ON THE OSCILLATION OF THE BROWNIAN MOTION RANDOM MEASURE¹

BY SIAMAK KHALILI

IBM Corporation

We show that a Brownian motion random measure with q-dimensional parameter domain almost surely nowhere satisfies a Lipschitz condition of order greater than $\frac{1}{2}$.

Paley, Wiener and Zygmund [3] proved that with probability one the sample functions of a Brownian motion stochastic process nowhere satisfy a one-sided Lipschitz condition of order greater than $\frac{1}{2}$. In this paper we will extend this result to a Brownian motion random measure with q-dimensional parameter domain.

DEFINITION. Let (Ω, \mathcal{B}, P) be a probability space, (T, \mathcal{S}, μ) a measure space and $\mathcal{D} = \{D : D \in \mathcal{S} \text{ and } \mu(D) < \infty\}$. Then we say that ξ is a *Brownian motion random measure* over (Ω, \mathcal{B}, P) with parameter domain T iff it is a mapping from \mathcal{D} into (jointly) Gaussian random variables with mean zero on Ω such that $\forall D_1, D_2 \in \mathcal{D}$, Cov $(\xi(D_1), \xi(D_2)) = \mu(D_1 \cap D_2)$.

A Brownian motion random measure ξ has independent values on disjoint sets, since for jointly Gaussian random variables with mean 0, orthogonality implies independence.

Let N_+ denote the set of nonnegative integers, \mathbb{R} the set of real numbers, and \mathbb{R}_+^q the set of all $t \in \mathbb{R}^q$ such that $t_j \geq 0$ for $j = 1, \dots, q$. If s, t and $t - s \in \mathbb{R}_+^q$, let $(s, t] = X_{j=1}^q(s_j, t_j]$.

Let Leb. denote Lebesgue measures. For a Brownian motion random measure ξ with parameter domain (\mathbb{R}_+^q , Leb.) we may first define a stochastic process $\xi(0, t]$ for $t \in \mathbb{R}_+^q$. Then for any (s, t] let

(1)
$$\xi(s, t](\omega) = \sum_{j=1}^{2q} (-1)^{k(j)} \xi(0, v_j](\omega)$$
 for all ω ,

where v_j are the vertices of (s, t] and k(j) is the number of coordinates of v_j equal to those of s. Since (1) must hold almost surely for given (s, t], we may define $\xi(s, t]$ consistently by (1) and then it is always finitely additive;

(2) if
$$(s, t] = \bigcup_{j=1}^{n} (s_j, t_j]$$
 and $(s_j, t_j]$ are disjoint, then $\xi(s, t](\omega) = \sum_{j=1}^{n} \xi(s_j, t_j)(\omega)$ for all ω .

THEOREM. Let ξ be a Brownian motion random measure with parameter domain

Received October 29, 1975; revised April 29, 1976.

¹ This paper is based on a part of the author's Ph. D. thesis written under the direction of Professor P. R. Masani at the University of Pittsburgh.

AMS 1970 subject classifications. Primary 60J65; Secondary 28A45.

Key words and phrases. Brownian motion, random measures, Lipschitz condition.

 $(\mathbb{R}_+^q, \text{ Leb.}).$ Then $\forall \alpha > \frac{1}{2}$, almost surely, $\forall t \in \mathbb{R}_+^q$ $\limsup_{h \to 0} |\xi(t, t+h)|(\omega)|/(\text{Leb.}(t, t+h))^{\alpha} = +\infty$.

PROOF. It is clearly sufficient to consider only the subset $T = [0, 1]^q$. Let $\forall n, m \in \mathbb{N}_+$,

(3)
$$A_{m} = \{\omega : \exists t \in T, \exists r > 0 \text{ such that for } h \in \mathbb{R}_{+}^{q} \\ \max_{j} h_{j} < r \Rightarrow |\xi(t, t + h](\omega)| \leq m(\prod_{j=1}^{q} h_{j})^{\alpha} \} \\ C_{n} = \{ X_{j=1}^{q} ((k_{j} - 1)/2^{n}, k_{j}/2^{n}] : k_{j} = 1, 2, \dots, 2^{n}; j = 1, 2, \dots, q \} \\ u(n, m) = 2^{q} m 2^{(1-n)q\alpha}.$$

For each $C \in C_n$, decompose C into a collection E_C of n^q cubes of side $1/n2^n$. Let $\forall n, m \in N_+$

$$B_n^m = \{\omega : \exists C \in C_n \text{ such that } \forall D \in E_C \mid \xi(D)(\omega) | \leq u(n, m)\}$$

 $B = \bigcup_{m=1}^{\infty} \lim_{n \to \infty} B_n^m$.

ASSERTION. For each $m \in N_+$, $A_m \subseteq \lim \inf_{n \to \infty} B_n^m$.

PROOF. Let $\omega \in A_m$. Choose r and t from (3) and $p \in N_+$ such that $2^{1-p} < r$. Then $\forall n \geq p$, $\exists C = (s_n, s_n + h_n] \in C_n$ such that $C \subseteq X_{j=1}^q (t_j, t_j + r]$ and $t \in (s_n - h_n, s_n]$. Let $D \in E_C$. Then

$$1_D = \sum_{j=1}^{2^q} a_j 1_{(t,v_j)}$$

where v_i are the vertices of D and $a_i=\pm 1$ as in (1). Then by (2) we have

$$|\xi(D)(\omega)| \leq \sum_{i=1}^{2q} |\xi((t, v_i))(\omega)| \leq 2^q m 2^{(1-n)q\alpha} = u(n, m)$$
.

Hence $\forall n \geq p, \omega \in B_n^m$, proving the assertion.

Next, $\forall D \in E_c$, $\xi(D)$ is Gaussian with mean zero and variance $1/(n2^n)^q$. Therefore,

$$P\{|\xi(D)| \le u(n, m)\} \le (n2^n)^{q/2}u(n, m).$$

Since ξ is finitely additive and independently scattered, $\forall n, m \in N_+$,

$$P(B_n^m) \leq 2^{nq} \{ (n2^n)^{q/2} u(n, m) \}^{nq}$$

$$\leq 2^{nq} \{ m n^{q/2} 2^{q(1+\alpha)} 2^{nq(-\alpha+\frac{1}{2})} \}^{nq} .$$

It is easy to show that $\forall m \geq 1$, $\lim_{n \to \infty} P(B_n^m) = 0$ since the last factor is predominant and $\alpha > \frac{1}{2}$. Hence

$$P(B) \leq \sum_{m=1}^{\infty} P(\liminf_{n \to \infty} B_n^{(m)}) \leq \sum_{m=1}^{\infty} \lim_{n \to \infty} P(B_n^{(m)}) = 0.$$

Dvoretzky [1] has shown that the sample paths of a Brownian motion stochastic process, with probability one, nowhere satisfy a Lipschitz condition of order $\frac{1}{2}$ with a sufficiently small Lipschitz constant. As far as we know, Dvoretzky's result has not been extended to a Brownian motion random measure with parameter domain R_+^q , $q \ge 2$. Logarithmic refinements of our result also seem to be open.

Acknowledgment. I wish to thank the referee for simplifying my original proof of the theorem presented in this paper.

REFERENCES

- [1] DVORETZKY, A. (1963). On the oscillation of the Brownian motion process. *Israel J. Math.* 1 212-214.
- [2] Khalli, S. (1975). Independently scattered measures. Ph. D. dissertation, Univ. of Pittsburgh.
- [3] PALEY, R. E. A., WIENER, N. and ZYGMUND, A. (1933). Notes on random functions. *Math.* Z. 37 647-668.

DEPARTMENT OF MATHEMATICS CLEVELAND STATE UNIVERSITY CLEVELAND, OHIO 44115