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LEVEL CROSSINGS OF A STOCHASTIC PROCESS WITH
ABSOLUTELY CONTINUOUS SAMPLE PATHS

By MicHAEL B. MARCUS
Nothwestern University

Let X(2), t €[0, 1] be a real valued stochastic process with absolutely
continuous sample paths. Let M(a, X(#)) denote the number of times
X(t) = a for te(0, 1] and N(a, X(¢)) the number of times X{(#) crosses the
level a for #€(0, 1]. Under certain conditions on the joint density fun-
ction of X(¢) and its derivative X(z), integral expressions are obtained for
E[TI*_, N(a:, X(#))44] for j; positive integers (similarly with M replacing N).

Examples of Gaussian processes X(f) are found for which X(0) =0,
EN(a, X(t)) < o, a+ 0 but EN(, X(¢)) = c. Also examples of station-
ary Gaussian processes are given for which EN(a, X(¢)) < o for all a,
ENZ0, X(¢)) = oo but E[N(0, X(¢))N(a, X(t))] < oo for a+ 0. These ex-
amples are used to describe the clustering of the zeros of a certain class of
Gaussian processes.

1. Introduction. Let X(f) be a stochastic process with absolutely continuous
sample paths. A great amount of attention has been given to studying the
random variables M(a, X(t)), the number of times X(f) = a (say for r¢ (0, 1)),
and N(a, X(7)) the number of times the paths of X(r) “cross” the level a. Rice
(1945) and Kac (1943), (1943a), obtained expressions for the expected value,
EN(a, X(1)), for a certain class of Gaussian processes and polynomials with
random coefficients. It6 (1964) found necessary and sufficient conditions for
EN(a, X(t)) < oo when X(¢) is a stationary Gaussian process. Higher moments
for N(a, X(t)) were considered in a series of papers by Cramér and Leadbetter
and Ylvisaker. An explicit expression for the kth factorial moment
E[N(a, X(t))(N(a, X(t)) — 1) - - . (N(a, X(f)) — k + 1)] was obtained for station-
ary Gaussian processes under mild regularity conditions in Cramér and Lead-
better (1965) and Ylvisaker (1966). Other references can be found in Cramér
and Leadbetter (1967).

The results of Cramér and Leadbetter and Ylvisaker are generalized in two
directions. We do not restrict ourselves to stationary Gaussian processes (see
also Leadbetter (1966)) and we obtain integral expressions for quantities such as

(1.1) E[N(a,, X(1))r - - - N(a,, X(1))*]

for levels a,, - - -, a, and integers j,, - - S Jx- The integral will be called a gener-
alized Rice’s function. It is usually not a continuous function of a = (ay, +- -,
a,). This observations bears upon the results of Brillinger (1972). It is this lack
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of continuity that accounts for the analytical complications that arise in the
proofs of many results on level crossings.

The integral expression for (1.1) is obtained under certain conditions on the
joint density function of X(¢) and its derivative X(¢) (in the sense of absolute
continuity). Under rather weak conditions, upper bounds are obtained for (1.1)
but with M(a,, X()) replacing N(a,, X(?)), i =1, - -, k.

A precise statement of our results will be given in Section 2. Proofs of the
main theorems are given in Sections 3 and 4. In the earlier papers on this
subject Kac (1943, 1943a), Ivanov (1960) and It6 (1964) obtain EN(a, X(f)) by
first finding a function that counts the level crossings of a real valued function.
Then they substitute X(7) for the function and take the expectation. This
method was not used for finding the kth factorial moment of the number of
level crossings for stationary Gaussian processes but we return to it in this paper.

In Section 5 sufficient conditions are presented, simpler than the ones given
in Section 2, which show that our results hold for stationary and nonstationary
Gaussian processes subject to certain obvious minimal conditions. In Section 6
we exhibit Gaussian processes X(7), with X(0) = 0, for which EN(a, X(¢)) < o
for a # 0 but EN(0, X(r)) = co. In Section 7 examples are given of stationary
Gaussian processes for which EN(a, X(7)) < oo for all a, EN*0, X(¢)) = oo but
E[N(, X(t))N(a, X(1))] < oo whenever a + 0. These examples and some other
considerations are used to give a picture of what the zeros are like for certain
Gaussian processes for which EN(0, X(7)) < oo but EN*(0, X(¢)) = oo.

2. Results and discussion. Let X(7), 1[0, 1] be a stochastic process with
absolutely continuous sample paths. Let
2.1 Ptl,"',tk(xl’ e X Vo s Ve)

be the joint density function of X(t,), - - -, X(#,); X(1,), - - -, X(t,) where X denotes
the derivative of X in the sense of absolute continuity. Let X, y, t denote vectors
in R*. The function in (2.1) will also be written as p,(x; y). Define (with dy =

dyl e, dyn)

(2.2) 9(X) = $Za -+ [Za P V)il o Iyl 4Y 5

(2‘3) A:S = {tltz > 5; lti - tjl > 5’ laJ: 1’ ctty k,l: ]} .

Let a = (a;, - -+, a,). X(#) will be said to satisfy condition Ik at a, for a fixed
positive integer k, if the following hold:

(Ik, 1) p(x;y) exists for all k-tuples (z,, - - -, #,) of distinct values of ¢ ¢ (0, 1]
(t = 0 is omitted to allow X(0) = 0);

(Ik, 2) given d > O there exists an » > 0 so that for x e ®%_, (4, — 7, a, + 7)
and te A,
(2.4) 9.(X) = M, for some constant M;; and

(Ik, 3) for each t e 4,, g,(x) is continuous at a.
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Let X,,(7) be the nth polygonal approximation of X(r) formed by taking X, (1) =
X(t) for t = k2", k =0, 1, ..., 2. If the joint density function of X,(t,), - - -,
X, (t); X, (1), - - -, X,(t,) exists we denote it by p, .(X; ¥). Define

(2.5) Ien(®) = §Ze -+ 20 P V)1l - 1yl dY -

The family {X,()} of polygonal approximations of X(r) will be said to satisfy
condition IIk at a if the following hold:

(Ilk, 1) For each 6 > 0 there is an N, so that for n = N, p, ,(X; ¥) exists for
all te 4,.

(ITk, 2) For each n = N, there exists an 5 > 0 so that for x e ®¥_, (a -7,
a; + n)and te A4,

(2.6) ua(X) =M,
for some constant M, ,. (Note M, , and 5 can both depend on n.)

(Ilk, 3) For each n > N, and t € 4,, g, ,(x) is continuous at a.
(I1k, 4) Foreachte 4,, g, ,(a) < T, uniformly in n > N;,, for some constant T;.
(I1k, 5) For each te 4,, lim,__ g, ,(a) = g,(a).

For fixed k we define the integral on R*

(2.7) I(a, X(1)) = {1 -+ (s9,(a) dt.

I(a, X(7)) is the familiar integral that appears in Cramér and Leadbetter (1965)
and Ylvisaker (1966) except that we do not require @, = a, = --- = a;; we
call I(a, X()) a generalized Rice’s function. Written out,

1(a, X(1))

— Sé ce Séptl,m,tk(al’ RN A PR .,yk)lyll ce |yk| dyl e dyk dt, ... dt,

Let G, be the set of continuous functions f(r) on [0, 1] which have the property
that f(r) is not identically equal to a on any interval of [0, 1]. Following Cramér
and Leadbetter (1967, page 192) a function f(r) € G, is said to cross the level
a at t = t, if in each neighborhood of ¢, there are points ¢, and ¢, such that
[f(t) — al[ f(t,) — a] < 0. We define N(a, f(f)) as the number of times that f(¢)
crosses the level a for ¢ € (0, 1] and M(a, f(?)) is defined as the number of times
f(t) = a for te (0, 1]. Clearly M(a, f(t)) = N(a, f(1)). If N(a, f()) < oo then
each crossing of the level a is either an upcrossing or a downcrossing.

If a process X(¢) satisfies (Ik, 1) then X(f) € G, a.s. Therefore we can consider
the random variables N(a, X(7)) and M(a, X(¢)).

If a = (a, ---, a,) the integral I(a, X(7)) is related to the expectation of a
function of the k random variables M(a,, X(7)), i =1, ..., k. We now define
that function. Consider the numbers a,, - - -, a,. Suppose that n, of them are
equal to b,, - - -, n; of them are equal to b;; >}7_, n, = k. Define

(2.8)  P[M(a, X(1), - - -, M(a,, X(1))]
= Tli=s M(bss X(O)[M(by, X (1)) — 1] - - - [M(b;, X(2)) — n, + 1].
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Note that if ¢, = a, = ... = a, = a, P[M(a,, X(t)), - -+, M(a,, X(1))] = M(a,
X(H)[M(a, X(1)) — 1] - -+ [M(a, X(1)) — k + 1] the kth factorial moment of
M(a, X(¢)) and if all the a, are different

P[M(a,, X(1)), - -+, M(ay, X(1))] = [If.. M(a;, X(2)) .
We can now state our main results:

THEOREM 2.1. Let X(1), t €[0, 1] be a stochastic process with absolutely continu-
ous sample paths. Let X,(t) be the nth polygonal approximation of X(t) as defined
above, For a fixed integer k and a = (a,, - - -, a,) € R* assume that X(t) satisfies
condition 1k at a then

2.9) E[P(M(a,, X(1)), - - -, M(a,, X(1))] < I(a, X(1)) -
If in addition {X,(t)} satisfies condition 11k at a then
(2.10)  E[P(M(ay, X(1), - - M(a,, X()))]
= E[Py(N(ay, X(1)), - - -» N(ay, X(1)))] = 1(a, X(1))
and if I(a, X(¥)) < oo, then
(2.11) N(a,, X(1)) = M(a,;, X(t)) a.s., i=1,..,k,

i.e., tangencies to the levels a;, i = 1, - .-, k occur on a set of measure zero of the
process.

Let {Y,(7)} be a refining sequence of polygonal processes in the following sense:

k—1 _k_),
v

(2.13) Y, () = Y,(9) t=k[2*; k=0,1,...,2"; n=1,...

(2.12)  Y,(r) is linear te(

Assume that for each n, Y,(?) € G% a.s.,i=1, ..., k and consider N(a,, Y,(?)).
N(a;, Y,(1)) increases: denote its limit by N(a,).

THEOREM 2.2. Let {Y,(?)} be a refining sequence of polygonal stochastic processes
as defined above, assume that {Y, ()} satisfies condition 11k at a, then

E[PN(ay), - -+, N(@,))] = lim, o, E[P(N(a;, Y,(1)), - - -5 M@, Yo(1)))]
= lim,_, I(a, Y,(?)) .

In Theorem 3.1 of Brillinger (1972) a result like our Theorem 2.1 is shown
to hold for almost all ae R,. Corollary 3.2 of that paper gives conditions under
which our Theorem 2.1 holds for a fixed a ¢ R* with @, = @, = ... = g,. One
of the conditions of the corollary is that /(a, X(¢)) is continuous at a, but one
can see from Theorem 2.1 that for k > 1, I(a, X(?)) is not continuous at a (when
a, = a, = ... = a,). Brillinger’s methods for obtaining results that are true for
almost all a, and those of Geman and Horowitz (1973), who obtain a similar
result for the first moment of stationary processes, are different from the ones
that we use.
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In dealing with the polygonal families {X,(7)} approximating X(z), care must
be taken. Condition Ik, 1 is not the same as condition IIk, 1. The density
function p, ,(X; ¥) can not exist for all k-tuples (#,, - - -, ;) of distinct values of
t e (0, 1] because for 7€ [(k — 1)/2%, k/2*] both X,(r) and X,(7) are determined
by X((k — 1)/2*) and X(k/2"). In Ik, 1 we require only that p, ,(X; ) exist for
t ¢ A, for sufficiently large n. This means thatthes;i=1, ..., kin(t, ---, ;)
are all separated by at least d. Therefore, if n is taken large enough, each ¢, lies
in a different interval of length 2-. Let p,(x, - - -, Xy) be the joint density of
X(t), - -+, X(ty). Fix a value of k. If p(x, -, xy) exists for all 2k-tuples
(t, « - - 1y, of distinct values of 7 ¢ (0, 1] then, for this value of k, p, (X, ¥) will
exist for t € 4;, n = N,. .

3. Proofs for the case k = 1. The method of proof is the following: a
functional is obtained that counts the level crossings of a real valued function.
Replacing the real valued function by a stochastic process we obtain an integer
valued random variable and take its expectation. Define

3.1 s =1 |x—a <A
=0 otherwise.

LemMA 3.1. Let f(t) € G,, f(1) +# a and assume that (1) is absolutely continuous
with derivative f(t), then

(3:2) M(a, f(7)) < lim,_, lim inf,_, EIK 13 0a s S| f(1)] dt .

Define M,(a, f(1)) as the number of times f(t) = a for t € (9, 1].

Proor. This lemma is given in Ivanov (1960) and also in Itd (1964). Kac
(1943) first used the expression on the right in (3.2) (with f(#) continuous) to
count the zeros of a function. We will give a proof both for completeness and
because we shall refer to it in the proof of Lemma 3.2.

Suppose f(f) = a for a finite number of times 6 < 1, < -+ < 1, < 1. For
each A < A, for some sufficiently small A, we can find » disjoint sets (s, s;.) such
that ¢, € (s, 5.)), 5, > 0, 5’ < 1 and

(3.3) [§% f(s)ds| = A and |’ fs)ds| = A.

(Note that s, = max {s: s < t,, |f(s) — a| = A}and 5, = min {s: s > 7, | f(5) —
a| = A}. The absolute continuity of fis also used in (3.3).) Since |f(s) — a| <
A for s e (s, 8),

(3.4) g B £ealfO)A] di Z Ttos (1 | f(0) )28 2 m

(for the last inequality use (3.3)).
Therefore, in this case

Mi(a, /() = liminf, o =1 §3 g, o ()] f0] s
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and if f(r) = a a finite number of times in [0, 1], (3.2) follows. If f(f) = a for
an infinite number of points ¢, then for each m we can choose a 6 and ¢,, - - -,
I, € (9, 1] and show that the right side of (3.4) is greater than or equal to m.
Therefore both sides in (3.2) will be infinite.

Define G, , as the set of continuous functions f(f) € G, which have the further
property that f(r) = a for t = k2", k =1, ..., 2%,

LemMaA 3.2. Let f,(t) € G,,, be linear forte (k — 1)/2*, kj2"), k = 1, ..., 2",
Let Ny(a, f,(t)) be the number of times f,,,(t) crosses a for te (0, 1]. Then

(3.5) Ny(@, £u(0) = lim, o L 35 00 s(ful0)] £2(0) d
and
(3.6) ox Bl 01 dr < 2.

Proor. Suppose f,(f) = a for a finite number of times§ < 1, < --- < ¢, < 1.
For all A < A, for some sufficiently small A, we can find n disjoint sets (s, s,")
with 7, € (5;, 5.), (85 5") € (Ju/2" (ji + 1)/2") for some 0 < j, < 2%, 5, > 6, 5, <
1 and such that (3.3) holds with f,(r) replacing f(r). Furthermore, since f,(f) *
only has a finite number of maxima and minima the intervals (s,, s,’) can also
be chosen so that ¢, ,(f.(¢)) =0 if r¢ Ui, (s, 5") and since f,(¢) does not
change sign in (s,, s,") there is equality throughout (3.4) when f,() replaces f(7).

Clearly M;(a, f,(1)) = Ny(a, f,(1))-
To establish (3.6),

BT o B 0aalfuO) f(O] dt = TE o e 0 a0 (0] it < 22,

since f,(f) does not change sign in ((k — 1)/2*, k/2").

ProorF oF THEOREM 2.1, (2.9). In this case P(M(a, X(t))) = M(a, X(t)).
Because the joint density function p,(x, y) exists for all 7€ (0, 1] the paths of
X()e G, and X(1) = a except possibly on a set of measure zero. Therefore,
almost surely, the paths of X(¢) satisfy the hypothesis of Lemma 3.1. Using
Lemma 3.1, the monotone convergence theorem and Fubini’s theorem we get

E[M(@ X(1))] S lim, , liminf,_ 5 1} B, J(X()X(0)] di
. .. 1
(3.8) = lim,_, lim inf, , ETN 5§20 § 70 @u,a(X) y| pu(x; y) dx dy dt

— lim,_, lim inf,__, g,,L §r8 §= |yl pdes ) dy dx dt .
Using (2.4), (3.8) is
< lim, . §3 lim sup, o o 1844 1% [y1pi(xs ) dy dx di

The proof is completed by using condition (Ik, 3).
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PRrOOF OF THEOREM 2.2, (2.10). In this case P,(N(a, X(t))) = N(a, X(t)). Since
the joint density p,(x; y) exists for ¢ e (0, 1], X(¢t) € G, , for all n a.s. Therefore,
Lemma 3.2 can be applied to the paths of X,(¢) for all n.

. 1 .
E[N,(@, X,(0)] = E| lim, o §3 g0 (Xu(0)|X,(0] a1 |
By (3.6) and the dominated convergence theorem this is

= tim, B L {1 pu (G 0)X,(0)] d |

. 1
(3.9) = 1imy o §5 55§28 §20 pua(x, 9)ly| dy dx dt
(3.10) = $3 §% pra(a, y)lyl dydt .

(3.9) uses Fubini’s theorem; (3.10) follows by dominated convergence using
conditions (Ilk, 2) and (IIk, 3). (Condition (IIk, 1) is not needed when k = 1.)
Let 9,, = 1/2™. Observe that as n — oo N, (a, X,(?)) increases to N, (a, X(1)).
Therefore
(3.11) E[N;,(a, X(1)] = lim, ., §3,, §Ze po.u(a5 Y)|y| dy dt .
Condition (Ilk, 4) enables us to use the dominated convergence theorem in
(3.11) and applying (Ilk, 5) we get

E[N,,(a, X(1)] = 13, §2. pa, y)|yl dy dr .
The proof now follows by the monotone convergence theorem since N, (a, X(7))
increases, as m — oo, to N(a, X(¢)). Since M(a, X(t)) = N(a, X(t)) we get (2.11).

PrRoOOF OF THEOREM 2.2, k = 1. It follows from the proof of Theorem 2.1 that

E[Ny(a, Yo ()] = §i 2 Pr,a(@s )|yl dy dt .

Theorem 2.2 now follows from the monotone convergence theorem with respect
to ¢ and n.

4. Proofs for k > 1. Given A, as defined in Section 2, let P, ,(M(a,, f(1)), - -+,
M(a, f(1))) be the number of different k-tuples (¢, - - -, #,) € 4, where t,€ f~'(a;)
(i.e., each ¢, is a solution of f(¢) = a;). Clearly
(4.1) P y(M(ay, f(1), - -5 M@, f(1) T Pu(M(ar, (1)), - - > M@, f(1)))
asd | 0. Let [,(t,, - - -, t,) = x(A,) where y(A) denotes the characteristic function
of the set 4.

LemMA 4.1. Given a = (ay, - - -, a;) assume f(t)eG,, f(1) #a;i =1, ..., k.
Assume that f(t) is absolutely continuous with derivative f(t). Then

(4.2) Py (M(ay, f(1)), -+ -5 M(ay, f(1)))
< lim inf,_, (EIA—> §a e L0 - oo B ITEc a, o (1)) A1)}
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PrOOF. Assume that f(rf) = a; for n(i) values of ¢ denoted by ¢;,,; j(i) =
1,...,n@{); i=1,..., k. Consider the finite number of k-tuples (¢;., - -,
tiuy) € A;. For each (t;,, -+, t;4,) € A, we can find a A, such that for each
A = A, there are intervals (of R"), (S0, S5w) Dty = s (Sinys Sjay) D Ly fOT
which ‘
(4.3) ) U &1 (Sia Sf;(i)),c 4, , ‘
where the union is taken over each of the intervals (of R¥) ®%_; (8;» 5}:;,) con-
taining one of the k-tuples (#;,), - - -, ;i) €4, j@) =1, -+, n(i); i=1, -+, k,
the terms in the union in (4.3) are disjoint and

S@ o dd =85 |§Eg fd] =A.

3(1)

Therefore
@4 s v () (e e ) dt

§ [ ()] d, .
S Ay dnl + g fe) del

(See the proof of Lemma 3.1 for more details on how the intervals (s;;,, 5;)

are chosen.)
By (4.3) and using the fact that the terms in the union are disjoint, for A < A,

Pos(M(@, S0, -+ M@y, fD)) |
< () B Bh oo ) (TTEn e u )] e dt

v

4.5) = Tk,

Therefore the lemma holds whenever the left side in (4.2) is finite. It follows
as in the proof of Lemma 3.1 that if the left side of (4.2) is infinite so is the
right side. This completes the proof of the lemma.

LemMa 4.2. Let f,(€G, ,; i =1, -,k and be linear for te ((k — 1)/27,
kj2*y, k =1,...,2". Leta= (a, ---, a,,), then

(4.6)  Puy(N@y, [,(1)s -+ N@w, fu(1)))
= limA_.o <2—1A‘>k S(l) e (l)ls(tv Tt tk){Hf=1 Soai,A(fn(ti))lfn(ti)}} dat,
and

@7 () B BL e )T e D A0 de S 25

Proor. Following the proof of Lemma 3.1 we can obtain (4.4) with
fa(t) replacing f(¢) and with the additional condition that each (s;, Sm)) c
((k — 1)[2", kj2*) for some k =1, ...,2" since f(1)€G,,,, i=1,.--, k.
Therefore f,(t;,,) does not change sign in (s;4,, 8},)- Usmg this in (4. 4) and
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(4.5) (with f,(r) replacing f(¢)) we get that for A < A,
2 2 1 \* ;
(4.8) i - 58 () (L el fa(t) (el dt = 1

for all ®¥_; (5;;)» 85iy) C A, Alsosince f,(¢) has only a finite number of maxima
and minima, if A, is small enough then for A < A, the integral in (4.8) is zero
outside of |J ®%_, (S;» Sjiy)- Therefore (4.6) holds. Inequality (4.7) follows
immediately from (3.6) since (4.7)

1 .
= Mt o 8 us (A1) e} < 20
by (3.6).
ProoF oF THEOREM 2.1. The joint density p,(x; y) exists for all distinct values
of (t, --+, ;)€ (0, 1%, X() e G, ;i =1, .-, kas.and X(1) # a,, i = 1,
a.s. Therefore, almost surely, the paths of X(7) satisfy the hypothesis of Lemma
3.1s0

Pus(M(@ X(1), -+, M(@, X(1)
< timinfy o (5 ) 55+ G+ BT A XEDIX() dt

almost surely. Using Fatou’s lemma and Fubini’s theorem we get
E{P, o(M(ay, X(1)), - - -, M(ay, X(1)))]

o 1\
< liminf, , 5 --- 5 1,(t, -5 &) <2—A“)

X Saty oo SeEr (2 - 2 p(X5 ) | - - |yl dy dx dt .
Condition (Ik, 2) allows us to use the dominated convergence theorem to bring

the limit on A inside the integral with respect to t and the continuity condition
(Ik, 3) enables us to take the limit. Therefore

(4.9) E[P, ,(M(a,, X(1)), - -+, M(a,, X())] < §6 -+~ o 1,(t, -+ -5 1)9.(a) dt .

(2.9) now follows by (4.1) and the monotone convergence theorem. To prove
(2.10) we note that since X(¢) satisfies condition (Ik, 1), almost surely X(¢) e
GaM, i=1,...,k; n=1,2,.... Consequently X,;(t)eGaM, i=1, .-,k
n=1,2, ..., almost surely and Lemma 3.2 can be applied to the paths of X, (7).

Given o take N, large enough so that p, ”(x y) exists for all te 4,, n = N,. For
n = N,, by Lemma 3.2

(4.10)  E[P, ,(May, X,(1)), - -5 NMay, X,(1)))]

(4.11) - limAqu[<£A—>k 0o Gt )

| X T 20, (XL EDIX(0]) ] d

In (4.11) the limit and integral can be interchanged because of (4.7). Following
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the proof of (2.9) and using conditions (Ilk, 1), (IIk, 2) and (IIk, 3) for {X,(¢)}
we get that (4.11) is equal to
(4.12) §6 -0 §o Lot oo o5 1) §%0 oo $Z0 p (5 W)l - -+ il dy At

Using conditions (IIk, 4) and (Ilk, 5) we can take the limit in (4.12) as n — oo;
it is equal to

(4.13) §o - St -5 t)gg(a) dt
Clearly
(4.14) lim, . P, ;(N(a,, X,(?)), - -+, N(a,, X,(?)))

= Py s(May, X(1)), - - -, May, X(1))) -
If we show that for a fixed d and N, sufficiently large

(4.15) P, s(N(ay, X, (1)), - - -, N(a,, X,(1)))
= Py (N(ay, X(1)), - -+, N(ap, X(1)))

for n = N; the proof of (2.10) can be completed. Assume (4.15) by (4.9) and
condition (Ik, 2) for X(r)

(4.16) E[Py35(Nay, X(1)), - -5 N(a, X(1)))] < oo

Therefore, taking the limit as n — co in (4.10) and using the dominated con-
vergence theorem by virtue of (4.15) and (4.16), we can interchange the limit
and expectation and using (4.14) we get that (4.10) is equal to

E[P 3 (N(ay, X(2)), - - -5 N(a, X(1)))] -

Finally we use the monotone convergence theorem to take the limit with respect
to d and obtain the second equality in (2.10). The first equality comes from
(2.9) and the fact that M(a,, X(1)) = MN(a;, X(?)).

We now obtain (4.15). Let <%, be the set of all subsets formed by taking
unions of the sets Q¥_, [(j; — 1)/2™, j,/2"], j; =1, ---, 2™ For a given set 4,
let &, ; be the smallest set contained in <%, such that 4, c <7, ,. Analogous
to the definition of P, , let Q, , .(N(ay, X(?)), - - -, N(a,, X(?))) be a random vari-
able equal to the number of different k-tuples (1, .-, 1,) € &, , where t, =
X~Y(a;). Then

Pk,«s(N(av X%(t)), Tt N(ak’ Xn(t))) = Qk.a,m(N(al’ Xn(t))’ Tt N(aks Xn(t)))
= Qk,a.m(N(av X(t))’ e N(ak’ X(t))) .
Forany ¢ < 2-* we can find an M, so that form > M,, &,, , C A,,, consequently
Qo m(N(@ss X(1)), -+ N@ X(1))) < Py yo(N(@sy X (1), - - -, N(a, X(1))

and we have (4.15). (2.11) follows as in Section 3.
The proof of Theorem 2.2 also follows as in Section 3.

5. Sufficient conditions for Ik and Ilk to be satisfied at a and applications to
Gaussian processes. Let X(f), t €[0, 1] be a stochastic process with absolutely
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continuous sample paths that satisfies (Ik, 1). If the joint density function sat-
isfies the following conditions then X(r) satisfies condition Ik at a:

(5.1) Given 6 > 0 there existsan » >0 so that for te 4,
and xe®¥,(a;, —n,a,+7), pX ) =h(y) where
12w oo §Za [l - oo | Dalha(y) dy < oo

and

(5.2) for each te A4,, p(x,y) iscontinuous at -a.

Let {X,(¢)} be the family of polygonal process associated with X(r). As we
remarked at the end of Section 2, under mild conditions on X(7) given a 6 > 0
the density function p, ,(x; y) will exist for n > N, for all t e 4,. If the density
function satisfies the following conditions then {X, ()} satisfies condition IIk at a:

(5.3) Given 0 > 0 there existsan 7 > 0 so that for re 4,,
nzN, and xe®fi(a —7a+7), Ppau(XY)= h(Y)
where {2, -+« §Z [y] <+ [yals(¥) dY < oo,

5.4 foreach n>= N, and te 4, p, (X;y) iscontinuousat a

and
(5.5) lim*ﬂ,-—too Pt,'ll,(a’ y) = Pl(a’ y) *

These assertions are easily proved. Given (5.1) and (5.2), (Ik, 2) and (Ik, 3)
follow from the dominated convergence theorem. Similarly (5.3), (5.4) and
(5.5) imply (1Ik, 2), (Ilk, 3), (Ilk, 4) and (Ilk, 5).

Let X(7) be a separable Gaussian process with covariance R(z, s) = EX(#)X(s).
Assume that R(¢, s) has continuous first and second partial derivatives in a closed
set in R? containing [0, 1] X [0, 1]. Then X(r), te[0, 1] has a version with
absolutely continuous sample paths X(f). The process X(r) is the Gaussian
process with covariance function r(s, f) = 9*R(s, t)/0t ds. For a process of this
type if the joint density function exists then Ik and Ilk are satisfied for any
a € R* and consequently (2.10) holds.

THEOREM 5.1. Let X(1) be a separable Gaussian process with covariance function
R(s, t) satisfying the conditions given above. Assume that X(t) satisfies condition
(Ik, 1) and (Ilk, 1); then X(t) satisfies 1k at a and 11k at a for every a € R* and con-
sequently Theorem 2.1 holds for every a € R*.

Proor. Recallt = (1, -+, ). Let|R(t)| denote the determinant of the 2k X
2k matrix R = {EZ,(s)Z;(s;)} i, j =1, - -+, 2k where 5, = 5,,, = t,, Z; = X and
Zyw = X,i=1,...,k. (This is the covariance matrix of the random variables
X(t), - -+, X(t), X(t), - -+, X(t,).) The hypothesis that p,(x; y) exists for all k-
tuples (t,, - - -, t,) of distinct values of 7 € (0, 1] implies that |[R(t)| > O for these
values. For any 6 we can find a compact set G, such that 4, C G, C A4,,,. Since
|R(t)| is a continuous function of t, |R(t)| = «(d) > O for te A4,, where a(d) is
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a constant that depends on the set 4,. Furthermore |R(t)| < C for te [0, 1]*
for some constant C. Let P(t) = R™(t); P(t) exists for t € 4, for all § > 0 and
A(t), the smallest eigenvalue of P(t), is greater than zero, te 4,, 6 > 0. Let
P={P;},i,j=1,...,2k, we have

i Piy(t)z,z; = At) X3k, 27

Since A(t) is continuous in t, A(t) = B8(0) > 0 for t € 4, where () is a constant
depending on 4,. Therefore

Pxiy) S @0 @)t exp { = PO oz )

56 = @EiHa@rep { =P (2 pa)

The function in (5.6) serves as the function #,(y) in (5.1). Condition (5.2) is
also satisfied. Therefore X(¢) satisfies Ik at a for every a € R*.

The conditions on R(t, s) imply that the elements of the covariance matrix of
X.(t), -+ X, (8)s X (t)s -+ Xu(th)s (te Az, n = N,) converge uniformly to the
elements of the covariance matrix of X(t)), - - -, X(t,); X(2), - - -, X(t,). If we
denote by R,, P,, a,(d) and $3,(d) the matrices and constants relating to X,(¢,), - - -,
X, (t); X.(t), -+ -, X,(t), in analogy to R, P, a(d) and j(5) defined above, we get
that a,(d) and §,(d) converge uniformly to a(d) and 3(6). Therefore for n > N/,
for some integer N,’ depending on ¢

2
|ee(9)]*

The function on the right in (5.7) serves as #,(y) in (5.3); (5.4) is clearly satisfied.
Condition (5.5) is also satisfied because of the convergence of the entries in R"
to those in R. Therefore X(7) satisfies Ilk at a for every a. (Note that inequality
(5.6) is similar to the inequality on page 208 in Cramér and Leadbetter (1967).)

(-7 Pea(X3Y) =

exp |~ (o4 )

REMARK 5.2. The existence of p,(x, y) for distinct values (z, - - -, t,) of /{0, 1]
is assured if X(¢) is stationary, mean square differentiable and has a continuous
component in its spectrum (Cramér and Leadbetter (1967), page 203). However,
sometimes X(¢) satisfies (Ik, 1) for some but not all values of k. Examples of
this are the Gaussian polynomials considered by Kac (1943).

6. Expected number of zeros of a special class of Gaussian processes. Let
£(t) be a stationary Gaussian process, E§%(r) = 1, E§(f) = 0. Define R(t) =
E&(s 4 0)&(s) and o’(t) = E(§(t + 5) — £(5))* = 2(1 — R(#)). Consider the process

6.1) X(1) = §46(w) du

te[0,1]. X(r) is a zero mean Gaussian process with absolutely continuous
sample paths.

THEOREM 6.1. For X(f) as defined above
(6.2) If a0, EN(a, X(1)) < oo,
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otherwise for some 6 > 0

(6.3) EN(QO, X(1)) < o0 = | ;12_ I§3 70%(r) deft ds < oo .

ProoF. Let Q = {g,;}; ;-1 , be the covariance matrix for X(¢) and its derivative
£y, i.e.,
(6.4) qu = EX*(t) = (; {R(u — v)dvdu = 2 {{ (t — 7)R(z) dr

=1 — {§(t — r)o*(r) dr
(6.5) G2 = qg = EX(I)&(I‘) = SsR(I — ll) du = Sf) R(u) du =t — % ¥ Gz(ll) du
9 = EE¥(t) = 1.

Let |Q| denote the determinant of Q,
(6.6) 1] = §570*(c) de + (54 0*(u) duy

Since |Q > 0, te (0, 1], the joint density function p,(x,y) of X(#) and &(1)
exists for 7 ¢ (0, 1]. One can also check that the joint density of X(#) and X(s)
exists for ¢+ s, 1, s€(0,1]. Therefore, by Theorem 5.1 and Remark 5.2,
EN(a, X(1)) = I(a, X(1)).

Let P = {p;;} j=1, = Q7% then

Ka, X(1)) = {4 §2w pi(a; y)|y| dy dt

= ?1,1-— ¥ e |Q1|% e—é(p11a2+2p12a1/+2922#2),y, dy dt,
1 1 a
6.7) = — (8% el |g 9Pz | o=s¥3 go gy |
( 20 "7 Tl (o)
Since p,, = ¢,,/|Q| and p,, = —q,,/|Q|, (6.7) is equal to
(6.8) L (3§, 19 oo [ 1 Wn | pon g gy
2r 9u 101*(qu)?

Suppose a + 0. If r€ (9, 1] for some § > 0 all the functions of 7 in (6.8) are
finite. Therefore we need only consider this integral for ¢¢ (0, §]. From (6.4)
and (6.5) we see that ¢, ~ r*and ¢,, ~ tas ¢t | 0. Therefore I(a, X(1)) < oo if

(6.9) (0L eemondr < oo .

1
This integral is finite so (6.2) is established.
When a =0
10, x(ry) = L 1 191F g
T 1
Again we need only consider the integral for ¢ e 0, d]. Substitutirig for |Q], and
noting that ¢,, ~ #* | 0, (6.3) follows since

(6.10) (55 0%(u) du)t < 4(§; co*(z) de)
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for s sufficiently small. To see (6.10) observe that the left side in (6.10) is
equal to

(6.11) {3 §¢ 0%(u) dua®(v) dv + 3§ o*(u) duc(v) dv .

v

For s sufficiently small the first term in (6.11) is less than
2 (s va*(v) dv .

The same is true for the second term in (6.11) as can be seen by interchanging
the order of integration. ’

Suppose ¢*(7) is a slowly varying function, in this case the condition in (6.3)
simplifies to

(6.12) 1020 dr < oo

It is well known (Marcus and Shepp (1970)) that there are continuous stationary
Gaussian processes &(7) for which the integral in (6.12) is not finite. For these
processes I(a, X()) is not continuous at a = 0. Also for such a process
EN(0, X(1)) = oo but N(0, X(#)) < oo a.s. This answers a question of Dudley
(1973), page 95, at least if X(r) is not required to be stationary.

7. Mixed second moments of certain stationary Gaussian processes. In this
section we find examples of certain stationary Gaussian processes for which
EN*(0, X(1)) = oo but E[N(a, X(1))N(0, X(#))] < oo for any a # 0. This provides
concrete examples of processes for which I(a, X(#)) is discontinuous when a e R®.
The major application of these examples will be in Section 8 where we speculate
on the nature of the zeros of certain stationary Gaussian processes.

It is easily checked that (given 0 < d < 1) we may define a covariance function
r(t), t [0, 1] such that

(7.1) r(t) =1 — /2(1 — (log 1/6)~%) + O(t*)

for ¢te[0, 6] for some 6 > 0. Let 6(r) = (log 1/r)~? and p(r) = 1 — 6(t). Note
that 0'(f) = d/t(log 1/1)**! and 6"(f) = —d/r(log 1/1)**! + d(d + 1)/r2(log 1/r)*+2.
Let (1) = 16'(f) = db(t)/log 1/t so

(7.2) (1) = o(6%(1)) .
In this notation
(7.3) F() = —tp(1) + - 9(1) + O(r)
and ‘
"y — @ + o) 2
(7.4) r''(t) = —p(1) + 39(1) + ‘z(log—l/t)“ + O(#) .

Let X(r), te[0, 1] be a stationary Gaussian process with covariance r(r).
Such a process satisfies the hypothesis of Theorem 5.1 so for these examples
E[N*0, X(t))] = 1((0, 0)) = oo by (8.3). Also E[N(a, X(¢)) - N0, X())] =
I((a, 0)). We will show that I((a, 0)) is finite for these examples. Since X(7) is
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stationary we have

(7.5) 1((a, 0)) = §} {1~ S°—°oo (1 — D)00,6(a; 0 y1s ya)|y1ll yal dy, dy, dt .

Let A(t) denote the covariance matrix of X(¢). As in (10.7.3) of Cramér and
Leadbetter (1967) we have

1 () 0 (1)
e 1 =@ 0
(76) A(t) - 0 —r’(t) 1 —r"(t) *
Py 0 —ri 1

Let M;; be the cofactor of the (ij)th element of A. The values of M,; that we
will need are listed below (here r = r(¢), 6 = 6(¢), etc.).

My=1—-(@"Y — (=20 — 6 + 3¢ + o(p)
My, = —r(1 — (r")}) — r'"(r'y

My,= —r'(r+r" = tp9 + $to + o(to)

My = —r[l 4 rr"] 4 (') = tof + 3t + o(tp)
My =r"(1 — 1) + r(r') = $fop + o(fo9)

My =My,= (1 —r) — (Y = 200 + ¢ + o(fo)

2 2
My + My = (1= r)(1 = (7)) = (YL + 1) = 07 4 o007

Let |A| denote the determinant of A; then
IAl =M, + rM; + r'M, = M, + M, — (1 - r)Mlz + r'M,
= £00° 4 o (106 .
In this calculation we use M, = (M, + M) — M,,.
We proceed to estimate the integral in (7.5).

Po,t(a, 0; Y1 yz) = ]wua2 + M33}’12 -+ M44}’zz

_1—_ ex {__1_ (
@ayTAF P 1T 2]

+ 2M13ay1 + 2M14ay2 + 2M3;y1)’2)} .
To simplify the notation let
a=M,, B=My=M,, r=M,, 0= M, and n=My,;
let y, = s, + 8, y, = 5, — 5,, then

By’ + Bys’ + 2191y, + 20ay, + 27ay,

=2(B + )5’ + 2(B — 1) + 2a(d + 1), + 2a(6 — 7)s,

=2(:B+‘T) (.S‘1-|—_‘ﬁ+—7]) 2-|—2(,8—7) s2-|-'a_(6.___”), ’
TN 28D 28 — 1)
_ @@+ _ @0 -7
28+ 1) 26 —1)
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Therefore
(7.7) (2a) ALY (=, §=, Po,t‘(a’ 05 y1, y2)|yilly.l dy.dy, ‘
(7.8) =252 e ew{—ﬁ((ﬁ +0) (s + ——;’Egj;’g )
+ B =1 (s+ ——‘Z’EZ —I))} - lsi — sl ds,ds, | oGes )
where

L _@ [, _ @G+ _ (0—7p°
(7.9) Q(a,t)—exp{ m( 28+ 7) 2(ﬁ—r)>}'

Let us first estimate Q(a; ¢) for ¢ small.

a =20 — 6+ 3¢ + o(p)
(0 + n) = 2tp0 4 6tp + o(t9)
(6 — ) = o(tp)
(B + 1) = £00 + 3% + o(’p)
(B —7) =00 — 3% + o(f’p)

O+7 25109
R B
O =" _ g
26-n '
Therefore
a_(5+77)2_(5_77)2 — 6 62
=255~ 26 ] =@
and
(7.10) QO(a; t) = exp {—{; + o0 (%)} .

Notice that Q(a; #) is very rapidly decreasing as ¢ | 0 unless @ = 0. This will
account for the fact that /((a, 0)) < oo but ((0, 0)) = co. In order to complete
this demonstration we will estimate the integral in (7.8).

Consider the integral

(7.11) §2 (2w exp[—ay(s; + B)* — ay(s, + Bo)*lls — 8;’| ds, ds, .
Since [s* — 5| < 5° + 5,7 (7.11) is less than or equal to

2w eXp[—(u; + ()B)Ju’ du, (=, exp[ — (4, + (@,)}B,)"] du,

atat "

+ ! 2o €XP [ — (U (@)t Bo) 10" dity § =, eXp[ — (U, + (@) By)?] du,

atat "

2 2

(7.12) = a3 (1 + ca,B)e, + (61 + ¢, 8¢,
a*a,

atat
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where ¢, = {=, w?*¢**du and ¢, = (=, e " du. Referring to the integral in (7.8),
a, = (8 + 7)/2|A| and a, = (8 — 7)/2|A|, consequently a,~' = 26 4 o0(f) and
also @,”! = 26 + o(f). Note that whena = 0 both 8, = 0 and 8, = 0 and we get

(1.13) 1(0,0) < C{¥ gﬁﬁdt

for constants C and ¢’ > 0. This is what we expect from Geman (1972).
(Actually, in the case we are considering the integral on the right is infinite.
But this analysis will work when d > 1. Our purpose in making this obser-
vation is that it serves as a check on the accuracy of this lengthy computation.)
For a =+ 0, referring to (7.12) and (7.8)

24y (0 + n)? _ 2
e = @y ST 2 oy
B = @ G0 = o)),
so the term in (7.12) is less than
(7.14) c “:f

for some constant C’. Incorporating (7.14) and (7.10)

I((a, 0)) < Const. {#’ (IIAI*t) oG n 7 0 ar

~ Const. {3’ (=2 e~ gt < o,
e

where 4’ > 0. This completes the demonstration that I((a, 0)) < oo for a = 0.

We have actually only considered the integral carefully for ¢ near zero but it
should be clear that this is all that is necessary.

(Note: We would expect that for these processes E[N*(a, X(t))] = oo for all
a, not just a = 0. Based on preliminary calculations this appears to be the case.)

In contrast to the difficulty of the above calculation, it is easy to show that
the expected value of products of the number of level crossings, of a very general
class of stochastic procésses, is finite for almost all levels. Let X(¢), t € [0, 1] be
a stochastic process with absolutely continuous sample paths. Then using (3.2)
and Fubini’s theorem we get

(%« §2w E[T]21 M(a,, X(1))] da, - - - da,
< E[Q1X@0)|dr = §§ - - SSE[T-a | X1\ dty - - - dt,, .
Therefore if E[]]7, | X(#;)|]] < oo (which is the case for X(¢), a stationary Gaussian
process with absolutely continuous sample paths) then E[]]7, , M(a;, X(£))] < oo

a.s. with respect to Lebesgue measure on R*. This observation is due to Donald
Geman.
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8. A study of the zeros of a certain class of stationary Gaussian processes.
The following lemma is an immediate consequence of (2.4) and (4.9).

Lemma 8.1. Let X(t), t €[0, 1], satisfy 1k at a. Then
(8'1) E[Pk,a(M(av X(t))a Tt M(ak’ X(t)))] < oo.

(Py,5( ) is defined at the beginning of Section 4.)

Let X(¢), t € [0, 1] be a stationary Gaussian process, with absolutely continuous
sample paths, which has a spectrum with a continuous component. Such a
process satisfies Ik at a. Let k = 2, EX() = 0, EX*(f) = 1 and EX*(r) = 1.
Define r(f) = EX(s)X(t + s). Then

(8.2) ENQ©,X) = L
(It6 (1964), here t € [0, 1]), and
(8.3) EN*0, X(1)) < oo = |} w dt < oo

for some 6 > 0 (Geman (1972)).

Suppose EN*(0, X(f)) = co. By Lemma 8.1 wehave E[P,,(N(a, X(1)), N(a,
X(1))] < oo foralla. We will consider what this means. Take a specific sample
path X(¢, w) and let ¢, - - -, 1, denote the values of # for which X(¢, ) = 0. Con-
sider the graph of the n® points (¢, ¢;); i,j=1, ---, n. If the zeros ¢,, ---, ¢,
were relatively uniformly distributed, the points (z,, ¢;) in the square would be
relatively uniformly distributed. Then, since the Lebesgue measure of 4, — 0 as
0 — 0, E[P, ,(N(a, X(1)), N(a, X(t)))] < co would imply that EN*0, X(1)) < oo.
However, since EN*0, X(t)) = oo, at least for some paths the number of pairs
(t:» t;) outside A4, is much smaller than the number of pairs in 4,. This remains
true no matter how small the value of §. Considering (8.2) most paths have a
small number of zeros, or none at all; however there are some paths with a
large number of zeros and the zeros of most of these paths form a tight cluster
in A;.

We can carry this analysis further. The clustering of zeros must be a rela-
tively rare event because, given a path where there is a large cluster of zeros
near some point ¢’ it is unlikely that there will be a comparably large cluster
near another point ¢’ if |' — ¢"/| > 24. To see this suppose the path has N zeros
in an interval of radius §/2 about # and M zeros in an interval of radius §/2
about ¢ (assume N = M). On the unit square such a path would place N* +
M? points in A, but also 2NM outside 4,. However, since E[P,,(N(0, X(7)),
N, X(H)))] < oo and'ENz(O, X(f)) = o0, N* 4+ M*®must generally be much larger
than 2NM; which is possible, of course, if M is much smaller than-N. Note
that all the results in this paper hold equally well if ¢ € [0, T]. Consequently,
these remarks that imply that the clusters of zeros are rare events hold on any
finite interval.
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This is how we would describe the sample paths of a stationary Gaussian process
for which EN(0, X(1)) < oo, EN*(0, X(1)) = oo and E[N(0, X(t)), N(a, X(1))] <
oo. The large values of N(0, X(r)) occur on a set of paths with small measure.
The paths with a large number of zeros generally have them in a single tight
cluster. These paths are not likely to have many zeros away from the tight
cluster. Furthermore these paths are not likely to have a great many crossings
of another fixed level a. Since this is true for any a + 0 ‘the paths must have
very small oscillations while attaining their cluster of zeros.

The conjecture that the paths that have a large cluster of zeros must oscillate
very little while attaining the zeros is supported by the results of Section 6.
Let £(r) be a stationary Gaussian process with mean square derivative .
EN(a, £()) < oo for any level a yet EN(0, &(r) — £(0)) can be infinite. This
follows directly from Theorem 6.1 since

E(1) — £(0) = \téu) du .

This suggests that the paths &(s) do oscillate a lot but the oscillations are small
and no single level is crossed too often. When the different levels are “tied
together” as when we consider £(r) — £(0) then the random variable N, () —
£(0)) can be quite large.

One can see from Section 7 that evaluating /(a, X(7)), even in special cases,
can be very difficult. A great deal of interesting work has been carried out in
this direction. We refer the reader to Kac (1959), page 5 and page 259, and to
Miroshin (1973). Additional references can be obtained from these sources.

REFERENCES

BRILLINGER, D. R. (1972). On the number of solutions of systems of random equations. Ann.
Math. Statist. 43 534-540.

CraMER, H. and LEADBETTER, M. R. (1965). The moments of the number of crossings of a level
by a stationary normal process. Ann. Math. Statist. 36 1656-1663.

CRAMER, H. and LEADBETTER, M. R. (1967). Stationary and Related Stochastic Processes. Wiley,
New York.

DubLEy, R. M. (1973). Sample functions of the Gaussian process. Ann. Probability 1 66-103.

GEMAN, D. (1972). On the variance of the number of zeros of a stationary Gaussian process.
Ann. Math. Statist. 43 977-982. ‘

GeMAN, D. and HorowiTz, J. (1973). Occupation times for smooth stationary processes. Ann.
Probability 1 131-137.

ITo, K. (1964). The expected number of zeros of continuous stationary Gaussian processes. J.
Math. Kyoto Univ. 3 207-216. ‘

IvaNov, V. A. (1960). On the average number of crossings of a level by sample functions of a
stochastic process. Teor. Verojatnost. i Primenen. 5 319-323.

Kac, M. (1943). On the average number of real roots of a random algebraic equation. Bull.
Amer. Math. Soc. 44 314-320.

KAc, M. (1943a). On the distribution of values of trigonometric polynomials with linearly
independent frequencies. Amer. J. Math. 65 609-615.

KAC, M. (1959). Probability and Related Topics in Physical Sciences. Interscience, New York.

LEADBETTER, M. R. (1966). On crossings of levels and curves by a wide class of stochastic pro-
cesses. Ann. Math. Statist. 37 260-267.



LEVEL CROSSINGS 71

Marcus, M. B. and SHepP, L. A. (1970). Continuity of Gaussian processes. Trans. Amer. Math.
Soc. 151 377-391.

MirosHIN, R. N. (1973). A sufficient condition for finiteness of moments of the number of zeros
of a differentiable stationary Gaussian process. Theor. Probability Appl. 18 454-463.

RICE, S. O. (1945). Mathematical analysis of random noise. Bell System Tech. J. 24 46-156.

YLVISAKER, N. D. (1966). On a theorem of Cramér and Leadbetter. Ann. Math. Statist. 37 682
685.

DEPARTMENT OF MATHEMATICS
NORTHWESTERN UNIVERSITY
EvANsTON, ILLINOIS 60201



