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CENTRAL TERMS OF MARKOV WALKS

By L. E. MYERS
Duke University

A {0, 1}-valued discrete time stochastic process g = {fx};-, Will be re-
ferred to simply asa walk. The notion of central (modal) term of a binomial
distribution is generalized to the conditional-on-the-past distributions of
Nth partial sums of walks. The emphasis here is placed on the smallest
possible central term Va(N) within a given class 4 of walks. If 4 consists
of (i) all walks, (ii) all stationary independent walks, (iii) all stationary
Markov walks which are invariant under interchange of 0 and 1, then,
respectively,

@) (V- ValNy-1,
(ii) {N# - VaN)}F-1s
(i) {N- VaN)/(log N)}F_,

are bounded sequences which are bounded away from zero.

1. Introduction. We say 8 = {8,}:., is a walk if 8 is a {0, 1}-valued discrete
time stochastic process. We sometimes will write 3(s) in place of P[8;- - -8, = 5],
for s {0, 1}*. A walk B is stationary provided B(s) = $(0s) + B(1s) for all finite
binary sequences s. f is invariant (under interchange of 0 and 1) provided S(s) =
B(s") for each finite binary sequence s, where s’ is the sequence obtained from s
by interchanging 0 and 1. B is a Markov walk if P[B,,, = 1| B+« B = 8-+ -8] =
P[Biyy = 1|8, = 5] for all possible k and s, - - - s

For N a positive integer, and 8 a walk, define the N-central term of 3 by

(1.1) Iv(B) = SUPo<icensse 0,1k MAKog, <y P[0 Bis = 1| Br v+ B = 5] 5
ifk=0o0r P[B,--- B, = 5] = 0 we set
Py Biri=r|Bi - Be=51=P XX Brri=1T]-

Of special interest is the smallest possible N-central term within a given class
A of walks,

(1.2) V4(N) = inf,. , g4(B) .
It was shown in [6] that if W is the collection of all walks, then
(1.3) 1/(N+ 1) £ Vy,(N) < 2e/(N + 1) forall N> 1.

The lower bound is obvious and the upper bounds are obtained by considering
the “fair die” processes (whereby $, is determined by tossing a fair coin and the
sojourn times are determined by repeatedly rolling a fair (N + 1)- snded die).

If SI is the set of all stationary independent walks, then

(1.4) Vai(N) ~ (2/zN)*,
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meaning the limit of the quotient tends to 1. (1.4) holds because the binomial
distribution with smallest central term has success probability p = 1 for N odd
and p = N/2(N 4 1) or p = (N + 2)/2(N + 1) for N even. In all cases p ~ 1
and (1.4) follows from Stirling’s formula.

Our main objective now is to get information about the asymptotic behavior
of Vgu(N), where SM is the set of all stationary Markov walks. While we have
not been able to come up with a statement as strong as (1.3) or (1.4) for this
class, we find that by restricting attention further to the class SIM of stationary
invariant Markov walks,

(1.5) N Vsm(N)/(log N)H}5.
is a bounded sequence which is bounded away from 0. In particular,
(1.6) Vsm(N) < 4(log N)}/N forall N> 12,

whence Vg, (N) satisfies the same inequality.

At this point we cannot give compelling reasons for the invariance restriction,
though the stationarity condition seems natural enough. In[1] Blackwell defines
a stationarity operator which preserves optimality, whence V,,(N) = Vy(N) for
all N> 1, where S is the set of all stationary walks. It is easy to see that the
invariance operator I defined by (I8)(s) = 4[B(s) + B(s")] preserves stationarity
and optimality, so that, letting 7 denote the set of all invariant walks,

(1.7) Vp(N) = V(N) = Vi(N) = Vi, ((N) forall N> 1.

(1.7) in no way implies the likes of Vgy(N) = Vgy(N). Unfortunately, both
the stationarity and invariance operators can lengthen the memory of a process,
and we may have lost some generality. In this connection, it is known that
Vi(2) = Vau(2) = Vam(2), while V,,(3) < Vgiy(3); see [3] and [5].

Henceforth we let B, = SIM and Vy(N) = Vgu(N). Note that a stationary
invariant Markov walk is just a Markov chain on {0, 1} with 1n1t1al distribution
(4, %) and transition matrix of the form (*3° ,¢,).

RemaRrks. The following statistical game is discussed in [6].

Let N be a strictly positive integer. Player 2 selects a {0, 1}-valued discrete
time process 8 = {B,};_, from the collection W of all such processes. Player 1
(the statistician) observes realizations of as many terms of 3 as he wants, and
then predicts the sum of the next N terms. 1 wins one dollar if his prediction
turns out to be correct, and wins nothing otherwise.

Of course, 1/(N + 1) is what the statistician expects to get in this game by
waiving his right to observe part of 2’s process and arbitrarily predicting at the
outset. The inequalities (1.3) then suggest the game to be “of a hopeless order”
for the statistician; for the purpose of prediction, there are processes so “random”
that he can learn very little about them by observing them. Asymptotically
speaking, it is as if he has been asked to produce a procedure so “robust” that
he can do little better than use a mindless procedure.
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The natural thing to do in attempting to make this game more interesting (or
at least more profitable) for the statistician is to restrict further the class of
processes from which 2 may choose his strategy. In this way we get a new
class of games whenever we alter the rules by replacing W with some subset 4
of W. The value of the Nth game will always exist and equal ¥ ,(N) because
W is compact [1]. '

2. An upper bound for Vy(N). Let (r|1) = P[Z X4 8, = r| B, = 1]; the de-
pendence on N is suppressed.

Using the Markov property, stationarity and invariance, one can show that
forall feB,and 0 < r < N,

P2V, B =] £ maxg, oy B(r|1),
whence by (1.1)

2.1) 9v(B) = max,.,oy B(r|1).
It follows that
(22) Vl(N) = infﬁe By maX,<,<y IB(rl 1) .

As a special case of (1.2) in [2] (taking ¢ = § = a), or directly, using (3) of
[6] and the method of Lemmas 1 and 2 in [6], it may be shown that if 8 ¢ B,
has transition probability (t.p.) a = 1 — b, then

(2.3) B(r|1) = b¥ for r=N
— Zigo [({)(N;:I_I)GZibN_m + (Z)(N—Z—l)a2i+1bN—2i—1] for r < N.

Combining this with (2.2) yields '

(2.4) Vi(N) = infogogypmioo Max [6Y, maX,g, oy X0 [() (Vi )a oY%
+ ({)(N—{—l)a21+1bN—2i—1]] .
It is clear from (2.4) that the infimum is attained by some a.
LEMMA 1. Let Be B, have t.p.a =1 — b. Then
' gx(B) < max [bY, 2a max, [(¥/D)a'bt¥M-1]] ,

where [ N|2] denotes the greatest integer in N/2.

Proor. For r < N, B(r|1)
= iz [T 4 ()M )art+py-i-i]
< a{min [max, (})a’b"~¢, max, (Y;7;Y)ai 167"
+ min [max, (})a’b"~¢, max, (¥ “7hatb ity
§ 2a max, [([lﬂ:/z])aib[zv/z]—i] ,
the last inequality following from the fact that for m < n and fixed success

probability p, the central (modal) term of the binomial distribution for m trials
is at least as large as the central term for # trials,
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LemMA 2. (%)p™g™™ < (npq)~t foranyl < m < n—1,aslongas2/(n+ 1) <
p=1—-g<(n—="1ln+1)

ProOF. The central term of the binomial distribution with parameters n and
p = 1 — gisdefined ([4], page 151) to be (,)p™g"~™, where m is [(n + 1)p], the
greatest integer in (n + 1)p. The (not necessarily unique) mode of the binomial
distribution occurs at m. Hence (%)p™g"~™ is the central term for any binomial
distribution with m < (n 4+ 1)p < m + 1. Using the Stirling bounds (9.15) on
- page 54 of [4], together with the fact that (})p™g"~™ (m and n fixed) is a maxi-
mum for p = m/n, we have
wp"gr " < Fn(m[n)((n — m)[n)=F < (npg)~+.
THEOREM 1. V(N) < 4(log N)}/N for N = 12.

Proor. Take b = 1 — a = ((log N)}/N)¥¥ in Lemma 1 and note that a satis-
fies the conditions imposed on p in Lemma 2; also, b > 3 and [N/2] > N/3. We
have

2a max; [("/M)a'bV'4-1] < 2a/([N/2]ab)t < 4(a/N)t
< 4(log N)}/N, since 1 —e*<x.
CoRrOLLARY 1. If SM is the set of all stationary Markov walks, then
Veu(N) < 4(log N)t/IN  for N =12.
COROLLARY 2. The minimizing a in (2.4) satisfies (for N = 12)
L — (4(log NYNY™ < a < (A(log N)N)¥ .
Proor. Neither a” nor 4¥ may exceed V(N).
3. A lower bound for V,(N).
THEOREM 2. There exists M > 0 such that Vi(N) > (log N)/4N for all N = M.

PrROOF. Assume N is even; this assumption will be removed at the end of the
proof. Letn = N/2and Cy = 1 — (4(log N)}/N)“¥. Then Corollary 2 and the
definition of V(N) imply
@3.1) Vi(N) = infg <, f(n] 1) ;
as before, a is the generic t.p. for 8. We will show that for all even N sufficiently
large

(3.2) infy, cocy A(n| 1) > (log N)}/(4n)iN
and
(3.3) inf, ., B(n| 1) > (aN)~*.

To show (3.2), assume C, < a < 4. From (2.3) we have

(3.4) Bnl1) 2 T ()b
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The Jacobi polynomial P,‘*#(x) is given by [7] (page 68, 4.3.2):

(3-3) PP (x) = Xioo GEOCTA((x — D/2)((x + D/2)"" .
Taking x = (8* + a?)/(6* — a®), we see that
(3:6) Tz (YEDEBY = (B — @), 0(x) .

We will apply the following result, due to Darboux ([7], page 194, Theorem
8.21.7):
Let @ and j be arbitrary real numbers. Then

3.7 PeB(x) ~ (x — 1)7*%(x + 1)=#2{(x + 1)} + (x — 1)t}=+é
X 2zn)7¥(x* — 1)~ Hx 4+ (x* — 1)ip~+d
for |x| > 1. This formula holds uniformly for |x| > 1 in the sense that the
ratio tends uniformly to 1. For «a = —1 and 8 = 0 the r.h.s. of (3.7) equals
(4zn)~¥(a/b)}(b* — a*)~". From (3.6) and (3.7) we then deduce the existence of
M > 0 such that N = 2n > M implies (for all C, < a < 1)
(3.8) Yz (D(ID@*BV % > (af4zn)t .
Since (a/4zxn)t is an increasing function of a for @ > 0, its infimum over the in-
terval C, < a < } isattained at Cy,. Furthermore, Cy, = 1 — (4(log N)}/N)"/¥ >
log N/2N for all N sufficiently large, because 1 — e=* > x/(x + 1) whenever
x > —1. (3.2) follows from this, (3.4) and (3.8).
We now verify (3.3). Assume } < a < 1. Using the facts that a/b > 1 and
(1) + (7 = (1), we have
Bn[1) = Xizo (Db [(G5) 4 (*71)a/b]
> Zigo (7{)2a2ibN—2i
— Zizo ('nl:)ﬁb%aN—Zi
— (az _ bz)nPn(o,O)((az + bz)/(az _ bz»
= (2zn)~t = (aN)~*

for all even N sufficiently large, uniformly in } <a <1, by (3.7) and the
continuity of f(n|1) in a.
This proves (3.3), which together with (3.2) implies
(3.9) Vi(N) > (log N)}/(4m)N
for all even N sufficiently large.
Since Vy(N) = V(N + 1) for all N = 1, we can remove the assumption that

N is even, provided we replace the lower bound of (3.9) with that of Theorem 2.
This concludes the proof of Theorem 2.

REMARK 3.1. The proofs of Theorems 1 and 2 show that one of B(N|1),
B(N/2| 1) must nearly attain the order of the N-central term if 8 is an invariant
Markov walk. This need not be true if 8 has unequal t.p.’s, and as strong as
the Darboux approximation seems (holding uniformly in |x| > 1), it is not strong
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enough to deal with the asymmetric case, which requires an approximation of
P,‘*®(x) that permits « and 8 to depend on n and x.

REMARK 3.2. R. L. Dobrusin [2] has determined all possible limiting distri-
butions of S, = ¥, 8™, where {8V}v_, = {{B. " }_}5-1 is a sequence of
stationary Markov walks. We have seen that the smallest possible N-central
term for a stationary invariant Markov walk is of order (log N)!/N, and the
proof of Theorem 1 shows this order is attained by a t.p. of a =ay =1 —
((log N)}/N)¥¥. Since a, — 0 and N - a,— oo, Dobrusin’s results ([2], page 98,
(1.3)) imply that (S, — N/2)/(N(1 — ay)/4ay)? has a limiting standard normal
distribution.
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