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A MULTIDIMENSIONAL RENEWAL THEOREM:

By THOMAS A. RYAN, JR.

Pennsylvania State University

A multidimensional renewal theorem is proven which generalizes the
well-known result of Pyke on Markov renewal processes. The result is a
“natural” setting of the multidimensional renewal theorem, and has ap-
plications to age-dependent branching processes.

1. Introduction. In this paper we discuss a generalization of the multi-
dimensional renewal theorem of Pyke (1961). The proofs are similar to those
of Pyke and of Cheong (1968). The generalization is of interest because (1) it
puts the multidimensional renewal theorem in its most natural mathematical
setting, and (2) this form of the renewal equation plays an important role in
multitype branching processes.

The theorems in this paper are essentially those in the author’s doctoral thesis
(Ryan (1968)). A similar generalization of the renewal theorem has been given
by Mood (1971) under apparently stronger conditions, using a different method
of proof.

Notation. When we say A4 is a matrix of measures, we mean 4 isan r X r
matrix of distribution functions a,;(¢) of finite measures such that a,;,(0-) = 0.
If A is a matrix of measures 4** is a matrix whose ijth entry is Y1_, a,, * a,;(?).
Suppose 4, B are matrices and p is a number. Then expressions such as 4 < B,
A < p, § tA(dr) are meant to apply entrywise, i.e., 4 < p means a;; < p for all
ij, and § tA(dr) is a matrix whose ijth entry is § ra;(dr).

THEOREM 1. If A is an r X r matrix of measures such that § tA(dt) < co,
(A(c0))™ > 0 for some m, A(co) has largest eigenvalue 1, a,;(0) < a,;(co) for some
ij, and C(t) is an r X r matrix which is directly Riemann integrable, then

(1) R(t) = C(t) + A = R(z)

has a unique solution which is bounded on finite intervals. This solution satisfies
(R(t))if -ty as t— oo

where

_ () e( oo )
ry = W 2k 7 (00) § Cyy(dr)

(The .%s are defined after Lemma 4.)
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CoROLLARY 1. Ifin Theorem 1, § C(t)dt = 0 and § (C(¢));; dt > O for some ij
then r,; > 0 for all k.

COROLLARY 2. If A and C are the same as in Theorem 1, except that § tA(dt) oo,
i.e., at least one entry a;; has infinite mean, then (1) has a unique solution which is
bounded on infinite intervals, and (R(t));; — 0 as t — co.

2. Proof of the renewal theorem. The proof of the following proposition
is routine.

PROPOSITION 1. If M and N are r X r matrices of nonnegative numbers such
that N > 0, and M < N with at least one entry strictly less than, that M™ < N™,
forall m = 3.

ProrosITION 2. (a) If A and B are both r X r matrices of measures then
A x B(t) £ A(t)B(t) and A x B(co) = A(c0)B(c0).

(b) If A is a matrix of measures such that \ tA(dt) < co then there is a constant
¢ such that § tA*"(dt) < ncA*"(co0), for all n.

PrROOF. (a) (A4« B),; = Y ay * b,; and (A(2)B(t));; = X au(t)b;(¢). Let X, Y
be random variables with distributions a,,(#)/a;,(co0) and b,,;(f)/b;;(c0), respec-
tively. Then (a;,/a;,(00)) * (by;/b,;(co))(t) = Pr{X + Y <} < Pr{X < f}Pr{Y =<
t} = (ay/t)/au(c0))(b,;(1)/b,;(0)), and the first statement follows. Also, 1 =
Pr{X 4 Y < oo} = (a4/a1(0)) * (by;/bi(00))(00) = (ay * by;(00))/(@(00)by;(c0))
and the second statement follows.

(b) (§ tA*dt)),;, = X § tay; * -+ xa; _; (dr). Consider one integral in the
sum. For 1 < k < n, let Y, be a random variable with distribution a;,_ ; (1)/a;,
where a, = a;,_; (o). Letd = max {E(Y,), - - -, E(Y,)}. Thennd = E(Y, + ---
+ Y,) = S tayfa)« - x(a;,_ Ja)dl) = (§tag + -+ xa; _; (dB))f(a, - a,).
Hence § ta;; * --- xa; _, (df) < nda,;(co) -+ a; _, (c0). Summing, we get
(§ tA*™(d1));;, < ne((A(c0))");,s, Where ¢ is the maximum of all the d’s. Using
part (a), we get ({ tA*"(dr)) < nc(A(o0))" = ncA*"(co0).

If Nis an r X r matrix of nonnegative numbers such that N™ > 0 for some
integer m, then the Perron-Frobenius theory says that N has an eigenvalue
which is positive and exceeds all other eigenvalues in absolute value.

LeMMA 1. Suppose N is anr X r matrix of nonnegative numbers such that N™ > 0
for some integer m, and N has largest eigenvalue 1. Suppose M is an r X r matrix
of nonnegative numbers such that M < N, with at least one entry strictly less than.
Then there are numbers ¢ and 0 < p < 1 such that M™ < cp”, for all n.

Proor. By Proposition 1, (M™)* < (N™)*. Thus M*™ < uN*" for some u < 1.
Consider M* where v = 3mn 4+ k and k < 3m. Then M* = (M*")"M"* <
(uN*")"N* = u*N*. Since N has largest eigenvalue 1 its powers are bounded
from the Perron-Frobenius theory. Thus, using p = #'*™, we can find a number
¢ such that M* < pc.
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If 4 is a matrix Z,[A4] is the matrix 4 with all entries in row i and all entries
in column i replaced by zeros.

LEMMA 2. Suppose A is a matrix of measures such that § tA(dt) < oo,
(A(c0))™ > 0 for some integer m, and A(co) has largest eigenvalue 1. Then
Div S 0(Z[A))*(dr) < oo, for all i.

Proor. Since { tZ,[A4](df) < oo, by Proposition 2, there is a constant d such
that § #(Z,[A])*"(dt) < nd(Z,[A])**(c0) = nd(Z,[A(c0)])*, for all n. Since
Z;[A(o0)] < A(co) with at least one entry strictly less than, Lemma 1 yields
constants ¢ and p < 1 such that (Z[A(co)])" < cp®, for all n. Hence
2 S «(Z,[A])*(dt) < 3 ndcp™, which converges.

LeMMA 3. Suppose A is a matrix of measures such that (A(co0))™ > 0 for some
m, A(co) has largest eigenvalue 1, and a,;(0) < a,;(co) for some i, j. Then, for all
t, A*(t) >0 asn — co.

Proor. Since a,;(0) < a,;(c0), there is some #, > 0 such that a;;(t,) < a,;(co).
From this and the fact that (4(c0))™ > 0 it is easy to see that (A*™+V(t,)),; <
(A*™*P(00)),;. Then, as in Proposition 1, it is easy to show that 4*3™+1 (1) <
A*“’”“’(oo). '

Consider any two distribution functions (possibly defective) F(r), G(f). Let
X, Y be random variables with distributions F(r)/F(c0), G(f)/G(co) respectively.
Suppose F(t,) < F(oo) and G(1)) < G(co0). Then Pr{X + Y > 2t} > 0 and it
follows that F x G(24)) < F x G(co). Using this and the fact that A*™+(z) <
A*¥m+D(co) we have, routinely, that A*3km+D(kp) < A*3kmiD(o0), for all k.

Consider any fixed . Choose k > t/t,, We can write any n in the form n =
3ks(m + 1) 4+ r for some r < 3k(m + 1). By Proposition 2, A*kstm+d(r) <
(AXSEmED()yr < (AFSEMED (k)Y < (0 AR (00)), for some p < 1. Hence
A*M(1) < AR IN() A*7(f) < p*(A(c0))*.  Since the powers of A(oo) are
bounded, we have A*"(f) — 0 as n — co.

LEMMA 4. Suppose A isa matrix of measures as in Lemma 3. Then ¥ o_, A*"(t)
converges for all t.

Proor. Consider a fixed t. By Lemma 3, 4*"(r) —0asn — co. So, (A4*™(t));; <
a;;(0), for some m, i, j. Using Lemma 1 on the matrices A*™(f) and A(co) we
get (A*"(1)" < cp", p< 1 and thus )v_, 4*™(f) converges. Similarly,
Dimeg A¥™Hn(£) converges for all k= 0, ..., m — 1 and the lemma follows.

If 4 is a matrix of measures, define .97;71"s as the sum of all products
(of any length n) of the form a,, x Ay ¥+ %@y *a, ; Where none
of the k,...,k,, are equal to r,ry, ---,r. Thus 5=
2im=t Dikyky_ybryery Qug * 00 % @, _ ;. It is easy to see that this series con-
verges when (A(co0))™ > 0 for some m, and A(oo) has largest eigenvalue 1, since,
for any n = 2, Dikyeoky_ytryory Qi * 00 % @ (1) = Dikyeorkey_yryery igy % 000 %
a,_,i(00) = (A(c0)(Z, [A(c0)])* 2 A(0))y; < cp™ % p < 1 by Lemma 1.
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LeMMA 5. Suppose A isanr X r matrix of measures as in Lemma 3. Then

(Do A%y = S+ Do () 5 S
+ S Do () S
S DIy (SO ST

Proor. Notice that on the right side of the equation, each of the » summands,

S Yo ()R« %) consists of the sum of all terms Ay % - %

,; (for any length n) such that at least one of the subscripts &, - - -, k,_, is

an sbutnoneisa l,2, ..., s — 1. Itis fairly clear that the terms in the sum

(27 A*™)ij = Do Dkyeekyy Gty * = -+ * @, _ ; can be rearranged and collected
into these r categories.

LEMMA 6. Suppose A is a matrix of measures as in Lemma 3. Then
Dm0 (§ et A(dt))* < oo, for all a < 0.

Proor. If a < 0, then § e**A(dt) < A(co0) with § e*a,;(dr) < a,;(c0) for any
entry such that a,;(0) < a,;(c0). Then by Lemma 1, (§ e**A(dr))* < cp® where
p < 1. Thus the series converges.

LemMA 7. Suppose A is a matrix of measures as in Lemma 3. Then S7}\(dr) is
a probability measure.

Proor. Taking transforms of the decomposition in Lemma 5, we get
§ e (Dmes A*")i5(dt) = § e ) % Y o (V)*" « ¥ (dr).  From Proposition
2a, the left side of this inequality is equal to (35, (§ e*A(dr))"),; and the right
side is equal to (§ e 3(d)) (Lo (§ e 73(dn)")(§ e*.o734(dr)). By Lemma 6,
2 (§ ex*A(dr))* converges for @ < 0. Thus }] (§ e*.o/}}(dr))" converges, and
consequently § e**./}}(dr) < 1 for all @ < 0. By the Lebesgue dominated con-
vergence theorem, § e**.%7{(dr) < 1 for a« = 0 and so .¥}}(c0) < 1.

From the fact that, for some n, (A4(c0))" > 0, we can see that a,, x Qg * 0 x
oy 11(oo) >0 for some sequence k;, k,, ---, k,_; #+ 1 with at least one subscript
among k;, -+, k, ;equalto2. Thenifs =2, ¥l = &} + Qi * Ay, % o %

@G _a+ s for some measure p. Hence ] %(o0) < ¥i(c0) < 1. Then
21 (Vi) M (00) < oo for all s = 2. Since A(co) has largest eigenvalue 1,
A*"(co) approaches a non-zero limit and )} 4*"(co) diverges. Using the decom-
position of 4*" given in Lemma 5, we see that ) (.%])*"(co) must diverge.
And since we already showed that %}}(c0) < 1, it must equal 1.

Proor oF THEOREM 1. First we show uniqueness. Suppose R, and R, are
two solutions bounded on finite intervals. Then R, — R, = A4 x (R, — R,). Hence
(R, — R)(1) = A*" « (R, — Ry)(t) £ A**(1)(R, — R,)(c0) — 0, as n — oo, from
Lemma 3. Thus (R, — R,)(¢) = O for all ¢.

We now show that a formal solution to the renewal equation is glven by
R(t) = (B2 4*") x C(f). Thus, C 4+ A*xR=C + Ax (3,5, A*)«C = C +
(2 nz0 A*") « C = R. The boundedness of R(r) is obvious.
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Finally, we investigate the limit of R(f). Now, R = (3,5, 4A*") +C = C +
A% C 4+ (X,22 4¥") » C. Since C is directly Riemann integrable and A(co0) < oo,
C(t)y+ AxC(t) > 0as t — co.

Decompose ((}],5; 4*") x C),; as in Lemma 5, and consider the first term.
Now, 31, 73 % 2 (20)*" # 3 Cpy = T4 [Cyx L () *"] 5 1+ SR
Consider the term in square brackets. Now, it is clear that )} = }3,,., a; *
(X (Z[A)**),; = a;;. By Lemma 2, 37 (Z,[A])*" has finite mean, and thus %]
has finite mean. By Lemma 7, .%7}] is-a probability measure. Then, since C,;
is directly Riemann integrable, the (one-dimensional) renewal theorem says
Cij * 23 ()**(t) — d,; boundedly. So, the first term in our decomposition
approaches the finite limit )}, d,; % }(c0) % (o). All the other terms in the
decomposition involve measures 7,1 * with s > 2. In the proof of Lemma 7,
we showed that 7}}**(c0) < I, for any s > 2. Renumbering states, we get
S %(c0) < 1 for any s > 2. It then follows that the 2nd through rth terms
in the decomposition tend to zero as t — co. (Use an analysis similar to that
for the first term.) .

3. Application to branching processes. There are r types of particles. A
particle of type i lives a lifetime which has distribution G,(r). The particle may
have offspring of any type, anytime throughout its life. Let Q,;(f) = E (number
of type j particles born to a type i particle by age 7). Both (1) the number of
offspring a particle has in dz, and (2) whether or not the particle dies in dr may
depend on the number, types and times of birth of its previous offspring, and
on the particle’s age in df. All particles behave independently, and all particles
of a given type behave according to the same distribution. Let M,,(r) = E
(number of type j particles alive at time #|the process started at time 0 with
one particle of type i and age 0) and let M(r) = (M,(?)).

THEOREM 2. Suppose (Q(c0))™ > 0 for some m, Q(oo) has largest eigenvalue less
than 1, Q,; is nonlattice for all i, j, Q,;(0) < Q,;(c0) for some i, J, and G,(0) < 1
for all i. If there exists on a (necessarily positive) such that the largest eigenvalue
of {5 e**Q(dr) is 1, § te**Q(dt) < oo and § te**G(dr) < oo for all i, then

M(t) = e **C, as t— oo
where C is anr X r matrix with C > 0, and =~ means the ratios of the corresponding
entries on both sides tends to 1.

PROOF. M;;(7) is the sum of the expected number of zeroth generation type
J particles alive at ¢ plus the sum, over all the intervals dr, of the expected
number of type j particles alive at + which are descended from first generation
particles born in dr. This yields the equation:

@) Mij(t) = 641 — G(n)] + §i2 [Zk Qul(dn)M,,(t — )] -

Since the imbedded Galton-Watson process is subcritical, the finiteness of M(¢)
is obvious. Multiplying equation (2) by e*, we get

3) e M;;(t) = e*d,,[1 — Gy(n)] + {§F Li e Qu(dr)e™ =" My(t — 7).
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Define the following matrices: R,;(f) = e*'M,;(t), C;;(1) = e*d,;[1 — G,(¢)] and
A;(t) = e**Q,;(t). Then we can rewrite equation (3) as

R(t) = C(f) + A = R(?) .

The conditions of Theorem 1 are routinely verified for A(r)and C(¢) and Theorem
2 follows.

Acknowledgment. The author wishes to thank Professor Harry Kesten for his
patient direction of the author’s thesis, part of which is included in this paper.
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