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PARTIAL COUPLING AND LOSS OF MEMORY FOR
MARKOV CHAINS

By DAvID GRIFFEATH
Cornell University

Coupling methods are used to obtain a structure theorem for the atom-
ic decomposition of the tail o-algebra of an arbitrary nonhomogeneous
Markov chain. Various related results are also derived by coupling.

1. Introduction. The structure of the tail s-algebra .7~ of a (denumerable)
Markov chain has been the subject of a number of recent papers. Blackwell
and Freedman [2] showed that .7 is finitely atomic for irreducible recurrent
homogeneous chains, proved the equivalence of trivial .7 and a mixing property
for arbitrary homogeneous chains, and showed that these properties imply weak
ergodicity. Jamison and Orey [10] proved the equivalence of the above three
conditions, and their equivalence to the lack of nonconstant space-time harmonic
functions, again for the homogeneous case. Next, Bartfay and Révész [1] ex-
tended some of these results to nonhomogeneous chains with partial mixing to
obtain conditions for finiteness of .7, and generalized 0-1 laws. Iosifescu [9]
gave further conditions for finiteness of .77, including a necessary and sufficient
form of partial weak ergodicity. Finally, Cohn [4] has used reverse Markov
chains to obtain a detailed description of .7 in the nonhomogeneous setting.
Namely, he has shown that if & and & = denote the o-algebras of informa-
tion from time 0 to m and n to oo respectively, then

lim,,_, lim, SUPge o ym {P(B) — P(B| & ,~)(w)}
(1) =1 — P(A) for almost all  intheatom A4 of 77,
=1 for almost all ® in no atom of 7.

As a consequence he is able to obtain various structure results for .7, including
the fact that any finite chain with n states has an atomic tail s-algebra with at
most n atoms (cf. Senchenko [14]).

In a related development, Markov chain coupling techniques have been used
to study weak ergodicity of homogeneous and nonhomogeneous Markov chains
[7, 8, 12]. The object of coupling is to construct two copies of a given Markov
chain on a product state space, with an interdependence yielding ergodic prop-
erties. This strategy was explained in some detail in the author’s paper [7],
where examples are given, and a “maximal coupling” is constructed (all for the
homogeneous case).
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The present paper may be viewed as a continuation of [7]; our objective is
to show how maximal coupling can be used to study asymptotic properties of
nonhomogeneous Markov chains. In Section 3 this approach leads to a structure
theorem which might be described as dual to Cohn’s; namely, we show that

lim,, ., lim,__ SUpPge o {P(B| F ™) — P(B)}

takes on the same values as (1) a.s. Our “forward” approach has the advantage
that the main results of [1] and [9], as well as some additional ones, are easy
consequences. At the same time, slight generalizations of the applications in

[4] may be derived by our method. This is the subject matter of Section 4.

2. Notation. Let S be a finite or countable set of integers, N = {0, 1, ...},
Q = S¥. Forw = (0w, @, --+)€Q, £,: Q- Sis given by 0 > w,. Let & =
0{(§,); ne N) be the o-algebra on Q generated by the £,. Write &7 ," =
o{(§sm=r < n)y, 7,2 =0(&,;m<r < o)), and abbreviate &7, = &7, ™.
The tail o-algebra is 7 = Mpex-F w=- A (l-step) transition function = =
(m(m))me  is a sequence of stochastic matrices n(m) = (m,;(m)); jes. If ¢ = (¢,)4es
is an initial probability distribution on S, and « a transition function, then the
Markov measure P = P(¢, 7) given by ¢ and z is the unique measure on (Q, %)
satisfying P(§, = k) = ¢,, and for n > 0,

PEnir = J|F ) 0) = Py = ]| F w)(@) = 75(m)  on {§, =i}.

For our purposes, any (denumerable) Markov chain may be identified with the
coordinate process (§,) on (Q, .5, P) for some P = P(¢, 7) manufactured ac-
cording to the above recipe. We regard ¢ and 7, and hence P, as fixed through-
out the discussion.

Denote py(n) = P(€, = J), piy(m,n) = P&, = j|én = i), i,jeS, mneN.
For me N, define 6": Q > Q by £, 060" =¢, ., neN. Viewing 6™ as a set
map, "B = {§"w; o € B} and 6B = {0: 0™w ¢ B}, Bc .. Both of these sets
are in ., though in general -"¢™B =+ B unless Be & ,>. For me N, let the
measure P™ and the conditional measure P? be defined by

P™(B) = P(6-"B), 5 w(B) = PO~™B| F ™)(»), Be s

The following notation is necessary to formulate Markov chain coupling (cf.
[7])- LetS§ =S x S, Q= SN (En » §,7) Is the bivariate coordinate map send-
ing @ = ((w,', 05, (0, ©?), - )thow (0 0,0). F = o{(£,); ne N).
It is sometimes convenient to think of Q as S¥ x S¥, with & — (0, 0*) e Q.
The diagonal of Sis D = {(s, 5); se S}, and 7p(@) = min{ne N: @, e D} (= oo
if @, ¢ D for every n).

Finally, if a and b are real numbers, leta A b = min {a, b}, a v b = max{a, b},
a* = max {a, 0} and [a] = the greatest integer in a.

3. A structure theorem for 7. Recall that the set 4 .7 is an atom of . T~
(W.r.t. P) iff P(4) > 0 and whenever B C 4 and Be.7, then P(B) =0 or
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P(B) = P(A). Q admits the decomposition

(2) Q=F+Zre!‘4r F’Arey-’
into a fully nonatomic set F and a disjoint sum of atoms 4,. The index set / in
(2) may be empty, finite or countable. This partition is unique modulo P-null
sets, and should be kept fixed in the development which follows. & is atomic
iff F may be taken as @, in which case it is finite when |I| < oo and trivial when
|| = 1. Clearly all of these notions depend implicitly on P. We use the symbol
=~ for equality mod P-null sets among events, and equality of P-completions
among g-algebras.

Three simple examples illustrate various possibilities in (2):

EXAMPLE 1. § = 7Z = the integers. 7,,,(n) = 7n,;_,(n) = 4 forallie S, neN.
The methods of [2] show that F = @, I = {0, 1}, and A4, = {§, is even}, 4, =
{§, is odd} if ¢ gives positive measure to both of these sets. If &, concentrates
on either even or odd integers, then & is trivial.

EXAMPLE2. S = N. ¢, = 1, moy(n) = mo(n) = &, 7;(n) = 1fori = 1,neN.
In this case F = @, I =N, and A4, = {0"}, where o" is the path such that
0, = ((n—rt.

EXAMPLE 3. S = N. ¢, = 1, m(n) = 7, (n) = %, i€ S, ne N. Itisnot hard
to see that £, (w) determines §(w), §,(®), - - -, §,_,(w) uniquely, so 7 = &7 .
It follows that 9 =~ & and F =~ Q, i.e., the tail g-algebra is full and fully
nonatomic.

Our objective in this section is a means of determining the atomic structure
of 7. It will be achieved with the aid of certain “couplings”:

PRroPOSITION 1. For each m e N there is a conditional probability measure P?'m(m
on (Q, F) such that

(3) Pznm(', Q):P?m(.)’ P?‘M(Q, .) :Pm(.);
@ P?m(éneD forall n=17y) =1;
) P?m(én =, 0= Pe,,,j(m’ m + n) A p;(m + n), jeS, neN.

ProOF. To obtain P¢ ., take P, = PZ , and P, = P™ in the following

MaXIMAL COUPLING LEMMA. Let n be a Markov transition function on S. Let
P,, P, be two Markov measures on (Q, %) with the same transition function x, and
initial distributions p and v respectively. Then there is a probability measure P on
(Q, ﬁg) such that

(i) P+, Q) = P,(+), P, ) = P(o);

(iiy PE,eD foralln>= ) = 1;

(iiiy P&, = (k,k)) =P, =k) NP5, =k),keS, neN.

This lemma is an extension of the main result of [7] to nonhomogeneous
Markov chains with arbitrary initial distributions. A streamlined proof is out-
lined in an appendix to this paper.
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Now, define
On"(®) = SUPge ,= {P(B|F ") (0) — P(B)},  dn(0) = lim,_, 3,"(0)
0, ] 0,). Also set
(6) ap(w) =1 — d,(0) .

The following well-known facts will be needed.
LemMMa 2. For Ae 7,
1, — P(4) < liminf, _, sup,. . {P(B| & ,") — P(B)} < liminf,__Jd, a.s.;

m—oo m

(Here 1 ,(w) denotes the indicator of A.)

Proor. The first inequality follows from the martingale convergence theorem;
the second is trivial since .9~ ¢ &, for every n.

The next three propositions relate the coupling measures P? to the random
variables «a,,.

PROPOSITION 2.

PE",,,(“'D < oo)=1—1lim, % Xjes|pe,i(m m + n) — p(m + n)|
= «a, (everywhere in w for each meN).

Proor. Fix w, m, and let i =, (w). If Ee 5 ,~, (4) implies {r, > n} D
{(E, E°)} modulo a P,"-null set. Hence (3) yields P,"(z, > n) = P;"(E) — P™(E).
But using (4) and (5),

PMry >n)= P&, ¢ D) =1 — Fes(pi(m, m + 1) A pi(m + n))
() = % 2jes |Piy(m, m + n) — pi(m + n)]
= P™(E,) — P™(Ey),
where E, = {é,, € H*} e & ,; here H* is a positive Hahn set with respect to the
signed measure p,,(m, m 4 n) — p,(m + n)on S. This shows that P,™(z,, > n) =
SUPge o o0 {P™(E) — P™(E)}. Now Be &, if and only if 6"Be & ,*, so by
the Markov property,
(8) Pr(rp > 1) = SUpge o= {PM(OmB) — P™(OmB)} = 5,(0) .
When n — oo the claim follows from (7) and (8).
Let us introduce

Chi = {Ppie, (m,m 4+ n) < p, (m + n) i.0.},

Coi = {Pie,(mym + h) =z p, (m + n) i.0.};

i = {Pie(m, m 4 1) < pea(m + 1) .0,

Ch = {puam, m + n) = peo(m + n) i.0.};
meN, ieS, where “i.0.” abbreviates “for infinitely many ».” Note that
CcL.,CL.ed; CL,C e . These events play a central role in the argu-

m,i m,i

ments below.

PROPOSITION 3. P™(z, < o0) = P/™(CL )V P(@~"C? ), ieS, meN.
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ProOF. By properties (4) and (5) of the maximal coupling, we have
Pim(é'}n,i? Tp = 00) = Dinen Pim(Pie,,l(m, m+ n) < Penl(m + n), . ¢ D)
= ZneN ZjneS:pij”(m,m+n)§pjn(m+n) Pijn(m’ m -+ n)
— (pij (m,m + n) A p; (m + n))
=0.

Thus C}, , C {r, < oo} modulo a P-null set. Similarly, C?, ; C {r, < oo} P"-
almost surely. But by (3), P"(C},,) = P™(C}, ;) and P™(C?, ) = P™(C% ) =
P(@-™C?, ;). This implies the desired result.

PROPOSITION 4. If A is an atom of -7, then
lim inf,, ., P2 () < c0) = P(4)  for almostall we4.

Proor. For given 4, set Nyw) ={meN:PAn 6"C} )iz, @ = 0}
Nyw) = {meN: P(4n0"C}, )ize @ = P(A)}. Ny U N, = Nsince C}, ;€ 7~
and 4 is an atom of 7. If me Nyw), P(4 N 7"C3, )|i=¢, @ = P(A) because
6-mC;, , U 0-"C% . = Q; hence

(%) PO~"C )i=e i = P(A) -

If me Nyw), then P(0"A4 0 C}, iz, ) = P(A 0 07"C | F "N @i 00 =
P(A| # ")(w)a.s. By martingale convergence the last term tends to 1 as m — oo
for almost all w € A. We conclude that

(10) 1M, oime iy P™(Comi)lize iy = 1
for almost all we A4 such that N(0) is infinite.
Together, (9) and (10) show
lim inf,, .., P,"(Ch..) V P(0°™C% )ice w = P(4)  as.on 4.
An application of Proposition 3 completes the proof.
We now state and prove the structure theorem for 7.

THEOREM 1. With a,, given by (6), a(w) = lim
is the atomic decomposition of .7, then

a, (o) exists a.s., and if (2)

m—oo

a(w) =0 as.on F,
= P(4,) a.s.on A,.

Proor. Write &(w) = limsup,, ., a,(0), E, = {0: a(w) = 1/k}(k=1,2,--).
Clearly E, € 7. Suppose Be 7, B C E, and P(B) > 0. Lemma 2 implies that
1, — P(B) £ 1 — ljk a.s. on B, so we clearly have P(B) = 1/k. Thus E, con-
tains only atoms, at most k in number. Hence E = {0: a(w) > 0} = U, E,
contains only atoms, which shows that lim,, ., a(w) = @(w) = Oa.s. on F. Now
fix 4,, an atom of .. By Lemma 2,

(11) as1— (1, —P4,) = P4, as.on A,.
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Putting a(w) = lim inf,,_, @, (), Propositions 2 and 4 yield
(12) a = liminf,_, PP (r, < ) = P(4,) as.on A4,.
In combination, (1 1) and (12) yield the theorem.

As an immediate consequence we obtain

CoRrOLLARY 1. 77 is

(a) trivial iff a(w) = 1 a.s.;

(b) finite iff a(w) = 2 a.s. for some 2 > 0;

(¢) atomic iff a(w) > 0 a.s.;
(d) fully nonatomic iff a(w) = 0 a.s.

REMARK 1 (added in revision). H. Cohn [6] has recently obtained a proof
of Theorem 1 which does not rely on coupling methods. Note that Propositions
2 through 4 are only used to obtain the inequality (12); Cohn’s alternative deri-
vation of (12) employs various martingale arguments.

4. Applications. We next prove a theorem relating various expressions of
partial loss of memory for a Markov chain. These conditions will be indexed
by a parameter 1, 0 < 2 < 1; intuitively: the larger 2, the more forgetful is (§,).
Thus the leading case, 2 = 1, expresses total loss of memory of the chain’s past

history.
Say that a 0 — 2 law holds for (§,) if
(13) P(B)=0 or P(B) =z 4 whenever Be. 7

(0 <2< 1). This condition clearly implies that .7 is finite, with at most
[1/2] atoms, while any Markov chain with finite tail s-algebra satisfies (13)
with 2 = min, ., P(4,).

THEOREM 2. Let (§,) be a Markov chain on (Q, &, P), P = P(¢, ). Consider

the following four conditions for fixed 2 ¢ (0, 1]:
(i) P™MCL) vV PO CY )ize, w = 4 1.0. as.;

(ii) a, = 1i.0.a.s.;

(iii) lim, .} 35 c5|pe, i(m, m 4+ n) — p(m + n)| < 1 — 2i.0. a.s,;

(iv) If h: S X N>R, 0 < h < 1, satisfies h(i, 0) = p, (i € S), and h(i, n) =
2ijes Ti(mA(j, n + 1) (i€ S, ne N), then

[A(Emy M) — Dliest;0;] £ 1 — 2 0. as.

(In each case “i.0.” abbreviates “for infinitely many m.”) If any of (i)—(iv)
holds, then (§,) satisfies a 0-2 law. More generally, if (6,,),.y is a strictly increas-
ing sequence of a.s. finite stopping times, and if any of (i)—(iv) holds with m replaced
by o, then (13) follows. Conversely, if a 0-2 law holds for (£,), then all of (i)—
(iv) are satisfied with “i.0.” replaced by “for every m.”

ProoF. By Propositions 2 and 3, (i) = (ii) < (iii). To see that (iii) implies (iv),
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let g(i, n)=2h(i, n)—1, so |g|<1. Forany mand n, |g(§,., m)— X es5¢;(20;,—1)|=
S ies[Peyi(m, mn)—pi(m + n)]g(j, m+n) < Fjes|pe,,(m> m +n) — p(m + n)|.
Let n— oo and use (iii) to obtain an equivalent form of (iv). Next, fix Be
and set A(i, n) = P(B|&, = i). Then h satisfies the hypotheses of (iv), and the
conclusion becomes |P(B|.%,") — P(B)] <1 — 2 i.0. a.s. Now (13) follows
from Lemma 2. We have shown that any of (i)—(iv) implies (13); the proofs
with m replaced by ¢, are analogous. Let (i')—(iv’) denote the conditions of
the theorem when “i.0.” is replaced by “for every m.” In the same way,
(i") = (ii") = (iii’)y = (iv’). Thus it remains only to show (13) = (i’). For each
meN and ieS such that p,(m) > 0, either P*(C} ) =1 or P"(C3 ) > 0.
In the latter case P(6~"C% ;) > 0, and since §-"C? ,e.7, (13) implies that
P@-"C% ) = 2. As{w:p, ., > 0}isa P-full set, we have derived (i’).

REMARK 2. Condition (i) of Theorem 2 generalizes the one in Theorem 5 of
[7], and says roughly that (§,) should often visit states which are more likely to
be visited from other starting positions. It does not seem straightforward to
prove that (i) is equivalent to (ii)—(iv) and (13) without coupling; the equiva-
lence of all conditions except (i) can be obtained by martingale methods.

We mention here a well-known curiosity, which seems impossible to prove
directly:

ProposITION 5. If any of (i)—(iv) holds with 2 > L, then all of (i")—(iv") hold
with 2 = 1.

Proor. It suffices to show that (13) for 2 > % implies (13) with 2 = 1. This
is clear since B, B°e 7" cannot satisfy P(B) > } and P(B%) > }

The next estimate leads to simple sufficient conditions for trivial, finite or
atomic 7.

Lemma 3. a,(0) = p;, (m).
Proor. Using Proposition 2 and (4),
am(w) = PZ"M(TD < OO) g Pg"m(éo = (Em’ Em)) = me(m) ¢

PROPOSITION 6. If there is a sequence (0,,),.x Of strictly increasing a.s. finite
stopping times such that P(p, (am) = 2i.0.) =1 for a fixed 2,0 < A < 1, then a
0-2 law holds for (§,). T~ is atomic if P(p,, (0,) Z 4 i.o. for some 2 > 0) = 1.
(Here “i.0.” abbreviates “for infinitely many m.”)

Proof. The first claim is immediate from Lemma 3 and the stopping time
version of (iii) in Theorem 2. Also, by Theorem 1 and Lemma 3, P(a > 0) =
P(lim sup,, ., @, = 4 for some 2 > 0) = P(p,, (om) = 2 i.o. for some 1 > 0).
The hypothesis and Corollary 1 imply the second claim.

As corollaries to this last proposition, we derive results explicit and implicit
in [4]:
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COROLLARY 2. Iflim sup,, ., P(p, (m) = A) = 1 for fixed 2 > 0, then a 0-2 law
kolds for (£,). If lim; ,lim sup,, ., P(p, (m) = A) = 1, then 7" is atomic.

ProoF. The expressions in the hypotheses are majorized by P(p, (m) = 41i.0.)
and P(p, (m) = 2 i.0. for some 2 > 0) respectively. Apply Proposition 6 with
o, (0) = m.

COROLLARY 3. For each n, let E, C S, and suppose that P(§, e E, i.0.) = 1.
If lim inf, _, keE“ pu(n) = 2 > 0, then a 0-2 law holds for (§,).

(Note: E, = @ for some n is allowed; the empty infimum is +oo.)
Proor. Apply Proposition 6 with g,, = the mth time that , € E,.

REMARK 3. Using Theorem 1 and Corollary 2 one can derive the Cohn-
Senchenko theorem [3, 14] mentioned in the introduction. But a much shorter
and more elegant proof was obtained recently by Cohn [5].

5. Appendix: Proof of the maximal coupling lemma (a sketch).. Using meth-
ods from [11], Pitman has produced a much more palatable construction of the
maximal coupling than the one in [7]. We outline his approach.

Denote pi¥’ = P (&, = i), pi¥ = P, = i). Start by defining random variables
Nand Y to have joint distribution Pr (N < n, Y = k) = pi) A pi¥, ne N, keSS,
Pr (N = o) =1 — Pr(N < o0), on some probability space with measure Pr.
Enlarging the space if necessary, form a stochastic process X, = (X,', X,?) taking
on values in S x S, and satisfying the following key properties:

@) Pr(Xy'=X>=Y)=1, N < oo;

(b) f N< n< oo, X, = X,? = a single Markov chain starting in Y at time
N, and with transition from time n to time n 4 1 governed by z(n);

(¢) For N < oo, the reverse processes (X', Xy_;, - - -, X¢") and (X,/*, X3 _,, - -+,
X,") are independent Markov chains starting in Y at time N, with transition
probabilities from j at time n to i at time n — 1 given by

c+(p(n—1) P%_l))*.ﬂij(n) and c (P(n 1 (n 1) —n-ij(n)

respectively, where ¢t and ¢~ are the appropriate normalizing constants;
(d) The pre-N and post-N processes are independent;
(e) Conditional on N = oo, the processes X,' and X,’ are independent.

Propertles (a)—(e) uniquely determlne the probability law for the stochastic
process X,. Its coordinate representation is the desired Q, &, P, (£,). For
details, the reader is referred to [13].
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