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ON THE OSCILLATION OF THE BROWNIAN
MOTION RANDOM MEASURE!

By SiaMak KHALILI
IBM Corporation

We show that a Brownian motion random measure with ¢g-dimensional
parameter domain almost surely nowhere satisfies a Lipschitz condition of
order greater than 4.

Paley, Wiener and Zygmund [3] proved that with probability one the sample
functions of a Brownian motion stochastic process nowhere satisfy a one-sided
Lipschitz condition of order greater than 4. In this paper we will extend this
result to a Brownian motion random measure with g-dimensional parameter
domain.

DErFINITION. Let (Q, &%, P) be a probability space, (T, &, ¢) a measure space
and & = {D: De & and p(D) < «}. Then we say that § is a Brownian motion
random measure over (Q, &, P) with parameter domain 7 iff it is a mapping
from & into (jointly) Gaussian random variables with mean zero on Q such
that V D, D,e &, Cov (§(D,), §(D,)) = u(D, N D,).

A Brownian motion random measure § has independent values on disjoint
sets, since for jointly Gaussian random variables with mean 0, orthogonality
implies independence.

Let N, denote the set of nonnegative integers, R the set of real numbers, and
R,?thesetof all re R*such thats; > Oforj=1,...,¢9. If s, tand s — se R, 9,
let (s, 1] = X{=1 (555 15]-

Let Leb. denote Lebesgue measures. For a Brownian motion random measure
§ with parameter domain (R,?, Leb.) we may first define a stochastic process
§(0, t] for te R, ?. Then for any (s, 7] let

1) £(s, t](w) = X3, (— D960, v;)(w)  forall o,
where v; are the vertices of (s, #] and k(j) is the number of coordinates of v;

equal to those of s. Since (1) must hold almost surely for given (s, ¢], we may
define £(s, ] consistently by (1) and then it is always finitely additive;

) if (s, 1] = Uj=1 (555 ;] and  (s;, t;] are disjoint, then
(s, t](®) = 7.1 6(s; t;](@) forall .

THEOREM. Let & be a Brownian motion random measure with parameter domain
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(R, Leb.). ThenV a > }, almost surely, ¥V t ¢ R,

lim sup,_, [§(t, t + A](w)|/(Leb. (¢, t + A])* = + oo .

Proor. It is clearly sufficient to consider only the subset T = [0, 1]?. Let

Vn,meN,, :

A, ={w:3teT, 3r > 0 such that for heR,?
3 max; h; < r=I[£(t, t + h)(0)] < m(I1$-1 k)%

Co =X (ks = /2% k2] k; = 1,2, -+, 2% j= 1,2, -+, g}

u(n, m) = 29m24=-»ee,
For each C e C,, decompose C into a collection E; of n? cubes of side 1/n2".
LetVn,meN,

B," = {w:3CeC, suchthat VDeE, |§(D)(w)| < u(n, m)}
B = Uz.,liminf,_ B,™.

ASSERTION. For eachmeN,, A, < liminf,__ B,™.

Proor. Let w € 4,,. Choose r and ¢ from (3) and pe N, such that 2!-? < r.
Then Yn = p, 3C = (s,, 5, + h,]€C, such that C < X9, (¢;, t; + r]and te
(s, — h,, s,]. Let De E,. Then

1, = i q; l(t,u,-]
where v; are the vertices of D and a; = +1 as in (1). Then by (2) we have
(D)) = ZF (1 v;])(@)] < 20m20=9% = u(n, m) .

Hence V n = p, w € B,”, proving the assertion.
Next, VDeE,, §D) is Gaussian with mean zero and variance 1/(n2").
Therefore,
P{&(D)| < u(n, m)} < (n2")*"u(n, m).

Since ¢ is finitely additive and independently scattered, V n, me N,

P(B,") < 2"{(n2")*"u(n, m)}**
é 2nq{mnq/22q(1+a)2nq(—a+})}nq .

It is easy to show that Vm = 1, lim,_,, P(B,™) = O since the last factor is pre-
dominant and &« > }. Hence

P(B) < Y=_, P(liminf, . B,") < Y'=_, lim, .. P(B,") = 0. 0

Dvoretzky [1] has shown that the sample paths of a Brownian motion sto-
chastic process, with probability one, nowhere satisfy a Lipschitz condition of
order {4 with a sufficiently small Lipschitz constant. As far as we know,
Dvoretzky’s result has not been extended to a Brownian motion random meas-
ure with parameter domain R,?, ¢ = 2. Logarithmic refinements of our result
also seem to be open.
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