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CONVERGENCE OF SUBMARTINGALES IN BANACH LATTICES

By JERZY SZULGA AND WOJBOR A. WOYCZYNSKI

Wroclaw University and the Institute of Mathematics,
Polish Academy of Sciences

We discuss analogues of Doob’s convergence theorem for submartin-
gales with values in Banach lattices with the Radon-Nikodym property.

1. Introduction. In this note we make a few observations concerning submar-
tingales taking values in certain Banach lattices. As far as martingales in Banach
spaces are concerned, there is the following fundamental characterization of
those Banach spaces in which the analogue of the Doob’s convergence theorem
holds true:

THEOREM 1.1 (Chatterji (1968)). For a separable Banach space 2 the following
three conditions are equivalent:

(a) for each Z-valued martingale (M,, n e N) satisfying the Doob’s condition
SUp,ey E||M,|| < oo there exists an M,, € LX(Z") such that M, — M, a.s.;

(b) for each Z-valued martingale (M,,, n € N) such that sup, .y E||M,||? < oo
for some 1 < p < oo, there exists an M,, € L?(Z") such that M, — M., in L*(Z);

(¢) & has the Radon-Nikodym property; i.e. any vector measure with values in
& and finite total variation which is absolutely continuous with respect to a scalar
measure has with respect to it a Bochner integrable density.

For other, especially geometric, properties of a Banach space that are equiva-
lent to the Radon-Nikodym property, see Davis (1973-1974).
At the same time we have also the following:

THEOREM 1.2 (Neveu (1972), page 63). If (X,, n e N) is a real-valued submar-
tingale and sup, .y EX,* < oo then there exists an X,, ¢ LY(R) such that X, — X, a.s.

What we are interested in is how the above Theorem 1.2 (which can also be
dually formulated for supermartingales) carries over to the case of martingales
with values in Banach lattices (to be defined below). In what we did we were
encouraged by the fact that recently Schwartz (1973) extensively developed the
theory of supermartingales that have mgasures as their values, and applied it
efficiently to the disintegration of measures. His model fits into our general
framework.

2. Definitions, notation, facts. A vector lattice (2, <) is said to be a
Banach lattice if it is equipped with monotone (|x| < |y| implies ||x|| < ||y||) and
complete norm. As usual, if xe 2" then x* = sup (x, 0), x~ = sup (—x, 0),
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|x] = x* 4+ x~. 2%, the norm dual of .2, is also a Banach lattice under the
natural ordering, and by .2°, and 2%, * we denote nonnegative cones in .2~ and
Z7*, respectively.

The set 4 — &2 is said to be order bounded if there exists x, e &2 such that
for all y e 4, |y| < x,, and the linear operator T from a Banach space 2’ into a
Banach lattice 22 is called lattice bounded if it maps the unit ball of 2/ into an
order bounded subset of 2°. In general, and in many concrete cases, lattice
bounded operators were thoroughly investigated and completely described in
the book by Kantorovich, Vulikh and Pinsker (1950, VIII.4-VIIL.6). In par-
ticular, they show that an an operator T' = (a;;): I —» I?, ¢ > 1, p = 1 is lattice
bounded if, and only if

St [ al 0P < oo

Also recently, the papers by Garling (1974), Nielsen (1973) and others raised
interest in such operators in connection with absolutely summing and radonify-
ing operators, although neglecting the results of the above mentioned book.

Now, let (Q, %7, P)(w € Q). be a probability space, and let (%, ne N) be
an increasing sequence of sub-c-algebras of 7. We say that the sequence
(X,, ne N) of random vectors in' 2" is a submartingale [martingale, supermar-
tingale] if X, e LY(Q, &7, P; Z7) = {X: Q - 2. X strongly %/, -measurable,
§ |X]|dP < oo} and E*aX,,, = X, [E*X,,, = X,, E**X,,, < X,] a.s. for all
ne N. Without further comment we always assume that all Banach spaces in
which random vectors take values are separable. For various elementary facts
concerning vector lattices that are used freely throughout the note consult [4]
or any other standard text on vector lattices.

3. Counterexamples. Doob’s condition sup,.y EX,* < oo for real-valued
random variables has two analogues for Banach-lattice-valued random vectors,
namely: order boundedness of (E(X,*), ne N) and sup,. E||X,*|| < co. Both
boil down to Doob’s condition in the real case. However, as we shall see below,
in general neither is sufficient to assure the a.s. convergence of a submartingale
(X, neN).

It is not difficult to check that for both real and vector submartingales the set
(E(X,*), ne N) is order bounded if and only if (E|X,|, n € N) is such. However,
even for vector-valued martingales it might happen that sup,.y E||X,*|| < o
and still sup, .y £||X,~|| = oo, so that it will not be surprising that the condition
sup,ey E||X,*|| < oo does not, in general, imply the a.s. convergence of a sub-
martingale (X,) even in Banach lattices with the Radon-Nikodym property.
On the other hand, the condition sup,.y E||X,*|| < oo is stronger than order
boundedness of (E(X,*), ne N) for any submartingale (X,, n € N) with values
in the Banach lattice -2 that does not contain ¢, isomorphically and that has
the order continuous norm because in that case any norm bounded increasing
sequence in &2~ has a least upper bound. The latter result is due to Tzafriri and
may be found in [8] (Theorem 14).
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It is not hard to see that if 2 is a Banach lattice with the Radon-Nikodym
property then in order to produce examples of

(¢) amartingale (M,, %7, n e N) in 22 such that sup, . ¢ E||M,*|| < oo and
at the same time sup, . E||M,"|| = oo and sup, . E||M,|| = o, and
(ee) asubmartingale (X,, %, n e N) such that sup, . E||X,*|| < oo and (X,)
is divergent a.s., it is sufficient to find
(eee) ana.s. divergent sequence (Y,, n € N) of nonnegative independent ran-
dom vectors in L'(:2”) such that both sup, . E||Y,|| < co and

SUp,ex | D0 EY|| < oo .
Indeed, given such a sequence (Y,), it is enough to take
S, =0(Yy -+, Y,), A,=0,
A, =235 Y, M,=—4,,+EA,,,
X,=M,+ A, =EAd,,, — Y,, n>1.

Then the sequence (EA4,) converges because 2° does not contain isomorphically
¢, (because it has the Radon-Nikodym property, cf. Davis (1973- -1974)), and
since in every such Banach lattice monotone norm-bounded sequences are con-
vergent (Tzafriri (1972), Theorem 14). On the other hand the sequence (4,) di-
verges a.s. because the sequence (Y,) itself diverges so that sup, .y E||4,|| = .

Now, (M,) defined in such a way is a zero mean martingale such that
SUp,en E||M,*|| < sup,ex ||[EA,4|| < oo (because M,* < EA,.,); but at the same
time, E||M,|| = E|[Ayys — EAy || Z El|4,,]| — ||[E4,,,]| is unbounded. X, is
evidently a submartingale that is divergent a.s. and for which sup, . E||X,*|| <
supneN “E(An+1)|| = Sup‘neN ”EAn+l|| < oo.

Given below are examples of sequences (Y,) of random vectors with values
in certain classical Banach lattices that enjoy the property (eee).

ExampLE 3.1. Let 27 = I*, p > 1 (the reason why p = 1 is excluded ap-
pears in Corollary 4.1), Q; = [0, 1), <7, be all Borel subsets of [0, 1) and 2, be
Lebesgue measure, ie N. Put Q = [[,.xQ;, % = [[;en Bl P = [Lien 40>
Yo(wo, Wy, - ) = 0, and

Yon1,(@p @y, -+ 2) = I[k/zn—l,(k+1)/zn—1)(wzn-1+k)ezn—1+k >
wheren=1,2, ...; k=0,1,...,2"1,_ |, 1, is the indicator function of the
set 4 and (e,, n € N) is the standard basis in /7.

By definition (Y,,neN) are independent, nonnegative and in LY(2" )-

supneNE“ ” < 1 a’nd supneN “Zz lEYz” < (e because EYo = 0, Ean—1+k =
2 ez’n l+k9n—1 2 k_O 1 ',2“_1—1, Sothat

SUpP,en ||Zz'=o EY)|| = [| X EY)|| = (D, 20y
At the same time, however, (Y,) is divergent for each we Q because for

each w e Q there exist sequences (n,), (n) — N such that ||Y, (@) =1 and
1Ya, (@) = 0.
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4. Convergence of submartingales. Doob’s decomposition of a real submar-
tingale remains true in a Banach lattice. Namely, if (X,, %, neN) is a
submartingale with values in a Banach lattice 22~ then X, = M, + 4,, where
(M,, 7, ne N) is a martingale and the sequence (4, n € N) is predictable (i.e.
A, e LN(7,_;; &Z)) and such that 4, =0, 0 < 4, 1 a.s. (the decomposition is
unique). As in the real case, to prove the above statement it is sufficient to put
A, =0, M, = X,

M, =X, + 2 [X — E¥im1Xi], 4, = 2ia E%—I[Xi — Xl n 1.

The counterexamples of Section 3 show that, in general, the condition
sup,ey E||X,*|| < oo for a submartingale X, = M, + 4,, does not imply its a.s.
convergence. However, we do have

(\Y

THEOREM 4.1. For a separable Banach lattice the following three conditions are
equivalent:

(a) for each Z-valued submartingale (X, = M, + A,, n e N) satisfying the con-
ditions sup,,.x E||X,*|| < oo andsup,.yx E||M,~|| < oo there existsan X, € L'(Z)
such that X, — X, a.s.;

(B) for each Z-valued submartingale (X, = M, + A,, n e N) satisfying the con-
ditions sup,.y E||X,*||” < co and sup,.x E||M,"||” < co for some 1 < p < oo
there exists an X,, € L*(Z°) such that X, — X, in L*(Z°), ‘

(1) £ has the Radon—Nikodym property.

PrRoOOF. (a) = (7) [(B) = (7)]. If X, = M, then the conditions in (a) [(8)] boil
down to sup, .y E||M,|| < oo [sup,.x E||M,||? < o] and Theorem 1.1 gives the
necessary implications.

N=@[)=P)] X.=M,+ 4, = M, a.s. so that X,* = M,*+ a.s. and
the monotonicity of the norm yields that

SUPnen E|IM,||” = 27(sUPnex E|IX, TP + sUP,ew E||M,7[]7) -

Hence, by Theorem 1.1 there exists M, e L'(Z") [M, e L?(:Z")] such that
M,— M, as. [M, - M, in L?(Z")]. Because 4, = X, — M,, we have that
A4, < X,* + M,~ so that sup, .y E||4,||” < o0, 1 £ p < . Utilizing again the
monotonicity of the norm and the Lebesgue monotone convergence theorem we
get that E(sup,.y ||4,||") < oo sothat sup,.y ||4,|| < o a.s. However, because
the Radon-Nikodym property -2~ does not contain isomorphic copies of ¢, as sub-
spaces (cf., e.g., Davis (1973-1974)), and because in every Banach lattice with
the latter property, norm bounded monotone sequences are convergent (Tzafriri
(1972), Theorem 14), there exists a random vector A, such that 4, — 4, a.s.
Fatou’s lemma yields that E||4,||” < liminf, ¢ E||A4,||” < sup,.y E||4,|]? < o
so that A, e L?(Z), 1 < p < oo, and letting X, = M_ + A, concludes the
proof.

In the next theorem we make weaker assumptions about the submartingale
(X, n e N), namely that (E(X,*), n € N) is order bounded, but the convergence
takes place only for a transformed submartingale.
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THEOREM 4.2. Let 22 be a separable Banach lattice, 2/ a separable Banach
lattice with the Radon-Nikodym property, and T : 2° — 2/ a linear bounded positive
operator such that its transpose T* : Z/* — Z°* is lattice bounded. If (X,, n e N)
is a submartingale with values in 22° such that (E(X,*), n € N) is order bounded then
there exists a Y, € L(Z/) such that the submartingale TX, — Y, a.s.

ProoF. Let X, = M, + A, as before, and let E(X,*) < x,€ &, for all ne
N. We show that under the above assumptions, sup, .y £|[(TX,)*|| < oo and
sup,.n E||(TM,)~|| < oo; which in view of Theorem 4.1 would give the desired
result because Doob’s decomposition for the submartingale TX, is TM, + TA,.
Indeed,

SUpen E||(TX,)*[| = sup,en E||T(X,")|]
= SUP,en E(SUP)yes1,0890e o0 V¥ T (X))
= SUP,en E(supllv*llsl,0§v*e 7 (T*y*)Xn+) *
However, the transpose T* of a positive T is also positive, and thus the fact that

T* is lattice bounded implies the existence of an x,* € 227, * such that for each
y* with ||y*|| < 1, |T*y*| < x,. Thus we get that

SUPen E[[(TX)|| < E(x*X,%) = X*E(X,*) S x*X, < o0

Proceeding as above and utilizing the inequality
E(TM,)- = E(TM,)* — E(TM,) = E(TM,)* — E(TM,) < E(TX,)* — E(TM,)
we get that
sup,en E[|(TM,)"|| < xy*x, + [%*E(TM,)| < oo

because M, e L'(:2"). This ends the proof.

Because /' is the Banach lattice with the Radon-Nikodym property (cf., e.g.,
Davis (1973-1974)) and because the operator [Id(I*, I')]* is lattice bounded in
[= we obtain the following

CoroLLARY 4.1. If (X,, ne N) is a submartingale with values in I* such that
(E(X,*), ne N) is order bounded then there exists an X, € L\(I') such that X, —
X, a.s.
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