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A FUNCTIONAL CENTRAL LIMIT THEOREM
FOR STATIONARY RANDOM FIELDS

By CHANDRAKANT M. DEoO
University of California, Davis

In this paper, the concept of y-mixing is extended to random fields, and
a central limit theorem analogous to Theorem 20.1 of Billingsley (Conver-
gence of Probability Measures, Wiley (1968)) is obtained for stationary, ¢~
mixing random fields.

1. Introduction. In this paper we extend the concept of p-mixing to random
fields and obtain a functional central limit theorem for such random fields. This
theorem may be regarded either as a generalization of Theorem 20. 1 of Billingsley
(1968) to “multivariate time,” or as a generalization of Corollary 1 of Wichura
(1969) to dependent random variables. A central limit theorem, in the classical
form, for stationary random fields has been obtained by M. Rosenblatt (1970)
under hypotheses somewhat weaker than those used here.

Let Z7 denote the set of all g-tuples of integers (¢ > 1, a positive integer).
The points in Z¢ will be denoted by m, n, etc., or sometime, when necessary,
more explicitly by (m,, m,, - -+, m,), (n, ng, - - -, n,) etc. Z¢ is partially ordered
by stipulating m < n iff m; < n, foreachi, 1 <i < ¢q. We write 0 and 1 respec-
tively for points (0,0, -..,0) and (1, 1, - -, 1) in Zv.

Let {£,: ne Z7} be a random field, i.e., a collection of random variables in-
dexed by time-set Z*. The random field is said to be stationary if for each firite
subset S of Z7, and each m € Z7, the joint distribution of {¢,,,.: ne S}is the same
as that of {¢,: neS}. Heren 4 m is the usual coordinatewise sum.

Foreachj (1 </ < ¢)andr > 0, let &7 *(j; r) be the o-field generated by
{€aingmg M = 1, Other n;’s unrestricted} and let .57 =(j; r) be the o-field gen-
erated by {¢, . ... :n; <r, other n’s unrestricted). For r > 1, we write
¢(j> r) = sup{|P(B| A) — P(B)|: A€ . (j;0)and B e o7 *(j; r), P(4) > 0} and
o(r) = max,;., ¢(j; r). Also set ¢(0) = 1. Clearly {¢(r)} is a decreasing se-
quence of real numbers. If ¢(r) — 0 we say that the random field {£,} is ¢-
mixing. This is a natural extension to multivariate time parameter of the well-
known concept of p-mixing for sequences of random variables.

The random field {£,} may be defined only for n > 1. In this case we define
¢(j; r) = sup |P(B| A) — P(B)|, where the supremum is taken over all sets 4, B
such that for some m, A is in the o-field generated by {Snlmzy,__,nq: 1 <n; < m,
other n;’s = 1} and B in the o-field generated by {€npngeomg s Nj = m + 1, other
n’s = 1}. Also ¢(r) = max,;., ¢(j; r). Given such a random field with “one-
sided” time set, we can construct a new random field with time set all of Z¢

Received August 14, 1973; revised June 12, 1974.
AMS 1970 subject classifications. Primary 60G10; Secondary 60F05.
Key words and phrases. Stationary random fields, central limit theorem, invariance principle.

708

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to |24
The Annals of Probability. RIKOIN
www.jstor.org



STATIONARY RANDOM FIELDS 709

and with the same finite-dimensional distributions and the same ¢-values. This
fact may be proved along the same lines as in the case of univariate time. Thus,
without loss of generality, we will assume that the random field {¢,} is defined
over all of Z1.

We suppose throughout that {§,} is a stationary, ¢-mixing random field with
E§, = 0 and E§,* < oco. For n = 1, define the partial sum

S = Disisa &5+
If one of the coordinates of n is equal to 0 and others are = 0, it is convenient
toset S, = 0.

Let T be the closed unit interval [0, 1] and 77 the g-fold Cartesian product
of T. Let C, be the set of all continuous functions on 77 with the uniform
metric and, as in Bickel and Wichura (1971), let us denote by D, the Skorohod
function space on T7. All the properties of D, that we need can be found in
Bickel and Wichura (1971). A subset B of T7 is called a block if it is of the
form T4, (s;, t;], (s;, t;]’s being half-closed subintervals of [0, 1]. If X = {X(t):
t e T} is a stochastic process, then the increment X(B) of X around a block
B = I12, (s;, t;] is given by

X(B) = Zel=0,1 Ze2=o,1 te Zeq=0,1 (—=1)s==
X X(5; + ety — 51)s 3 + €ty — 85), = -+, 5, + g,(¢, — 5,)) -
On T as well as Z* we use the maximum norm, i.e., if t = (¢, 1, ---,¢,) e T*
orn = (ny, ny, ---,n,) € Z% then [|t|]| = max,;., |t;| and ||n|| = max,;,, |n

The Wiener process W = {W(t): te T?} on T is characterized by

(a) PWeC) =1,

(b) if By, B,, - - -, B, are pairwise disjoint blocks in 7',

il

then the increments W(B,), W(B,), - - -, W(B,) are independent normal random
variables with means zero and variances A(B,), A(B,), - - -, A(B,), 4 being the g-
dimensional Lebesgue measure 7.

2. The Central Limit and related theorems. Let us write r(j) = E(§,§;). If
n = (n, ny, ---,n,), let [n| stand for the product nn, ... n,. Define |t| simi-
larly for te T7. In this paper the limit n = (n, ny, -+, n,) — oo will mean

min, ;. n; — 0.

LeEMMA 1. Let

(1) Ziariel(r) < oo

Then (2), (3) and (4) below hold.

2 2eza [r(i)] < oo

3) NS, = Dyeza (i) = 0, say; s mo oo
(4) [n|7E(S,?) < A(q, 9)E(SL) , vn = 1; where

A(gs ¢) = 1 + 29 X7, 2r 4 1)*71k(r) .
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Proor. Note that there are, at most, 2¢(2r + 1)?~! points j € Z?such that
[li]| = r where r is a positive integer. Using this fact, the proof can be easily
completed along the lines of Lemma 3 on page 172 of Billingsley (1968). [I

Throughout the rest of this paper, ¢* will be as defined in (3), and we will
assume ¢ > 0.

Fort = (1,8, ---,t)e T and n = (n, ny, - - -, n) = 1, let X,(t) = (o¥n|)~tx
Stagt il ngtgl, - Ingtg1» Where [« ]is the usual greatest integer function. The stochastic
process X, has sample paths in D,. The main theorem of this note is:

THEOREM 1. Let {£,} be a stationary, ¢-mixing random field with E(§,) = 0,
E(§,) < oo. Suppose (1) holds and o* definedin (3) is > 0. Then the net{X,: n = 1}
of stochastic processes converges weakly, in D, to the q-parameter Wiener process.

The techniques used in the proof of this theorem are, with some exceptions,
essentially those used by Billingsley (1968) to prove Theorem 20.1 there. The
proof will be carried out in the following series of lemmas.

Foreachi, 1 <i < gq, let

0= al(i) < bl(i) < az(i) < bz(i) < e < a;ii) < bf"ii) =1

be real numbers. Call a collection of blocks in T¢ “strongly separated” if it is
of the form

{115 (a}é’, b;«?] 1<k =n,1<iZgq},
or if it is a subfamily of such a family of blocks.
LEMMA 2. Let Y be a stochastic process on T with sample paths in D such that,

(i) E(Y(t)) =0, E(Y*(t)) = |t], te T
(ii) Y has continuous sample paths, and
(iii) increments of Y around any collection of strongly separated blocks are in-
dependent random variables.

Then Y is the Wiener process on T°.

Proor. It suffices to prove that Y(t) is normally distributed for each t; and
this can be easily accomplished by induction on ¢ in conjunction with Theorem
19.1 of Billingsley (1968). []

For xe D, and 0 < 6 < 1, define the modulus w(x; ) by
w(x; 0) = sup {[x(t) — x(s)|: ||t — s|| = I} .
LemMa 3. Let {Y,} be a net of stochastic processes in D, such that,

(i) EY,(t) >0, EY *(t) — |t| as n — oo, for each t;

(ii) the set {Y *(t)} is uniformly integrable for each t,
(iif) if B, B,, - - -, B, are a collection of strongly separated blocks, then the in-
crements Y, (B,), Y (B,), - - -, Y.(B,) are asymptotically independent in the sense that
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if H, H,, - - -, H, are arbitrary linear Borel sets, then the difference

P{Yn(Bl) € Hl’ Yn(Bz) € Hz’ A} Yn(Bk) € Hk}
— P{Y.(B)) e Hi} P{Y.(By) € Hy} - - - P{Y,(By) € H,}

goes to zero as n — oo and,
(iv) for each e > 0, 7 > 0, we can find a 6 > 0 such that P{w(Y,, 0) > ¢} <7
for all sufficiently largen. Then {Y,} converges weakly, in D, to the Wiener process.

Proor. Using Lemma 2 in this paper, the proof is similar to that of Theorem
19.2 of Billingsley (1968). []

For the net {X,} of stochastic processes in Theorem 1, the conditions (i) and
(iii) of Lemma 3 are trivially seen to be satisfied. Using Lemma 4 below and
the estimate (4) in Lemma 1, one can repeat the arguments on page 176 of
Billingsley (1968) to show that the condition (ii) of Lemma 3 is also satisfied by
{X.}. It remains, therefore, to prove that {X,} also satisfies the condition (iv)
of Lemma 3.

LeMMA 4. In addition to the conditions of Theorem 1, suppose that |§,| < C < oo.
Then, we can find a constant B = B(q, ¢) depending only on q and the ¢-sequence
such that, for alln = 1,

(5) ES,' < BCYn|*.
Proor. Fix a positive integer k, so large that 16¢(k,) < 10-% and 10%, < 2*.

Applying the univariate time, Lemma 4 on page 172 of [2], we can find a con-
stant B* such that

6) ES;, ngeing = B*Clny?n? -l
for all n, > 1, and n,, n, - - -, n, < 2%. Assume, without loss of generality, that
B* = 12A4%q, ¢) where A(q, ¢) is defined in Lemma 1.

We now show by induction that (6) holds for all n, = 1, all n, of the form 27,
(1 £r< ), and ng n,, ---,n, <2 For this it suffices to show that if (6)
holds for some n, = 2%, then it holds for 2n, as well. To alleviate the notation
let us take n, = n, = ... = n, = 1. Now write,

q
T, =

S'nl,nz,l,-u,l
Tz = Sn1,2'n2+k0,1 ..... 1 Snl,n2+ko,1,--~,l
- S

Rl = Snl,'n2+ko',l,---,1 Ny, 79,1, 000,1
R

2 = Sn1,2'n2,1,~-~,1 - Sn],2n2+ko,l,---,1 J
Snl,2n2,1,...,1 =T + T, 4+ R, + R,,
and so by Minkowski’s inequality
E S'n 12m9,1, . E*(Tl + T2)4 + E*R14 + E*R; .

Thus,

Now
E*R! = E*R,! < [B*CinlkTt < 10~ B*Cénn Tt .
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Also,
E(T, + T,)* = 2ET}* + 4E(T?T,) + 6E(TAT) + 4(T,TY) .
We have, by the inequality (20.23) of Billingsley (1968),
E(T?Ty) < 20%(ko)E(T*) < 107°B*Ctn,’n? ;
E(T, T7) < 204 (k)E(T*) < 1072B*C*n;’n?;
E(TPTY) = E(TY)E(TY) + 204k E(TYY)
< Ay(q, ©)C*nln? + 1074B*C'n,*n,?
where in the last step we have used Lemma 1. Thus
E(T?TY) < [{5 + 1074]B*Cén;?n,? .
Combining all the preceding estimates,

EAS), gty
S[B*Cn/nH{[2 4+ 5+ 4 X 107° + 6 X 107 + 4 x 10~} + 10-%}
< [B*Cn(2n,) ]t .

Thus (6) holds for all n, > 1, all n, of the form n, =27, 1 < r < oo, and

g, ny, + -+, n, < 2%, From this one can show that

@) ES* < 256B*C'nlng - - - n?

L3 T TR 'Ibq =
forallm, > 1,alln,>1, and n, n,, - - -, n, < 2%. To do this, write n, as sum
of powers of 2; and apply the Minkowski inequality and (7) to the corresponding
decomposition of Snpng,-mge  The details are straightforward and, therefore,
omitted. Continuing in this fashion terminates the proof of the lemma. []

LEMMA 5. In addition to the conditions of Theorem 1, suppose |&)| < C < co.
Then the condition (iv) of Lemma 3 is satisfied by {X,}.

Proor. The equation (1) and Theorem 1 of Bickel and Wichura (1971) yield
a natural extension of Theorem 12.3 of Billingsley (1968) to multivariate time.
Using this extension and Lemma 4 above proves this lemma. []

Now to complete the proof of Theorem 1, it remains to remove the bounded-
ness assumption on {§,} in Lemma 5. We use a truncation argument to achieve
this.

For C > 0, let

O =¢ if g=C
=0 otherwise.
Write
U'n = Zléién {EJ(C) - EEJ(G)} ’ and
Ve=S8,—U,. '

Now Lemma 5 applies to the random field {£,* — E£,“}. Thus to complete
the proof of Theorem 1 it is enough to show the following: given¢ > 0, > 0,
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we can find a truncation level C = C(e, %), such that
(8) P{max, ;. |V;| > eon|}} < 7, for all n.

To establish (8) we need a variant of the standard Ottaviani-Skorohod ine-
quality. See e.g. Theorem 2, page 120 of Gikhman and Skorohod (1969). To
state this inequality let {;, {,, - - -, {, be random variables taking values in a
normed linear space with norm [|«||. In our application, this normed linear
space will be the Euclidean space R? = {(x, ---, x;): x,’s real} with the
maximum norm, 1.e., [|(Xy Xy -+, X,;)|| = Max,g;,|x;|. Now write ¢(1) for
sup {|P(B| 4) — P(B)|} where the supremum is taken over all sets A4, B such that,
for some m, A is in the g-field generated by (;, ,, - - -, {,, and B is in the o-field
generated by {15 Cpaas =5 Ca

LEMMA 6. Suppose (1) < 4, and let a > 0, 0 < » < } be such that

©) P{|Yrenlll Sa} >1—9, forall k=0,1,...,n—1.
Then,
(10) Plmax, gz, || 251 &il| > 2a} < 27.

Proor. Straightforward, using ¢-mixing instead of independence. []
Now to establish (8), first note that by Lemma 1,
(11) EV,* < A(q, 9)E(, — £.°Fn]
= A(g; 9)In| Sieqi>0r €07 AP -

Now make a temporary assumption that ¢(1) < , and fix ¢ >0, 0 < 5 < L.
Choose C so large that,

(12) e072A(q, @) Vigoi>ar S0’ AP < 727

We will now show that (8) holds for this choice of C (under the additional
assumption ¢(1) < ). Now by (12),

(13) P{|V;| > eo279n|}} < 5277, if 1<j<n.
Let m,, my, - - -, m, be fixed but arbitrary integers such that 1 < m, < n,, for
i=2,3,...,9. Here n = (ny,n,, .-, n,) so that n, is the ith coordinate of n.
Let m,, my, - - -, m, be fixed but arbitrary integers between 1 and n. Applying
Lemma 6 to the n, random variables

{Vj,m2,--',mq - Vj—l,m2,~~-,mq: 1 é] é nl}
we obtain from (13),
(14) P{ma‘xl§i1§n1 IVil,mz,ms,n-,mql > 802_q+1|n|é} < 02_”1 ¢

Note that (14) is valid for all choices of m,, m,, - - -, m such that 1 < m; < n,.
Now fix integers my, m,, - - -, m, arbitrarily such that 1 < m; < n, and apply
Lemma 6 to the following n,-dimensional random vectors (with the maximum
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norm used on R™):

C1 = {Vl,l,ms,u-,mq’ V2,1,m3,~--,mq9 DR} V""l’l””av"‘,mq} s
Cg = {Vl,Z,m3 ..... mg b Vl’lv’”av"',mq’ V2,2,1n3,~~,mq —_ VZ,I,Ma ..... mg? M)
an 2 mg mq I/"n,1 1 mg mq} ’
an = {Vl,nz,ma ,,,,, mg Vl,nz—l,ms,u-,mq’ R} an,nz,ms,n-,mq - an,nz—l,ms,n-,mq} .

Thus we get,

(15) P{max, ; < 1<j,sn, IVisigmemgl > e027|n|t} < 7270+,
Continuing in this fashion (in the next step e.g. we apply Lemma 6 to n,n,-
dimensional random vectors), we obtain (8) under the assumption that ¢(1) <

To remove this assumption, find r, such that ¢(r,) < 1. Then (8) is true for each
of the following r,? random fields:

{$j1r0+p1,j2r0+p2,---,j,1r0+pq: (jl’jz’ e ’jq) € Zq}
where 0 < p,, p,, - -+, p, < r, — 1 are fixed for each random field. Now Vs
for the original random field are sums of Vs for these new random (sub) fields.
Using this fact it is easy to see that (8) holds for the original random field. This
concludes the proof of Theorem 1. []

THEOREM 2. Let (Q, &, P) be the probability space which supports the random
field in Theorem 1. Then Theorem 1 remains true if P is replaced by any probability
measure Py which is absolutely continuous with respect to P.

Proor. This can be proved by a straightforward adaptation, to multivariate
time, of the proof of Theorem 20.2 of [2]. []

A similar adaptation of the proof of Theorem 20.3 of Billingsley (1968) allows
us to obtain

THEOREM 3. Assume the framework of Theorem 1. For eachj, 1 < j < q, let
{v,/: 1 < n < oo} be a sequence of positive-integer valued random variables such
that, for some positive constants a,'? 1 co (n — o), v,'?/a,'? converges to a strictly
positive random variable in probability, as n— co. Writev, = (v,0,v,?, - -+, v,0).
Then the sequence of stochastic processes {Y,} defined by Y, (t) = X, (t) converges
weakly to the Wiener process in D,. []

In conclusion it may be interesting to note that, even in the case ¢ = 1, it is
not known whether the condition (1) is really necessary or whether it could be
replaced simply by the ¢-mixing property.
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