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ON ERRORS OF NORMAL APPROXIMATION

By R. N. BHATTACHARYA
University of Arizona
Let Q, be the distribution of the normalized sum of » independent
random vectors with values in R¥, and @ the standard normal distribution
in Rk, In this article the error |§ fd(Qn — ®@)| is estimated (for essentially)
all real-valued functions f on R*¥ which are integrable with respect to Q,
when sth moments are finite, and for which the error may be expected to

go to zero. When specialized to known examples, the (main) error bound
provides precise rates of convergence.

0. Introduction and summary. In this article we study rates of convergence
for the classical central limit theorem. For the sake of simplicity let us assume
in this section that {X, : n = 1} is a sequence of i.i.d. random vectors with values
in R¥(k = 1) and that

(0.1) EX,=0, CovX,=1I, p,=E|X]|}< co.

Here I is the identity matrix. The classical central limit theorem asserts that
the distribution Q, of n=}X; 4+ ... + X,) converges weakly to the standard
normal distribution ® on R*, as n — co. This means that

0.2) lim, .. [{ s fd(Q, — ®)] = 0

for every bounded measurable real-valued function f on R*¥ whose points of
discontinuity form a ®-null set. It is reasonable to expect that the rate of con-
vergence in (0.2) will depend on the range M(f) of f (see (1.6)) and on the
average oscillation function (see (1.3))

(0.3) B(e: @) = {0, (x, )D(dx) (¢ > 0).

Indeed, a variant of a general theorem due to Billingsley and Topsge [9]
(Theorem 1) proved in [3] (Theorem 1’) shows that in order that the relation

0.49) lim,, sup;e - |§ g fd(P, — @) =0

be satisfied for a given class & of bounded Borel measurable functions on R*
and for every sequence of probability measures {P,: n = 1} converging weakly
to @, it is necessary as well as sufficient that one has

(0.5) SUPse - My(f) < o0, lim, ,sups. @c: P)=0.

The second inequality (1.11) in our theorerh implies, when specialized to r = 0,
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816 R. N. BHATTACHARYA

s = 3, that one has
(0.6) [§ze fd(Q, — @) < &' My(f)osn™t + ¢/@y(ci'psn~tlogn: @) .

Thus it provides an effective bound for every bounded almost surely (w.r.t. @)
continuous f (uniformly over every class & satisfying (0.5)). Further, (1.10)
shows that the factor log » in (0.6) may be removed if one replaces @, by the
function (of ¢)

0.7) @ge: D) = sup,cp vy (c: D),

where f, is the translate of f by y (see (1.5)), so that one obtains the important
inequality

(0.8) 1§ fA(Q, — D) < & My(fhogn~ + cydy(cspin: @) .

The applications (2.1), (2.5) follow from (0.8). The inequality (0.6) is still
useful in estimating some elusive quantities like the Prokhorov distance between
Q, and @ (see [5], Application 4.3, pages 472-473), and error bounds for
functions f for which @, is small and @, is large. As special cases of (0.6), (0.8)
(or (2.1), (2.5)) one can obtain virtually all known ‘uniform’ or Berry-Esseen
type bounds. Because M,(f) = oo if f is unbounded (and so may be @(c: D)),
(0.6), (0.8) are unsuitable for unbounded f. It turns out that the proper things
to look at are M,(f), @,(c: @, ) defined by (1.4), (1.6), (1.7), (1,9) and (1.13),
and one obtains the very general inequalities (1.10), (1.11). This takes care of
all functions which are integrable with respect to Q, under the given moment
condition. Application 2 provides the simplest examples of unbounded functions
(namely those which are Lipschitzian) to which (1.10) may be applied; however,
the same inequality (2.7) would hold if @,(c: @, ) < d,e%(¢ > 0), where g, @,
are defined by (1.13), (1.7). Perhaps of greater significance is the fact that (even
for bounded f) (1.10) uses different features (of growth and average smoothness)
of f for different values of r. This enables one to obtain the very general in-
equality (2.13). In turn this inequality yields essentially all known ‘nonuniform’
rates (e.g., (2.16), (2.17)) and the ‘mean central limit theorem’ (2.18).
References to some earlier work are given in Section 2. It should be mentioned,
however, that even for the i.i.d. case and bounded f the present results are
significant extensions of corresponding results in [5] (Theorems 4.1, 4.2). For
general non-identically distributed random vectors the theorem improves earlier
investigations [2]-[4] of the author in.two directions. First, with s = 3, it relaxes
the moment condition assumed earlier (namely, p,,, < oo for some 4 > 0).
Secondly, of course, it is much more general in scope, being able to deal with
all integrable functions and yielding existing as well as new nonuniform rates.
The proof of (1.10) is based on a number of technical lemmas which are stated
in Section 3 without proof. Some of these are either available in the current
literature or easily deduced from them. The other lemmas are new. Detailed
proofs of all lemmas will appear in [6]. To facilitate comprehension of the
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proof of the theorem we briefly sketch the main ideas here. If the distribution
Q, of X, has an integrable characteristic function (ch. f.) Q,, then the ch. f. 0,
of Q, is integrable for all n, and one can use Fourier inversion to obtain the
density of the signed measure Q, — @ in terms of 0, — d. To get an estimate
of the variation norm ||Q, — ®|| one may integrate the bound of the density so
obtained over R*. Although precise estimates of §, — @ are available, integration
over the unbounded domain R results in a loss of precision; to overcome this
one also incorporates estimates of D*(Q, — () (where a is a nonnegative integer
vector and D= is the ath derivative) in this scheme and uses the powerful
Lemma 8. Since this Lemma can be used only if § ||x|/**'Q,(dx) is finite, one
has to resort to truncation. Lemmas 1, 5, and 6 allow one to take care of the
perturbation due to truncation, and a fairly precise estimate of ||Q, — ®|| is
obtained. For integration of unbounded functions, however, one needs to
estimate { ||x||"|Q, — ®@|(dx), where |Q, — ®| is the total variation (measure)
of 0, — ®. The procedure for this is similar; one looks at the signed measure
[|x||"(Q, — @)(dx), where r, is defined by (1.9), instead of Q, — ®. We use 7,
instead of r because ||x||" is not a polynomial for odd r and the Fourier-Stieltjes
transform of ||x||"(Q, — ®)(dx) for an odd r is not nearly as well-behaved as that
for an even integer r. However, this change from r to r, does not entail any
essential loss of generality; for one merely changes @, to @, (see (1.7)) and,
the normal density being rapidly decreasing at infinity, this change is insignificant.
In the general case (i.e., when X, does not have a density) we smoothen Q, by
convolving it with a smooth kernel K|, apply the above argument to (Q, — @) x
K, and, for final accounting, use the general Lemma 7. Although in the actual
proof one uses expansions of 0, (and D*Q,) beyond the first term @ for greater
precision, the ideas are quite similar to those explained above.

It is noteworthy that the present method allows one to obtain analogous
significant extensions of existing results on asymptotic expansions in case Q, has
a density (as given in Bikjalis [7], Theorem 3) or when Q, satisfies the so-called
Cramér’s condition (as given in Bhattacharya [5], Theorem 4.3). Indeed, the
derivation of such an extension in the first case using Lemma 3 is simpler (than
the present proof), since, as indicated in the sketch above, the smoothing by
convolution in the last step may be avoided. These new results and details of
their derivations will appear in [6] and will not be discussed any further here.

1. Notation and the main result. Let X;, ..., X, be n independent random
vectors with values in R*¥. Throughout this article we assume, without any
essential loss of generality,

(1.1) EX;=0 (1<j=<n), n'Y"_,CovX,=I

where EX; is the expectation (vector) and Cov X; the covariance matrix of X,
and [ is the k X k identity matrix. We write

(1.2) e, =EXI" (I=j=m, p=nr"Ti0, (5>0),
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where || || denotes Euclidean norm in R*. Let f be a real-valued Borel measurable
function on R*. We define

(1.3)  a,(xe) = sup{|f(y) — f)]:y e RA [ly — x| <&} (xeR:e>0).

For a given measure v on R* (measures and signed measures are defined on the
Borel sigma-field) define

(1.4) @y(ev) = (g, @y(x, e)u(dx),
@y(e:v) = SUP,cpr Dp (61V)

where the translate f, of f is defined by

(1.5) f,(x) = flx +y) x e R*.
For a given nonnegative integer r define
(1.6) M,(f) = sup,epe (1 + [Ix]|") ()] r>0,

M(f) = sup{|f(x) — f(y)|: x, y e R}

For a given finite (signed) measure v on R* and for a given r, > 0, define a new
(signed) measure v, by

(1.7) Vro(dx) = (1 + [[x]|70)u(dx) , n>0,
Yg = V.

Let Q, denote the distribution of n~% 3}%_, X; and let ® denote the standard
normal distribution on R*. Our main result is the following.

THEOREM. Assume
(1.8) o < n=2(8k)
for some integer s = 3. Let r be a nonnegative integer, 0 < r < s, and define
(1.9) ry=r if r iseven,
=r+1 if r isodd.

There exist constants c;, ¢/ (i = 1,2, 3) depending only on k, r, s, such that the
inequalities
(1.10)  [§fd(Q, — )| < &, M,(f) max {onn="=2:m =3, -, s}

+ cyd,(csppn7E: (I),_o) ’
and
(L11) [V fd(Q, — )| < ¢/ M,(f) max o, n="=:m =3, ., 5}

+ ¢/@(ci/psn~tlog n: @)
hold for every real-valued Borel measurable function f on R* satisfying

(1.12) M(f) < .
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Here

(1.13) 9(x) = (1 + |Ix|I)7fx) i r>0,
= f(x) if r=0.

Assumption (1.8) may be replaced simply by

(1.14) o3 < oo,

ifr=0.

2. Applications.

2.1. Let A be a Borel subset of R*. Take r = 0, s = 3, f = I, (the indicator
function of A) in the theorem. Inequality (1.10) then reduces to

(2.1) 1Q.(4) — O(A)| < ¢, 05n7 + ¢y 5UP, ez P(IA) + y),
where
(2.2) e = cpont,

04 is the topological boundary of A and (9A)’ is the set of all points whose
distances from 04 are less than ¢’. This follows from

(2.3) MI)=1, wr (%, ) = L46(x) , xeRk.
Denoting by &7 *(d: @) the class of all Borel sets A satisfying

(2.4) sup, e gk Q((04)° + y) < de*, e>0,
for a given pair of positive numbers «a, d, one has (from (2.1))

(2.5)  SUPsen o [Qu(A) — DA S eypnt + cyd(eppn iy,

whenever (1.14) holds. Examples of various classes of sets A satisfying (2.4)
uniformly for « = 1 and some d are given in [3]. Among these is the class &
of all Borel measurable convex subsets of R*. Inequalities similar to (2.1), (2.5)
were first obtained independently by Von Bahr [14] and Bhattacharya [2] under
somewhat more stringent moment conditions. For the special class & (replacing
7% by € and a by 1) inequality (2.5) was also obtained by Sazonov [13] in
the i.i.d. case.

2.2. An immediate application of (1.10) is to a function f satisfying

(2.6) lf(x) = fO = dillx = ylI*,  M(f) < o0, x,yeR",

for some a, 0 < a < 1, some d;, > 0, and some integer r, 0 < r < s. For such
a function (1.10) yields

2.7 I§ 2 fd(Q, — @)| < ;M (f) max {p,n~™2:m =3, ...,s}
+ cady(csp5n7 )% .
2.3. For an application of a different nature, let 4 be a Borel set and define

(2.8) f(x) = (1 + d*(0, AN, (x) , xe Rk,
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where
(2.9) A =4 if O0g¢R",
- = R4 if OeRk,
and d(0, 94) is the Euclidean distance between 0 (the origin) and 94. Note that
(2.10) M(f)<1.

Taking r = s in the theorem, one has
9C +y +2) — 9(x + )|
= T+ [+ )P0 (e + 0 + 2) = flx + )| + e
(2.11) = (LA flx 4+ yIP)7 (1 + @0, 04 0e(x + y) + e
= (14 [d(0, 94) — eJ)(1 + @(0, dA) (x4 y) + €5¢
= clpa(x + p) + ¢, 7] < & 0 < e < ¢y,

for a suitable constant c,. The constants c;, ¢, ¢, as well as c;—c,; below depend
only on s and k. On integration with respect to D, , (2.11) yields

(2.12) @y(e: Dy) < cgsUP,epe D (0A) + ) + c4¢ .
Hence (1.10) reduces to
(1 4+ d*(0, 94))|Q.(4) — ©(4)|

(2-13) = |Yarfd(Q, — D)
S cymax {p,n~ "2 m =3, ..., s} 4 ¢;suUp,c @, (@4)" + ),

where

(2.14) ¢ = cpposnt.

For the class & of convex sets one has (see von Bahr [14], Lemmas 8, 9)
(2.15) SUPge, D, ((3C) + ) < ¢y’

Using (2.15) in (2.13) one obtains a result announced in Rotar’ [12] (Theorem 2):
(2.16)  supge. (1 + d¥(0, 3C))|Q,(C) — V()

< ¢pymax{p,n~™:m =13, ...,5}.
Taking C = (— o0, x], x € R, one obtains
[Fo(x) — @)

(2.17) Sce(l + min{jx:i=1, ...,k

X max {p,n~™P:m=3,...,5, x=(x,--,x)ecR",
where F,(-) and @(-) are the distributions of Q, and @, respectively. For k = 1,
(2.17) was proved by Nagaev [11]in thei.i.d. case. Fork =1, (2.17) 1mmed1ately
yields the so-called mean central limit theorem:
(2.18) 1F = @ll, = (Y [Fulx) — @(x)|7)»

< ¢ max {p,n~ " m=3,..., s}
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for all p > 1/s. Here ¢, depends only on s and p. Inequalities like (2.18) were
first obtained by Agnew [1] and Esseen [10]. '

3. Proof of the theorem. We shall only give a detailed proof of inequality
(1.10), and outline the modifications necessary to prove (1.11). Note that all
the applications above stem from (1.10).

We need some additional notation. Let y, ;(f) denote the rth cumulant of the
random variable (¢, X;), where { , ) denotes Euclidean inner product, ¢ € R*,
and r is a positive integer. Define

G- 1) = 71 Bt )
P (it) = { o Krgeali0) | gl }
' (r +2)! (m + 2)!
where the summation }* is over all m-tuples of positive integers (r, - - -, r,,)
satisfying

(3:2) Ll =r.
Associated with the polynomials P, are the functions P, defined by
(3.3) P(x) = )" § g exp{—it, xy — |lf[}P (i) dr .

It is easy to show that P, is a linear combination of the standard normal density
on R* and some of its derivatives. For convenience we write

(3.4) Pinn=1, te Rk,
Py(x) = (2m)~** exp{—3||x[|'} , xeR".
We also define truncated random vectors
;=X if |X[<n

(3.5) =0 if || X;|| > nt,

Z,=Y; — EY,, 1<j<n.
Write
(3.6) D=n'3",CovZ,, a,=nty"  EY

and define polynomials P,’ as in (3.1) with y, ,(¢).replaced by the rth cumulant

of {t, Z;y. If D is nonsingular, define functions P,” by

(3.7) P,(x) = (2z)~* { g exp{—i{t, x) — L1, DY}P,'(it) dt , r>0,
P/(x) = (2r)~**(Det D)~* exp{—4(x, D7'x)}, xeRk.

Let Q,’, Q,” denote the distributions of n—%(Z 4+ Z)andn (Y, - -+ 1),

respectively. We also write

(3.8) o = n7t ZhL E|Z4|]". .

Finally, if D is nonsingular we let B denote the unique symmetric positive

definite matrix satisfying

(3.9) B*= D',
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The following series of lemmas will be needed. Detailed proofs of these will
appear in the forthcoming monograph [6], although some of them are essentially
proved in the literature.

LEMMA 1. Let p, < oo for some integer s > 3. Then one has

(3.10)  la,|| < kin-e=p,,  Kt, Dty — [[fff| < 2kn~*P%,  te R,
and
(3‘11) pr, é 2rpr lf 2 é r é S,

g 21'"(7'—8)/2‘0s l:f r > s.
This type of estimate was earlier obtained by Bikjalis [7] (pages 411-412),
[8] (Lemma 10).

LEMMA 2. Let m be an integer not smaller than three. For every integer r < m
and every nonnegative integer vector « = (ay, - - -, @) satisfying o, + - -+ 4+ a, <
3r, one has

((DBYD] < el + g5/ =)(1 + [[{Pr-e=) - oy

where D* = (0/0t,)1 - - - (0/0t,)* and c,, depends only on r, m, k, and a. If
a, + -+ + a, > 3r, then D*P,’ is identically zero.

A special case of Lemma 2 appears in Bikjalis [8] (Lemma 17).
LemMmA 3. Suppose D is nonsingular. Let
(3.12) 7 =07 N EBZ|"

Let m be an integer not smaller than three. Then there exist two positive numbers
Cig5 Cy; depending only on m and k such that if

(3.13) Il < cwn™2"" [y s
then
(3.14)  |[D[IT5-2 E(exp{CiBt, n=3X,)}) — = n=*P,/(iBt) - exp{—4]|¢|}]]
A 11 e o | L R o S| LT
for every nonnegative integer vector a = (a,, - - -, ;) satisfying a, + -+ + a, < m.
Special cases of this lemma appear in Bikjalis [7] (Lemma 8), [8] (Lemma 16).

LEMMA 4. Suppose (1.8) holds for some integer s > 3. Let Q,' denote the
characteristic function of Q,'. If
(3.15) ] < n¥/(16p5),
then
[(D=Q)O < el + [[f]| 1+ %) exp{—Fl|e]|}
for every nonnegative integer vector a = (a,, - - -, a,). Here c,; depends only on a
and k.
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This result is essentially due to Rotar’ [12] (Lemma 7).

LEMMA 5. Suppose (1.8) holds for some integer s = 3. Then D is nonsingular,
and for every integer r, 0 < r < s — 2, one has
nPUx) = PI(x)] = eapynm V(1 A ||x]P7 ) exp{—3{Ix]|* + [Ix]I} ,
(3.16)  nP(x + a,) — P,(x)|

< cupun™ I 4 [P - exp{—HldlP + e} e R,

where c,y, ¢y depend only on r, s, k.

LEMMA 6. Assume (1.8) for some integer s = 3. Recall that Q,” is the distri-
bution of n(Y, 4 ... 4 Y,). For every integer r, 0 < r < s, there is a positive
number c,, (depending only on s, k, and r) such that

Vet [IX171Qn — Qu"[(dX) < enp,m= 727,
where || denotes the total variation (measure) of a finite signed measure .

LEMMA 7. Let p be a finite measure and v a finite signed measure on R*. Let ¢
be a positive number and K, a probability measure on R* satisfying
(3.17) B=K{x: x|l <e) >3-
Then for each real-valued, Borel measurable bounded function f on R* one has

e fd(pe — )| = 2B = D7[[Ifllall(1t = v) * K| 4 @422 o])],

where ||f||l. = sup{|f(x)|: x € R*¥}, |v| is the total variation of v, and * denotes
convolution.

This is proved in [5] (Lemma 2.2, inequality (2.14)). Finally one has

LemMMA 8. Let h be integrable with respect to Lebesgue measure on R* and satisfy

Ve [[X][***A(x)] dx < oo
Then there exists a positive constant c,, depending only on k such that
|14]]y < ¢ max {||DPA:0 < B+ -+ + B < k + 1],

where || ||, denotes L*-norm, h is the Fourier transform of h and B = (By, - -+, B)

is a nonnegative integer vector.

The above lemma is perhaps well known to analysts.

After these preliminaries we proceed to prove (1.10). The constants ¢,,—c,,
below do not depend on anything other than r, s, k. The symbol § # dy denotes
integration of 4 with respect to u over the whole space R*. The characteristic
function of a probability measure Q is denoted by 0.

PROOF OF INEQUALITY (1.10). Let @', ®” denote normal distributions on R¥,
@’ having mean zero and covariance D while @’ has mean —a, and covariance
I. One has

(3-18) [§fd(Q. — @) = [§fd(Q. — Q)| + [V fd(Q," — D)| .
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By Lemma 6,

(3:19) (1@, — Q)| £ M) § (1 = III)IQ. — Q@)
= 2eu M (f)p,n= 7P
Also,
(3:20)  [§fd(Q." — @) = |{ [, d(Q." — P") = [ fo,, Q" — )|
+ 1§ /e, d(@ — Q)| + [{ fo,d(@ — )]
But, by Lemma 5 (with r = 0),
1§ /o, d(@" — @) = M,(f) § (1 + [|x + a,[[)]|Q" — P|(dx)
= M) S (1 + 27[an]|” + 27[[x[|")| @ — @|(dx)
(3:21) = M (NP — Df + 27][a,|["]|®" — @]
+ 27§ [P — @|(dx)] = eoM(f)o, =7,
1§ fo, d(@ — @) = MNP — @[] + 27]la,||"[|® — @]
+ 27§ X1 P — @"|(dx)] = oM, (f)o,mm 7
Note that ||a,|| < p,n ¥ < 1/(8k) (by Lemma 1 and (1.8)). Hence (3.18)
reduces to
(3-22) [ fd(Qu — D) = M (fo,n~ 7" + [( [o,d(Q)) — D) -
To estimate the second term on the right side of (3.22) we introduce a kernel
probability measure K on R* satisfying
(3:23) Kx:Ixl <1 =2,  §[Ix[[**"K(dx) < oo,
Rry=0 if |[ff = ¢y, teR:.
One construction of such a probability measure is given in [5] (Lemma 3.10).
For ¢ > 0 define the probability measure K, by

(3.24) K.(B) = K(¢7'B) Be % B = {e'x:xeB}.
Then one has, by (3.23),

(325  K(x:lll<ehz=3, R@O=0 if || = cofe.

Now

1§ fe, d(Q." — @)
= [ (1 + [Ix + a,|[")7fx + a,) - (1 + [[x + a,]|"0)(Q." — ©')(dx)]
S+ (x4 a0 (x + a)(1 + [[x]["0(Q," — @')(dx)|
+ M, (F) S Ix + allo — [[x][(Qu" + P)(dx)
(3:26)  §[lIx + @]l — [Ix[|0|(Qu" + P')(dx)
< rollaall § (X107 + [lanl|)(Q@a" + P7)(dx)
S ropn O TVE|nHZy A - 4 2|77 A (8K
+ §(Ix][707* + (8k)~"0+)D(dx)
+ V(X7 + (8k)77o™)| D" — @|(dx)] = ey, n= 7",
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using Lemmas 1, 4, 5 and inequality (1.8). Hence
(3:27) [ fd(Q. — P)| = eu(M(f) + M, (f))p,n= 7"
+ 1§ 96,1 4 [[x{[")(Qu" — P')(dx)|
where g, (x) = g(x + a,). By Lemma 7,
(3.28)  [§ 94,01 + |[x]["0)(Qn" — P")(@x)|
= 2(SqueRk lg(x)l)ll(Q'n' - (D')ro*Ks” + 26}9(25: (D;o) ’

where

(3.29) (@4 — @), (dx) = (1 + [[¥]0)(Q, — P')(dx) .
Choose

(3.30) e = 16¢y, 0,07t .

By Lemma 8, writing |a| for the sum of the coordinates of a vector a,

(3‘31) ”(Qn' - (D,)ro * KEH é c30|p1+,92|§k+r0+1 S IDIBI(QA%' - q)’)(t)DhK;(t)l dr.
Since DAK (1) = 0 if ||#]| > n*/(16p,), and

(3.32) |DER (1)) < § €| xB|K(dx) < ¢y »

where one has x* = x,*1 . . . x,* for a nonnegative integer vector a = (ay, - - -, a;),

(3.33)  §[DWQ, — D)(0) - DER,(1)] dt < e Vynsabiaapyn DO, — @)(1)] dt .
Now ) .
$(1ensnt/aseg) |DA(Q," — D')(1)| dt
= Vinensa, |DA[Q,/(f) — Tkisgt n=m 2P (ir) exp{—§<t, DiH}]| dt
(3.34) + § |DA[ Y ket nmm' 2P (i) exp{— 41, Di)}]| dt
+ Sy <iensagn |DBQ, ()] dr + S iap<iicisann |D#® (1)) dt
=L+ 5L+1+1,,
say, where (using Lemma 1)
A, = cyy(n¥+o2 o] IV EFHD > C32(n(k+8)/2_(k+2)/2/‘032k+8+2)1/(k+8+2)
(3.35) = Cyy(nCV2[p YV ket
A, = nt/(16p;) .
The positive constant c,, is so chosen as to satisfy
(3.36) DI A, < el (B[} 5455
Since ||D|| £ 5 and ||B||* = ||D7'|| = % by (3.10) and (3.11), such a choice is
possible (take ¢;, = (4)(%)cs). By Lemma 3 we then have (using Lemma 1)
(3'37) Il = ca4||Bllk+s+2pfc+s+2”_(k+s)/z = ca:sps”_(a—z)/z (N
By Lemmas 1, 2,
(3.38) § [ DAL= (it) exp{—4<t, Diy}]| dr

—r'/3 0 EE S
S Colt 7004 S €277 0,4,
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fl<r<s—2 Ifs—2<r <k-+ s, then
(3-39)  §|DA[n—r P (if) exp{—3<t, DOY| di < cun=Rol,

_S_ c3727"+2n—'r'/2+(1"+2—3)/2‘os —_ csan—(a—z)/zpa .
Hence

(3.40) I < ¢y max {p,n="P2:m =3, ...,5}.
By Lemma 4 and (3.35)
Iy = $ (4, <insann |DMQ, /()| dt
(3.41) = Cuo Spansa, (1 [[7]'"0) exp{—o&]¢||°} dt
S oAz FHED (L A o] P)][2]|FFe*2) exp{— [t} dt
< cyp,n=I1
Finally, again using Lemma 1,
L= 4,<imsann |Dﬁ1®'(’)| dt
(3.42) = o Spsa, (1 []8]"%) exp{—§||]|*} dt
CoAZEHFD G (1 o [Jo|[P)][e][*+e*2 exp{—§||#]|*} dt

c43 pa n-(s—’)/z .

IIA - IA

It follows that
(3.43) Q. — PV*K,|| < c,max {p, ,n~™:m=1,...,5 —2}.
Next observe that by Lemma 5,
|@,(2e: @y ) — @,(2¢: D@, )|
(3.44) < S, e i § @, (%, 26)| D} — @, |(dx)
= 2M, (NP7 — @, || < e M, (f)o,n™ =572,
Using (3.43), (3.44) in (3.28) and noting that

(3.45) M, (f) = supere (1 + [[X]|"0)7| f(%)]
. 1+ []xI"
= Mr(f) SUp, e gk 1t ”x“"o = 2Mr(f) ’

we get the desired inequality (1.10). []

The proof of (1.11) differs from that of (1.10) principally in the choice of a
kernel probability measure. For (1.11) one needs to choose a probability
measure K’ (in place of K) with compact support (i.e., assigning probability
one to a compact set). This rules out the possibility of K’ having a compact
support (i.e., vanishing outside a compact set). However, it is necessary that
K’ vanishes at infinity rapidly. For such a choice see [5] (Corollary 3.1). By
a different smoothing inequality than the one used to obtain (2.12) one obtains
(see [5], Corollary 2.1, whose proof extends almost word for word to the present
case)

(3.46)  [§pefs,d(Q, — @)
< $ee(Ife,] + @4, (o NA(Q) — @) 5 K[| + dy, (26: D),
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where K.’ is obtained on replacing K in (3.24) by K’. One now chooses ¢ =
Cypsn~t log n and proceeds with the estimation much the same way as above.
One important difference is that (Q,’ — ciy)k; does not vanish outside B, =
{t:]]f]] £ cunt/p,}, and since the estimates of D¥(Q,’ — @) are available only
in B,, one has to do some extra estimation outside B,. It is here that the fast
rate of convergence to zero of K’ at infinity is made use of (see [5], proof of
Theorem 4.2, to get an idea of this).

REMARK. By a fairly straightforward truncation argument one can extend the
theorem to the case when only p, is assumed to be finite. This leads to multi-
dimensional extensions and refinements of Liapounov’s and Lindeberg’s central
limit theorems. Although these refinements are new we have not derived them
here for fear of overburdening the notation, particularly since the bound would
then have to be expressed in terms of the tail behavior of X ;’s. This will
appear in [6].
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