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GENERALISATION AND APPLICATION OF SOME RESULTS
OF IBRAGIMOYV ON CONVERGENCE
TO NORMALITY

By JULIAN LESLIE

University of Lancaster

We modify certain results obtained by I. A. Ibragimov concerning the
remainder term in the Central Limit Theorem and the remainder term in
the approximation of the distribution function for normed sums of i.i.d.
rv’s by a portion of the Chebyshev series and we then use these to complete
some results appearing in a joint article by C. C. Heyde and the author
(Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 21 255-268) (as well asina
similar article by F. N. Galstian (Theor. Probability Appl. 16 3, 528-533)).

1. Introduction. Let X,, i =1,2,3, ... be a sequence of independent and
indentically distributed random variables with EX; = 0 and EX;? = 1. Write
F for the distribution function and f for the characteristic function of X, and
putS, = 27X, n = 1. Let F,(x) = P(S, < ntx)and A, = sup, |F,(x) — D(x)|
where @ is the distribution function for a standard normal variate. Further,
let {n,, i =1,2,3, ...} be an infinite subsequence of the positive integers such
that n,,, > n, for all i and lim,_,, n,,,/n; = C for C a constant satisfying 1 <
C < oo.

In [5], Ibragimov gives conditions which are both necessary and sufficient for
the relation

1) A, = O(n¥), 0ol
to hold for n = 1,2, 3, .... If in(1), instead of n taking successively the values
1,2,3, ..., it takes the values n,, n,, n;, - - - of the sequence {n}, we show

(Theorem 1) that Ibragimov’s conditions continue to be both necessary and
sufficient for (1) to hold.

This result allows us similarly to generalise two theorems of Ibragimov con-
cerning the remainder term in the approximation of F,(x) by a portion of the
Chebyshev series. The Chebyshev series corresponding to the random variable
n—t S, has the form

@) Fy(x) ~ ®(x) + Let Bh, 0 ()

(271_)5 J J
(see Gnedenko and Kolmogorov [2] Section 38) where the Q,(x) are polynomials
of degree 3j — 1 whose coefficients depend on the first j 4+ 2 moments of X;.

This expansion has the disadvantage that we must know the first j + 2
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moments of X; (and hence the existence of at least E|X;|** and in Cauchy limit
EX,;7*?) before we can even write down Q;(x). We overcome this problem by
using a formulation due to Ibragimov [6]: An arbitrary numerical sequence
Bi=0,8,=1, B B, - - - is prescribed and on the basis of this sequence, poly-
nomials Q;(x) are formed in such a way that their coefficients are expressed in
terms of B, B, - --, B;,, in the same way as the coefficients of the classical
polynomials Q,(x) are expressed in terms of the cumulants «,, «,, - - -, £;,, of X.
For further details see [4] or [6]. As the expansion in (2) can now be written
down without presupposing the existence of any moments of higher order than
the second, we shall henceforth interpret the Q,(x)’s in this way.
Setting
1

-4 Sk ) -3
€ D Q0

Glm(x) = (I)(X) +

Ibragimov [6] obtained necessary and sufficient conditions for
3) sup, |F(x) — G, (x)| = O(n~2tk+3) with 0<d <1 (or o(nt))

to hold for n = 1, 2, 3, . ... If in (3), instead of n taking successively the values
1,2, 3, ... it takes the values n,, n,, n,, - - -, we show (Theorems 2 and 3) that
Ibragimov’s conditions continue to be necessary and sufficient for (3) to hold.
Finally we use Theorem 2 to complete some results appearing in a joint
article by Heyde and the author [4] (as well as in a similar article by F. N.
Galstian [1]). In [4], necessary and sufficient conditions are found for the series

Z::=1 nmiHhD) Supx |Fn(x) - Glm(x)[

to converge, provided 0 < 6 < 1. The case § = 0 could not be treated with the
same generality because the authors were unable to show that .

) 2 n7HEsup, [Fo(x) — Gua(x)] < o0

implied both the existence of E|X|*** and that EX,/ = a; for j = 1,2, ...,
k + 2, where a;, a,, - - -, a;,, is the ‘moment’ sequence corresponding to the
‘cumulant’ sequence B, 8,, -+, B44s- As a result, a separate theorem treating
the case § = 0 needed to be given in which both E|X,|*** < co and EX,’ = a;,
J=1,2,.--,k 4 2 are assumed and then it is shown that providing & is a
nonnegative even integer

% nt sup, [F(x) — Guy(x)] < o0 = EIX[*HIn (1 + [X]) < oo

We rectify this anomaly by firstly showing that for positive integer k (not
necessarily even), relation (4) = both E|X[*** < oo and EX,;/ = a; forj =1,
2, ..+, k+ 2. We then go on to show that when k is an odd integer, under
certain conditions (4) = E[X;|***In (1 4 |X,|) < oo whilst when X, is symmetri-
cally distributed, (4) = E|X,|*** < co. These show that for § = 0 and k an even
integer, we can obtain results as general as those obtained for 0 < d < 1;
however, when § = 0 and k is odd, no such general results can be given.
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2. Results.

THEOREM 1. In order that

3) sup, |F, (x) — @(x)| = O(n;"¥’), 0<dol,i=12,3,...
it is necessary and sufficient that
6) 1) §us: ¥ dF(u) = O(z7%) as z— oo and when 0 = 1, also

2) lim,, (%, w*dF(u) = O(1).
THEOREM 2. In order that for k a positive integer,
™ SUp, |F, (x) — Gy a (1) = 0(n#), i=1,2,3, ...
it is necessary and for distributions satisfying Cramer’s condition (C)* also sufficient
et 1) ElX|*' < oo and EXi=a; for j=1,2,.---,k+1,
8) 2) S |UfTdF(u) = o(z7Y) as z— oo and
3) lim,,, §*, u***dF(u) = a,.,, .
THEOREM 3. In order that for positive integer k
€ sup, |F, (x) — G, ()| = O(n,~#¥+), i=12,3..50<d6g1
it is necessary and for distributions satisfying (C) also sufficient that
1) EX|" < oo and EX/=a; for j=1,2,...,k+4+2
(10) 2)  Suse |4 dF(u) = O(z7%), as z— oo and when & = 1, also
3) lim,_, {2, #**2dF(u) = O(1).

THEOREM 4. In order that for positive integer k

(11) L7 sup, |Fo(x) — Gi,(%)] < oo

(A) if k is even, it is necessary and, for distributions satisfying (C), also sufficient
that ELX,|***In(1 + |X,|) < ccand EXJ = a;,j = 1,2, -- -, k + 2.

(B) if k is odd and if there exists a positive finite constant D such that P(X; <
—D) =0, it is necessary and, for distributions satisfying (C) also sufficient that
EX|***In(1 + |X)|) < coand EXJ = a;,j=1,2, ---, k + 2.

(C) if k is odd and if X, is symmetically distributed, it is necessary and, for dis-
tributions satisfying (C), also sufficient that E|X,|*** < co and EX/ = a;, j = 1,
2, ook + 2.

ReMARK. Theorems 1, 2 and 3 are interesting in so far as we need know
only that (1) or (3) are satisfied at a set of geometrically increasing points to
ensure that they are satisfied for all integer n.

3. Proofs.

ProoFs oF THEOREMS 1, 2 AND 3. As would be expected, the proofs follow

1 Cramer’s condition (C) : lim supj¢j-w | f{£)] < 1.
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essentially verbatim their counterparts in [5], [6] and [7]. Furthermore, the
sufficiency of conditions (6), (8) and (10) is a direct consequence of the Ibragimov
theorems. Thus it remains only to outline the adjustments to the proofs in [5],
[6] and [7] which have to be carried out to establish the necessity of conditions
(6), (8) and (10).

From (5) by Parseval’s identity we have

(12) § 2w e f, (1) — e ¥ dt = O(n; %), i=1,2,3,...
where f,(¢) is the characteristic function of S,/nt. In [7], Ibragimov shows that
(13) {2 e 12 f,(1) — e7¥) dt = O(n~¥?)

implies for large n,
$juisent W dF(u) = O(n~%%), ¢ some positive constant.
In precisely the same way (12) implies
(14) §iuisongt u* dF(u) = O(n, %) as i — oo.
It should be noted that in Ibragimov’s proof, the discrete variable n~* is replaced
by a continuous variable x. In our case, this transformation is invalid, however,
as Ibragimov introduces the transformation principally for notational con-
venience, we can regard x merely as representing n—*. Using (12) in place of
(13) allows us to regard x as representing n,~t. Thus we arrive at (14).
If we now take cn} < z < ent, ),
Siuiss @2 dF(u) < $iui>on;t u' dF(u) = O(n,~¥).

But n,7% < z7%(n,~Ycen,})? < z7%(cA)® where A4 is an absolute constant whose
existence is assured by the definition of {n;} and hence
(15) $upsz WdF(u) = O(z77%) as z— oo .
Similarly, when 6 = 1, by using (15) we can extract directly from [5] that

{7t w* dF(u) = O(1) as i— oo .

Again, taking n} < z < n},,

V2, w0 dF(u)| < |§u1<np @ dF )] + [ 4 <quis. ¥ dF(1)]
é 0(1) + z Sni%<|u|§z uz dF(u)
= O(1) (by (15) and the definition of {n}).

Theorem 1 is now complete.
Theorems 2 and 3 follow in a similar manner from their counterparts in [6].

ProoF oF THEOREM 4. Firstly we show that (11) = both E|X;|*+? < oo and
EX/=a;,j=1,2,.--,k + 2. From the lemma in Heyde [3], we know that
for any nonnegative function g(n) such that >;_, n~'g(n) < oo, there exists an
infinite subsequence {n,} of the positive integers such that g(n;) — 0 as i — oo,
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n., > n; for all i and lim,_, n,,,/n, = 1. Hence from (11) we know such a
subsequence exists satisfying
(16) sup, |F, (x) — G, (x)| = o(n;ty, i—o0.
By Theorem 2, (16) implies

i) EJX*"" < coand EXJ/ =a;,j =1,2, -+, k + 1,
il) §us, [u[***dF(u) = 0(z7*) as z — oo and
iii) lim, . {7, u*** dF(u) = a,,,.

Clearly when k is even, we have E|X,|*** < oo as desired. However, when k is
odd, we need to return to Ibragimov [6] using his equation (3.6) to prove that

(17) Yo poies gg,<1 — exp {(it)mn—akw,, <7,tz>})(1 — 1) dt| < oo

where by Theorem 3 of [6],

10 = exp {3 + za2 W, o pommsva, (1))

and |0, () = o(l)as t —> 0. As |a + ib| = |a| or |b], we find that

(18) S1o et | (3 et R (m,, <_n’_é>> (1= t)dt' < ool

Using now a technique similar to that in [6], we have

Z:Lozl n_% S|u|>niTk |”|k+1 dF(ll) < oo

where T, = (2(k + 3)(k + 7))~t. Furthermore, it is well known that for fixed
a> 0,
E|X|¥*? < oo <= Yz, nt*P{|X,| > ant} < oo .

We already have, howevér, that

o > 2a nt S|u|>n&T,, lulk“ dF(u) = ¢ 37, n S|u|>nﬁT,, dF(u)

and hence E|X,|*** < co. Since both odd and even k have now been considered,
we have (11) = both E|X,|*** < co and EX,/ = a;, j = 1,2, ...,k + 2 for all
k. In view of this result and using Theorem 3 of [4], Part A of Theorem 4 is
true. ,

To prove the rest of Theorem 4, it remains to consider the case of k odd.
For X, symmetric, we have (11) = E|X,|*** < oo and (from expression (12) of
[4]) that

E|X|*** < oo = (¢ |w,(t)|t71dt < 00, 4> 0.

Also from Section 3 of [4}, {#|w,(t)|t7*dt < co =(11). Hence, Part C of
Theorem 4 is established.
With X, now satisfying the conditions of Part B (X; no longer necessarily
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symmetric), we define
o) = fi) — U (EX) .
s!
From Lemma 2 of [4], we know for 4 > 0,

i 1B di < o0 = §¢ wy(D]t~dt < oo

Treating Im(B(7)) in the same way as Re(f(7)) is treated in the proof of Lemma
2 of [4], and using the fact that b,,(u) = sinu — Yk, (—1)°(u*+/(2s 4+ 1)!) is
of constant sign for # > 0, that

§it 7 449§2 by a(xt) dF(x)] di < oo
and that
(& 7Y Ref(?)| dt < oo,

it readily follows that E|X|***In (1 + [X|) < oo = (¢ ¢7%B(1)| dt < co. Fur-
thermore, directly from [4], we have {§ r7*|w,(f)| dt < co = (11) and hence
ElX|**In (1 4 |X,]) < oo = (11).

Finally we show that (11) = {# ¢=*|Imp(t)| dt < oo by the use of expression
(31) of [4], and the subsequent work with f,(¢) and g,,() in place of |f,(¢)|* and
|9%:(t)|*. This completes the proof of Theorem 4.
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