function R and is independent of Z,
the conditional mean and variance of z,* given that Z = z, are

’ ’ ’ ’
E[z,*|Z = z,] = _(E[K—'Zo,l‘],r)nzzo.(r,, r,)”—zo’
r', r), (r,r,

1 , 1
TNl r'an_anRn—l r,n=_‘—'
(rl, ’.I)“2 ( ) ( ) (f’, r’),,

VIz*| Z = z,] =

so that z,* is unbiased as an estimator of Z. Since (r/, r'), — co as n— co We
can conclude that z,* tends in quadratic mean to Z as n — co.

What we actually want to show is that z,* tends almost surely to Z. This now
follows from a martingale argument; considered only at outcomes such that
Z = z,, the sequence z,*, z,*, - . - is a reverse martingale, i.e.

(11) E[z3 i|2,%, 2%, -] = 2,7 .
To prove this, it suffices to show that
(12) Clz* 2*|Z=2)=V[a*|Z=2]  if 15jsk,

because this implies (11), the z,* having a joint normal distribution (still under
the condition that Z = z,). Now

1

Clz*,z,*| Z =2 = ———
[ J k I 0] (r,’ r’),-(r', ",)k

()i RTE[(r); - (£) TR (N

1
= (77,)—(—’_7—",—); (r,’ r,)min(:‘,k)
’ s\7

_ 1
(r,, r,)max(j,k)

= V[z:;ax(i.k) I Z = ZO]

so that (12) holds.

We can now apply the martingale convergence theorem to the reverse mar-
tingale z,*, z,*, - - - (Doob (1953) Theorem 4.2, Section VII) and conclude that
z,* converges almost surely (P,,,) to a random variable which then must be
constant and equal to z,.

Thus, as a function on the subspace {Z = z,} of the space Q of all outcomes,
the estimator z,* tends almost surely (P,,,,) to z,. Let Q, be the subspace of Q
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on which z,* converges to Z and define the random variable g on Q as
9(0) = lim,_,, z,* for weQ,,
=0 for weQ.

Then g is measurable with respect to ., = a{(£),}; this follows since z,* is a
function of the observed variables &(1,), - - -, £(t,) and thus measurable .57,.
Because lim z,* is equal to Z on Q, it now follows that Z is measurable .o7:

{w; Z < z} C {w; g(0) £z} U Q°
D{w;9(w) £z} nQ,,
where, by Fubini’s theorem, for i = vw, Aw,
PYQy) = §, P(z,* » 2| Z = z)dP,i(z) = 0.

Thus {0; Z < 7} differs from the .97,-set {0; g(w) < z} only by a null set, and
therefore Z is measurable with respect to .57.

Proor or LEMMA 3. We have to show that if lim,_ (*, r'), = (', '), < o
so that (¢ — zr’), is equivalent to (k), for all z, then the conditional probability
measures P°*(+ | %) and P**(. | %7) are different. We prove this by showing
that the conditional distribution of Z = £’(0) given &7, is different under the
vw- and hw-measures, since this of course implies that those two conditional
- measures are different. Actually we can compute a conditional density for Z
with respect to Lebesgue measure given the observed process (£), = (¢x — Zr'),,
by manipulating the density for (¢ — zr’), which we derived in the proof of
Lemma 1; see formula (10).

We start with the densities f,°* and f,** for Z as they were defined by (2) and
with the density (10),

dP,

et () = exp{—z- (6. 1)r — 2. 1)}

(10)
dP(lc)T

Letting z vary and weighing (10) with the densities for Z we first see that (§), =
(x — Zr'), is equivalent to (x), and that it has the density

7
dP(x—Zr')T

(13) 7P

2
(x) = 5. f£(2) exp{—z -(x, )y — £2—(r', r’)T} dz
(K
(i = vw, hw) with respect to P, . We also see that the distribution of the two-
dimensional random element (Z, (xr — Zr"),) is absolutely continuous with respect
to the product measure dz - dP,,,, and that the density is
dp

¢ dpP
(Z,(k—Zr')p) z, — i z) . (k—zr')p X
T (7, x) = f(2) - — L (x)

(K)p

(14)

() x)p

= f74(2) - exp{—z c(x, 1)y — izi(r’, r')T} .

The quotient between (14) and (13) will then give a density for the conditional
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distribution of Z given (x — Zr'),, i.e. given the observed process (§),:
2
19)  fhasrpmen@® = efs@ expl =z (5, 1)y = 2., )]

where ¢; = ¢,(x) is a normalizing constant. Now we are finished: the conditional
distribution of Z given (£), depends on whether we started with the vw-measure
P or with the Aw-measure P** and this implies the conclusion of the lemma.

4. An example. As the theorem shows, the Aw-conditioned model process
gives better prediction from a crossing point than the generally used vw-condi-
tioned in those cases where the derivative at the crossing is unknown. A simple
and natural situation in which this occurs is the following.

In a series of memories M,, M;, M,, - .. are continuously stored the actual
values at time ¢ of the signal {X(¢)} and of the delayed signals {X(z — kk)} for
k=1,...,n(n < oo):

X0 de}lay de}lay

X X(t — h) X(t — 2h)

M, M, M

Each time ¢, when a zero (or, in a more general setting, a prescribed value u)
appears in the memory M, some action is taken, including prediction of future
values based on the stored values X(t,), X(t, — &), ---. We may call this
“prediction under panic”; the value u is the trigger value.

Formulated in the language of the main theorem prediction of X(z, + ) given
X(t, — kh), k =0,1, ..., n is equivalent to prediction of the model process
§(t) = k(f) — Zr'(t) given the g-algebra

S = o{§(s), se T*}
where
Th = {—kh, k =0,1,-..,n}, (n < ).

Conventional Wiener-prediction of X(z, 4 ) using likelihood ratios or Radon-
Nikodym derivatives then corresponds to the use of the vw-measure P** for the
model process. Since the derivative Z is not measurable .57, (except for special
processes) the main theorem implies that the Azw-measure P** gives better predic-
tion in the long run.

Naturally, a small sampling distance # makes Z nearly a function of the ob-
served variables and then the conditioned vw- and Aw-measures can be expected
to give almost the same predictor. Specifically, since the set of variables {£(s),
s € T*} for small 4 generates almost the same o-algebra as {£(s), s < 0}, and since
Z is measurable with respect to this latter o-algebra, P**(« | 97,4) and P**(« | %)
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should tend to the same limit when 4 | 0. A simple proof shows this if # is of
the form 2-" and n = oo.

COROLLARY. If .57, is the g-algebra generated by {§(k[2™), k = 0,1, ...} then
the limits
lim,_ P**(B|.%7,)
and
lim,, . P*(B|.57,)

exist almost surely and are equal to P(B|.57"), the joint (for vw- and hw-measures)
conditional probability given the o-algebra .57 generated by {£(s). s < 0}.

Proofr. Since &7} C %, C - .- is an increasing sequence of g-algebras with
the limit |J; o7, = &, it follows from the martingale convergence theorem
(cf. Doob, Theorem 4.3, Section VII) that, for i = vw, Aw,

PYB| ) = E'ly| 7] — E'[I;| 7] = PY(B|.%7)

(almost surely) which is independent of i by the theorem.
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