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ON STATIONARITY AND SUPERPOSITION OF
POINT PROCESSES

By B. D. RIPLEY
University of Cambridge

This paper applies ideas from random set theory to simple point pro-
cesses. We show stationarity of the hitting distributions suffices for the
strict stationarity of a simple point process, but that in general all forms of
stationarity differ. We compare and contrast the superposition operations
of summation for random measures and union for random sets, specialized
to point processes. Finally we consider completely random sets and their
factors.

1. Basic definitions. There are various definitions of point processes in the
literature; point processes can be viewed both as random measures and as random
sets. In this paper we concentrate on the latter aspect. We need to allow ‘sets’
with multiple occurrences of points; we call such objects multi-sets.

Let X be a locally compact Hausdorff topological space with a countable base,
7 its Borel o-field, <7 its class of bounded (relatively compact) sets, and & =
7 N . (Those readers familiar with Ripley (1976) (which we will refer to as
LFRS) will see we could generalize (X, %7, &%) to a standard bounded space.
Indeed, for most of our results we only need (X, %7, &%) to be countably sepa-
rated.)

Let N be the class of g-additive functions n: & — Z,, the nonnegative inte-
gers, and .#" the smallest o-field on N making the evaluation maps e, measurable
for all Ae ¥. Each ne N is purely atomic (LFRS, Theorem 1) and corresponds
to the multi-set of n({x}) x’s for each x e D(n) = {x|n({x}) > 0}. Such a multi-
set is locally finite, i.e. its intersection with any bounded set is finite. We can
identify N with the class of locally finite multi-sets, and its measurable subset
N, = {n|n({x}) £ 1V x e X} with the class LF of locally finite sets. In particular
D maps N, onto LF.

Every member of LF is closed, so D embeds N, in .5, the class of closed sub-
sets of X. A specialization of the random set theory of Kendall (1974) gives .
the o-field 27" generated by {{F|FNG = @}|Ge &}, where ¥ is the class of
open sets, and Matheron (1975) gives F the o-field 77 generated by {{F|FN K =
@ | K e 27}, ¢ the class of compact sets. One can show 7" = 7 (cf. LFRS).
Our key tool is the result that D(N,n.#") = LFn 2" (for a proof see LFRS
Section 5, cf. also Kallenberg (1973)). In words, a o-field on LF containing the

Received August 19, 1975.

AMS 1970 subject classification. Primary 60G99.

Key words phrases. Point processes, random sets, superposition, stationary point processes,
infinitely divisible, completely random.

999

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to éﬁ% )2
The Annals of Probability. EIN®RN

Www.jstor.org



1000 B. D. RIPLEY

events of hitting open (or compact) sets makes measurable the maps counting
the number of points in each bounded measurable set.

We define a point process to be a measurable map Z from a probability space
to (N, .#7), and a random set to be a measurable map to (&, 7). The distri-
bution (or name (Kendall (1974))) of a point process or random set is the proba-
bility induced on .4~ or 27". The distribution P or a random set is uniquely
specified by the avoidance function A4 defined on & (Kendall) or .52~ (Matheron)
by A(E) = P((F|FNE = p}).

We say a point process is simple if its range is a.s. in N,; this is a property of
the distribution. A simple point process is precisely an a.s. locally finite random
set. Let & and & be the classes of probabilities on .4~ and .4 = N,n 4"
We will identify . with {P|P ¢ &, P(N,) = 1}.

2. Stationarity. Suppose G is a topological group acting continuously on X
(i.e., thereisa continuous map G x X — X satisfying g(hx) = (gh)x and ex = x).
We define gn for g e G and ne N by gn(4) = n(g~*A4) for Ae &, and P (A4) =
P({n|gne A}) for Ae N. Wesay Pe Pis:

(@) avoidance stationary if for all g € G P, and Pagree on {{n|n(E) = 0} |E€ €7},

(b) m-stationary if for all g € G P,and P agree on sets of the form N {n|n(4,) =
k}, A;e €, ke Z,,

(c) strictly stationary if P is m-stationary for every m, or, equivalently, if for
all ge G P, and P agree on 4"

Obviously strict stationarity implies m- stationarity, and 1-stationarity implies
avoidance stationarity.

PROPOSITION 1. For the distribution P of a simple point process all three forms
of stationarity are equivalent; strict stationarity is implied by the agreement of P and
P, on {{n|n(E) = O}| E€ 7"} for any class 7" to which the corollary of Theorem 4
of LFRS applies, in particular & and ¢

Proor. If Pe &7 is avoidance stationary then P, and P agree on {{n|n(E) =
0}E € .77}, so P, = P by the cited result.

This results can be very useful, especially for X = G = R. Notice that sta-
tionarity in the randorh set sense, avoidance stationarity with 7~ = &, is equi-
valent to strict stationarity as a point process for an a.s. locally finite random set.

Obviously a point ptocess can be avoidance stationary but not even I-sta-
tionary; take a Poisson point process on R and double each pointin (0, 1). The
following example shows a point process can be 1-stationary but not 2-stationary
or strictly stationary.

ExaMPLE 1. We define a point process on R with points only in {m/2 | m ¢ Z}
1 Proposition 1 is an extension of 3.1.8 of [9]. Matthes has told me that the general solution

to his problem is negative; a counterexample will be published in the forthcoming English edi-
tion of [9].
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points occurring independently in each interval [m, m + 1) with the following
probabilities:

m odd m even

n({m}) n{m4431}) 0 1 2 01 2
0 P54 P $0
1 bEb 043
2 F 5 3 3 0 3.

This process has the property that the distribution of n — n(A4) depends only
on card (AN {m/2|me Z}). We form a l-stationary process by translating this
process by a random variable uniformly distributed on (0, ). Consider the
event A, = {n|n([m, m + §)) =2, n([m + 4, m + 1)) = 0}. Then P(4,) =}
or 0 for m odd or even. Thus the process is not 2-stationary.

3. Superposition. The random measure ‘“‘sum” operation corresponds to defin-
ing (n, + n,)(A) = ny(A) + ny(A4). We may also define the union by n, U n, =
D~Y(Dn, U Dn,), D! denoting the unique inverse in N,. Then (¥, +) and (N,, U)
are commutative semigroups with identities. Obviously + is measurable, and
D and D! are measurable, so U is measurable. (A third operation, intersection
of the corresponding sets, occurs in connection with infinitely divisible rege-
nerative phenomena (Kendall (1967)).)

Suppose Z, and Z, are point processes defined on the same probability space.
We define Z, + Z, and Z, U Z, by performing the indicated operation on each
realization. Both are point processes, Z; U Z, being simple. Suppose Z, and Z,
are independent with distributions P and Q. We define P« Q and P Vv Q as the
distributions of Z, + Z, and Z, U Z,. Note that P v Q ¢ .F5.

For P ¢ & we define y,(E) = 3 rP({n|n(E) = r}) £ oo on &. Wecall y, the
first moment measure and say P is first-order if p, is finite. A lemma of Jagers
(1973) shows that, if P and Q are first-order, P« Q = P v Qif and only if P, Q €
5 and pp and p, have no common atoms.

Both (&, %) and (&, V) are commutative semigroups with identities.

4. Infinite divisibility. We denote by (&) and _#(F) the classes of in-
 finitely divisible elements of (7 «) and (&3, V). (An element is infinitely di-
visible if it has an nth root for each n; such an nth root is unique). The struc-
ture of _#(Z”) is well known (Lee (1967), Kerstan, Matthes and Mecke (1974)).

We will characterize _#(Z;). Suppose P e F. Let F(P) = {x|P(E,) = 1},
where E, = {n|n({x}) > 0}. Thus F(P) is the set of fixed points of a point process
with distribution P. Let n, = D“(F(P)),' and DP be the unit mass at n,. Define
RP e & by RP(A) = P({n|n =z np, n — n, € A}). Then P = DPV RP. Thus we
factor P into a fixed part and a part without fixed points. Obviously for P e
A(F), F(P) = @. Always DP e #(F;), being its own nth root. Suppose P €
A(F). Then P = Q" for Q, € P, so RP = R(Q,™) = (RQ,)" € A(F). Let
S = {P|Pe AF), F(P) = @}. Thus AFK) ={¢,VP|neN, Pe A"}

Let & denote the class of probabilities on 7. We can define \/ on & by



1002 B. D. RIPLEY

S, VS){FIFNE=@)=S({F|FnE=@}) XS{F|FnE=@))forEe
YU %, and so embed (&, V) in (&, V). Then P e & is infinitely divisible
in (&4, V) if and only if Pe _#(Z5). Matheron (1975) has characterized the
infinitely divisible members of (&, V) with no fixed points. Specializing his
result to locally finite sets we see each member of _#” is uniquely represented
by a measure v on Y = N\{0}. Let 27 =Y n .4 and 97 be the ideal of sub-
sets of Y generated by {{n|n(E) > 0}| Ec €}. Then (Y, 2/, 9%7") is a bounded
space (LFRS), and we can define a Poisson probability on this space with mean
measure v if v is finite on 2/ n %7, We define maps ¢: N(Y) — N(X) and
¢ N(Y)— N(X) by ¢(m) = Y pijapyso m({n})nand ¢ = So ¢, where S = D10 D.
Then both ¢ and ¢ are measurable, and each Pe "’ is the image under ¢ of a
Poisson probability on N(Y). The converse is obvious. Thus an infinitely di-
visible member of (&, V) is the union of a fixed locally finite set, and locally
finite sets selected by a Poisson process so that only a finite number meet each
bounded set.

Suppose P € #(F°). Then SP ¢ #(F) (since S(Q™)=(SQ)"V) and S(A(F))C
#'. Conversely, suppose Pe.”’. Then the image Q under ¢ of the corre-
sponding Poisson process on Y is a member of _#(<), and SQ = P. Thus
S = 8(A(F°)), so a simple point process, infinitely divisible under union,
differs by a fixed part from a point process infinitely divisible under summation,
viewed as a random set.

5. Convergence of unions. Suppose (P,,) is a triangular array from .’ which
is infinitesimal, i.e., lim, max; P, ({n|n(E) > 0}) = 0 for all Eec &. Let P, =
x,P,, and Q, = V, P,; be the row sum and union. We will give & the topo-
logy of finite-dimensional convergence, so P, — P if P,(A) — P(A) for all sets of
the form N7 {n|n(4,) =k}, A, €, m, k,e Z,. It follows from the corre-
sponding result for random vectors that the class of limits of row sums of in-
finitesimal triangular arrays is _#(%°) (the “central limit theorem” for (&, x)).
It is not obvious that this theorem holds for (&, /). We do have the follow-
ing half of this result.

PROPOSITION 2. Every infinitely divisible member of (5, \/) is the limit of the
row unions of an infinitesimal triangular array from ;.

Proor. We have P = DP vV RP. Let S, be the nth root of RP, and let T, be
the probability making each point of F(P) occur independently with probability
a, = ljlogn. LetP,, =S,V T, i=1,...,n. ThenQ, = RP Vv T?¥ and so has
the same finite-dimensional distributions as P for sets disjoint from F(P). Since
F(P) is locally finite it suffices to show that T,,"V(E,) — 1 for each x e F(P), which
follows from the choice of a,. Thus Q,— P. The array is infinitesimal since
P,({n] n(E) > 0)) < T,({n| n(E) > O)) + (1 — P({n|n(E) = 0})") —0.

The following result enables us to transfer results from (&, %) to (&5, V), in
particular convergence to a Poisson process (cf. Cinlar (1972)).

THEOREM 1. Suppose P ¢ & and pp, is nonatomic and finite. Suppose (P,;) is an
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infinitesimal triangular array of first-order members of &,. Then Q, — P if and
only if P, — P.

Proor. Let C = {x|P,,(E,) > O for some n, i}. Then C is locally countable.
By the remarks in Section 3 the finite-dimensional distributions of P, and Q,
coincide for sets disjoint from C. Now P,({n|n(En C) = 0}) = Q,({n|n(ENC) =
0}) —»1if P, —»Por Q,— P,so P, — Pif and only if Q, — P.

Notice that (&, \/) cannot be Delphic (Kendall (1968)) because the circuitous
proof of Proposition 2 shows there is no suitable homomorphism. I do not
know whether (&, x) is Delphic.

6. Completely random sets. We say a random set Z is completely random if
(Z n E; = ) are independent whenever (E,) is a disjoint subclass of %" (and
hence for %7). If A4 is the avoidance function of a completely random set we
define ¢(E) = —log A(E) for Ec 9. Then ¢ is additive and monotone on
2. X E, E,e %, E,= E\E, € .5,, 50 $(E, U E,) = (E, U E;) = §(E,) + H(E;) <
O(E) + ¢(E,), so ¢ is also subadditive.

Let F, = (U {E|E e ¥, A(E) > 0})°, which is closed. Suppose x ¢ F,. Then
A({x}) = sup {A(E)|x € E e &} = 0 (Matheron (1975) 2-1-1) so F, is contained in
the class of fixed points. Suppose Ke .27 andKNF, = @. ThenK c E, U --- U
E,, E cG, so AKK) >0, and F, is the class of fixed points. Replacing X by
X\F, we may assume A is positive, so ¢ is finite. Thus ¢ is a content which has
an extension (by the cited equation) to a Borel measure v (Halmos (1950) 53).
Thus A(K) = exp —y(K) for all K € .27, and 4 is the avoidance function of the
locally finite random set generated by the (not necessarily simple) Poisson point
process with mean measure v and distribution P,. Thus P = DP, Ve, .

We say a point process is completely random if (Z(4,)) are independent when-
ever (A4,) is a finite disjoint subclass of <. If Z is a completely random simple
point process, D o Z is a completely random set with distribution DP V ¢, for
FeLF. Thus Z is completely random if and only if D o Z is a completely ran-
dom set. Thus Z differs from a simple point process on a locally countable set in
which points occur independently with positive probability, a result which can
also be derived by random measure theory (Kingman (1967), Jagers (1974)).

Suppose a completely random point process Z is the sum Z, + Z, of inde-
pendent point processes. Matthes (cf. Daley (1971)) asked whether Z, and Z,
are necessarily completely random. We show this is so if Z is simple.

THEOREM 2. The distributions of completely random simple point processes form
a hereditary subclass of (5, x).

Proor. Let Z, Z, and Z, be given as above, Z being simple. Let C =
{x|Pr (Z({x}) > 0) > 0}, and let C, and C, be the corresponding sets for C, and
C,. Then C is countable and Z restricted to C° is a Poisson process with mean
measure v finite on <”. Suppose Be € and B n C = @. Then Z(B) = Z,(B) +
Z,(B) is Poisson, so Z,(B) and Z,(B) are Poisson (Raikov’s theorem, Loéve (1963),
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Section 19.2). In particular Pr (Z,(B) = 0) > 0. Now suppose 4 C C,. Then
Pr(Z(A U B) = 0) = Pr(Z,(A U B) = 0)Pr(Z,(A U B) = 0) = Pr(Z,(A U B) =
0) Pr (Z,(B) = 0) since Z,(C,) = 0 a.s. Also Pr (Z(4 U B) = 0) = Pr (Z(A4) =
0) Pr (Z(B) = 0) = Pr (Z,(A) = 0) Pr (Z,(B) = 0) Pr (Z,(B) = 0). Thus Pr (Z,(4U
B) = 0) = Pr (Z,(A) = 0) Pr (Z(B) = 0). Now the restrictions of Z and Z, to
C, agree a.s., and the restriction of Z; to C\C, is null a.s., so Z, restricted to C
is completely random. Also Z, restricted to C° is Poisson (LFRS, Theorem 4,
cf. Rényi (1967)) and so is completely random. By the last equation D o Z, is
a completely random set and so Z; is completely random.

The following example shows this theorem is false for (&3, \/) on any space
with two or more points.

ExamPLE 2. Let X = {a, b}. We define P and Q by the following tables.
Neither is completely random, but P v Q is.

P 0 PvQ
a b 0 1 0 1 0 1
0 z 3 ¥ 38 d1 87
1 t 8 g 3 71 3%
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