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THE HAUSDORFF DIMENSION OF THE RANGE OF
THE N-PARAMETER WIENER PROCESS
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Let W¥.d be the N-parameter Wiener process with values in R4, It is
shown that almost all sample functions of #(¥.d) have dimensional number
2N and zero 2N-measure when d = 2N. Our results extend earlier ones of
Taylor for N = 1.

1. Introduction and notation. Let W' be the N-parameter Wiener process;
that is, a real valued Gaussian process with zero means and covariance
TI2, (s; A t;) where s = (s, t =<¢t;>, 5, 20,1, =0,i=1,2,...,N. Then
W4 js to be the process with values in R? such that each component is an N-
parameter Wiener process and the components are independent. In the one-
parameter case, N = 1, Taylor (1953) showed that almost all d-dimensional
Brownian sample functions have Hausdorff dimensional number 2 and zero
2-measure when d > 2. The purpose of this paper is to extend Taylor’s results
to ww.d),

The notation of Orey and Pruitt (1973) will be used. The parameter space
is the set e R,” with all components nonnegative. We sometimes write ¢ as
{tyy + -+, tyy or simply ¢t,>. Whenall ¢, = a, {¢;) is written as {a). For s = {s,)
and ¢ = {1,y with s, < t,, XL, [s;, t;] is denoted by A(s, £), or A(z) in case s =
{0>. Sets of this form in the parameter space are sometimes referred to as
intervals. Let W = W% for simplicity. Denote the ith component of W by
Wiwhere 1 <i<d. Lets,teR.”. Then the variance of Wi(r) — Wi(s) can
be verified to be |S(s, #)] where S(s, ) is the symmetric difference between A(s)
and A(¢) and | | denotes the N-dimensional Lebesgue measure. We shall write
d(s, t) for |S(s, 1)]. Occasionally, ¢ will be used to denote constants whose values
are unimportant and may be different from line to line.

We will often use the scaling property of W and state that W has continuous
sample functions and stationary independent increments. For an account of
these properties and further information on W, consult Kitagawa (1951)
Chentsov (1956), Yeh (1960, 1963a, b), Delporte (1966), C. Park (1969), W. J.
Park (1970), Zimmerman (1972), Orey and Pruitt (1973).

Orey and Pruitt (1973) showed that almost all sample functions of W have
positive d-dimensional volume when d < 2N. In this case, the sample functions
have dimensional number d almost surely. We assume d = 2N in the rest of this
paper. In Section 2, the concept of capacity is used to show that almost all
sample functions of W have dimensional number 2N. The result of this section
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is a simple generalization of Taylor’s result for Brownian motion. Section 3,
which is the more difficult part of our paper, is devoted to showing that the
2N-measure of the sample functions is almost always zero. Taylor (1953,
Theorem 2) showed that for N = 1, the 2-measure of almost all sample functions
of Brownian motion is zero. However, due to the particular nature of Taylor’s
proof which requires the strong Markov property, his method of argument does
not provide an immediate generalization to general N. Orey and Pruitt (1973)
showed that almost all sample functions of W have zero d-dimensional volume
when d = 2N. This does not imply that the 2N-measure of the sample functions
is almost always zero for d > 2N. Theorem 3.1 of Section 3 implies that almost
all sample functions of W¥:® have zero d-dimensional volume when d = 2N
and so is stronger then the result of Orey and Pruitt stated above.

2. Dimension of the range.

THEOREM 2.1. Let d = 2N. Then {W,: te R."} has dimensional number 2N
almost surely.

Proor. This will be shown in two parts.
(i) If @ < 2N, then {W,: t € A({%), (1))} has positive a-measure a.s.
Let I = A({}), (1)). Consider

(2.1 $; S E|W(t) — W(s)|"*dsdt .
The expectation inside (2.1) can be written as
T (WH(s) — WHO)E[ Loy [(WH(s) — WHD)[o(WH(s) — WHR)T)"
which is equal to
o= (Wi(s) — WHO)E[x(d)]*"

where y*(d) denotes the chi-square random variable with d degrees of freedom.
Observe that E[y*(d)]~** is finite for & < d. Since s, t € A{$), (1)),

a(WHs) — WHO) > |t — s + -+ + [ty — s3] -
Therefore, (2.1) is bounded by
(2.2) e Sallt— sl + -+ |ty — syll"dsdr .
By a change of variables and integration, (2.2) can be seen to be finite if
(2.3) §o (8, 4+ -+ + ty)~*dt isfinite for I = A(C0Y, (%)) .

But (2.3) is clearly finite for « < 2N by a simple integration. The expectation
sign in (2.1) can now be taken outside to show that

U § W) — W(s)|*dsdt < oo a.s.

Now, Theorem B of Taylor (1955) implies that the a-capacity of {W,: te A({%),
(1))} is positive. The proof of this part is completed by the equivalence of
Hausdorff dimension and capacity dimension for compact sets in Euclidean
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space. For an account of this information, consult Kametani (1946) and Taylor
(1955).

(i) If @ > 2N, then a.s. {W,: t € R, "} has zero a-measure. .

Let » > 0. By Theorem 2.4 of Orey and Pruitt (1973), for almost all o,
there is an e(w) such that |W(r) — W(s)| < d(s, £)7** whenever (s, t) < &(w)
and s, r € A((%), (1)). With the availability of this property, the argument of
Theorem 1 of Taylor can be easily extended to the general case; and so more
details will not be presented. It will also follow from Theorem 3.1 of Section
3 that a.s. {W,: re R,"} has zero a-measure if « > 2N.

3. 2N-measure of {W,: te R,"} is a.s. zero when d-> 2N. Let {m,} be a se-
quence of positive integers with m,,, = 2m,. For each m,, partition A(¢%, (1))
into m,"” cubicles with sides parallel to coordinate axes and equal to 2-'m, .
Let G(m,) be the collection of these cubicles. Order the cubicles of Jg_, G(m,)
in such a way that the cubicles of G(m,) precede the cubicles of G(m,,,) for all
k = 1. Denote the ordered collection of cubicles by {C,}. Observe that for two
cubicles C;, C; with j > i > 1 then either C, contains C; or they have disjoint
interior.

LemMA 3.1. Let C,, be a cubicle of {C,} with sides equal to a,. Let t* be the least
vertex of cubicle Cy, i.e., closest to (0). Let y be any positive number. Define

3.1 D, = [0 sup,eq, |W(t, 0) — W(t*, 0)| < pa,t].

Then, there exists a positive number 8 and an integer k, such that P(D,) > p for all
k with k > k,.

Proor. This lemma has been shown by Taylor (1953) for N = 1. Assume
N =2 and let teC,. Define p,(t) = (1%, -+, th 1,8k, -+, ty*>. Write
t;=1t"+ e forsomee, 1 <i < N. Observe that 0 < e¢; < a,. The variance
of each component of W(t) — W(t*) is d(t*, r) and o(¢*, ) = [, (¢.* + e,) —

iLi 1%, Now, 6(t*, 1) can be expanded as the sum of 2% — 1 terms. It is then
easy to see that S(s*, r) can be written as the union of 2V — 1 nonoverlapping
intervals such that the Lebesgue measure of each interval corresponds to one
term of the sum above. Precisely, we can write S(¢*,¢) as the union of

X, S(t%, p(r)) and 2¥ — 1 — N other intervals so that each interval of the
second group has at least two sides smaller or equal to a,. Any interval with
only ‘one side smaller or equal to a, has been accounted for in JI, S(¢*, p,(?)).
Therefore, we now can write W(r) — W(t*) as

LW (pdn) = W] + Y.,
where Y, is the sum of the increments of W over 2¥ — 1 — N nonoverlapping

intervals.
Define

Fy = [supeeq, [W(p(#) — W) < p(2N)"a,}]
F = [sup,cq, |V, < p27%a,].
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Clearly
P(D,) z P(F Ly Fi) -

Since W has independent increments, F and the F,’s are independent. We obtain
P(D,) 2 P(F) [Ti% P(Fy) -

Y, is the sum of the increments of W over 2% — 1 — N intervals. Each of these
intervals has at least two sides smaller or equal to a,. Theorem 2.1 of Orey and
Pruitt (1973) can now be used to conclude that P(F) goes to 1 as k goes to in-
finity. Furthermore,

P(F,) Z P[sup,cq, [(W(pdt)) — W(t*) L (15)7H < p(2N)Ha,t]
Z P[sUPosisa, | W(0)] < p(2N)Hat],

which is greater than some constant by Lemma 5 of Taylor (1953) for N = 1.
We will assume that P(D,) > p for all k = 1 in the rest of this paper. This
can be done by choosing m, large enough.

LemMA 3.2. Let {B,} be a subsequence of the sequence of cubicles {C,} with
B,., C B,eG(m,) forall n = 1. Let t' denote the least vertex of cube B; and p,
be a positive number. Define

Ay = [sup,ep, |W(1) — W(1')| > p]
A=NE A, where M is a positive integer.

Corresponding to each B,, define D, as in (3.1). Let K > 0. Then there exists an
integer k > K such that

P(D,A) > 2-'P(D,)P(A) .

Proor. Pick B, with k > M so that B, is contained in each B;,, 1 <i < M.
Let t € B, where 1 < i < M and consider W(t) — W(t*). We now use the prop-
erty that W has independent increments to write W(r) — W(t') as the sum of two
independent random variables, say Z;,(¢) and Y,,(f) chosen in such a way that
Y,,(7) and D, are independent; also Z,,(¢) converging to zero almost surely as k
goes to infinity. To do this, write the symmetric difference S(#*, ) as the union
of two parts:

S(#, 1) n S(t*, 5¥)

S, 1) 0 [S(¢*, s*)]
where [S(¢*, s*)]’ is the complement of S(¢*, s*) and ¢*, s* are respectively the
least and largest vertex of B,. Both of these two parts can be written as the
union of a finite number of nonoverlapping intervals. Now, let Z;(f) and

Y,.(7) be respectively the sum of increments of W over intervals that make up
S(#, £) n S(¢*, s*) and S(#*, ) n [S(¢*, s*)]'. Let e > 0. Define

J; = [sup,es, |Z4()] < €].
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Clearly,
P(D,A) =z P(D, NIy [supee s, | Yal(?) + Zy (0] > 1)
= P(D, N1 [sUPees, | YD) > p + ] N T) -
= P(D, Ni% J)P(NZ [supee 5, [Yie(D)] > #: + €])

since D, N{Z, J; and N, [sup,c, |Yu(t)| > 1 + €] are independent.
Next, P(D, A) is greater than or equal to

P(D,, N1 J)P(NIZ [supee 5, [W(2) — W) > po + 2] N J0) -

Now, P(NL, sup,c, |W(t) — W(t')| > 1, + 2¢]) converges to P(A) as ¢ goes to
zero since almost all sample functions of W are continuous. Observe that
P(D,) > B by Lemma 3.1 and for each ¢ fixed, P(NX, J;) goes to 1 as k goes to
infinity. The lemma now follows by first choosing ¢ small enough for
P(NX, [sUPses, IW(t) — W(t))] > p; + 2¢]) to be greater than 3P(A) and then k
large enough so that P(MX, J;) is greater than both 1 — (P(A) and 1 — (8/4).
Let k, = 1. Assume that k,, - - -, k,, have been chosen with k, < k, < -+ <

k,. Let A, = D, D --- D . Clearly, A, is a set of the type considered in
Lemma 3.2. Therefore we can apply that lemma to get an integer k,,,, such that
P(D, . An) > 27P(D, ,)P(A,) -

LeEMMA 3.3. Let {D,} be the sequence of events defined in (3.1) corresponding to

the subsequence {B,} of cubicles defined in Lemma 3.2. Then
P(D, infinitely often) = 1.

Proor. The proof of this lemma is essentially the same as that of Lemma 7
of Taylor (1953). Consider the subsequence {D, }. Clearly, it is enough to show
that P(D,, infinitely often) = 1. Let

A =N D;ci .
Since
Am = n?=l DLZ ’
P(Am+1) = P(Am D;‘m+1)
= P(A,) — P(AnD, )
< P(A,) — 27'P(A,)P(D
< P(AR)(1 — 277f)
< P(AY(1 — 27B).
Since 8 > 0 by Lemma 3.1, P(A) = 0 and Lemma 3.3 follows.

km+1)

THEOREM 3.1. {W,: te€ R ¥} has zero 2N-measure almost surely when d = 2N.

Proor. By the scaling property of W, it is enough to show that {W,: re
A((3), (1))} has zero 2N-measure almost surely. Consider the collection of
cubicles {C,} of |J;, G(m,) ordered as described in the paragraph preceding
Lemma 3.1. For each cubicle C, with sides equal to a, and least vertex r*, let
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S, be the cube in R* with center at W(t*), sides parallel to coordinate axes and
equal to pa,t where p is a small positive number to be chosen later. Denote
the empty set by @ and {W,: te C,} by R(C,).

Define
T, =5 if S D R(C)
=@ otherwise.
For k > 1, define
3.2) T, =S, if $,DR(C,) and R(C,) ¢ Ui T;
=Q otherwise.
Let K be a positive integer. For brevity, let y, = >, (m,)" and ¢, = Ui, T,.

Let rx be the proportional of cubicles of G(m,) with images not yet covered by
¢x. In other words,

rx = (me")7'(§ of CreG(my) with R(Cy) & ¢y) .

Claim that P(R(C,) C ¢x) goes to 1 as K — oo uniformly for all C, € G(m,). Let
n be a positive integer and 4,,,, 4, be two cubicles with 4, ., € G(m,,,), 4, €

G(m,). Observe that if 4,,, C 4,, then P(R(A,) Z ¢,) = P(R(Ap41) & Pus1)-
Now, every cubicle of G(m,,,,) is contained in a cubicle of G(m,). If the claim
is not true, then for some ¢ > 0 there exists a subsequence {4,} of {C,} with
A, e G(m,) and with P(R(A4,) ¢ ¢,) = ¢ for alln = 1. Now, G(m,) contains a
finite number of cubicles and each cubicle of {4,} is a subset of some cubicle
of G(m,) and so one of the cubicles of G(m,) must contain an infinite number of
cubicles of {4,}. Let B; be such a cubicle of G(m,). Again B, contains a finite
number of cubicles of G(m,) so there exists a B, € G(m,) with B, C B, such that
B, contains an infinite number of cubicles of {4,}. This process can be continued
indefinitely. Therefore, there exists a subsequence {B,} of {C,} such that B,,, C
B, e G(m,) for alln = 1 and each cubicle B, contains an infinite number of cubi-
clesof {4,}. From the way ¢, was constructed, it is clear that P(R(B,) & ¢,) = ¢
for all n = 1. Consider the corresponding sequence of events {D,} defined as in
(3.1) for this subsequence. Clearly P(D,, i.0.) < 1 — ¢. This contradicts Lemma
3.3. It now follows from the claim that Er, — 0 as K — co.

Consider the class §(m;~t) of cubes in R¢ with edges parallel to coordinate
axes, sides of length m,~t and vertices of the form (k,m "%, - .., k,m,~t) with
ky, - -, k, integers. Let C, be any cubicle of G(my) with R(C,,) & ¢,. We now
follow the method used in the proof of Theorem 3.4 of Orey and Pruitt (1973)
and count in a central block of (2M + 1)* cubes centered at E, where E, is the
element of §(m,~*) which contains W(t*), and M is a large integer to be chosen
later. Now, for all cubicles C, of G(m,), without taking into account whether
R(C,) has been convered by ¢, or not, we add any cubes of §(m,~t) outside this
central block which are intersected by R(C,). Denote the number of cubes
added by N,. We have now covered {W,: t € A((}), (1)} with three collections
of cubes.
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Let the diameter of a cube be the distance from the least to the largest vertex.
If cube is in R¢, then diam (cube) < d(side of cube). Define a function f(k) by

flk) =1 if T,#+ @
=0 otherwise.
Then,
T (diam T < 2K, (dp ab)f(k) -

Observe that ,¥ is the volume of C,. Also, if T, + @ and T; % @ with i # j,
then from the definition of T, in (3.2), the interior of C; and C; are disjoint.
Therefore, the total volume of all C,’s with 7, # ¢ must be smaller than the
volume of A({}), (1)) which is simply 2-¥. Therefore

(3.3) Sk, (diam T, < 2-Vd™ v

Now, consider the cubicles of G(m,) only. The number of cubes added in the
central blocks is r,m,¥(2M + 1)?. Each of these cubes has sides equal to m,~*.
Therefore, with respect to this collection of cubes, we obtain

(3.4) E[Y] (diam)®¥] < [Erg]mM(2M + 1)%(dm,—ty~
< [Erg](2M + 1)td®

which goes to zero as K — oo since Ery — 0 as K — co. As for the cubes added
outside the central blocks, we have

2 (diam)™ < 2K Ny(dmg =ty .

The summation is taken between y,_, + 1 and 7, since we only consider cubi-
cles of G(m,). We now use a computation of Orey and Pruitt (1973, Theorem
3.4) to obtain an upper bound for EN,. We get

EN, < ¢ ¥ aon (20 + 3)ini-2e~

where ¢’ and ¢ are constants. Therefore, given ¢ > 0, we can choose M so large
that EN, < ¢, independent of k. Then, with respect to the collection of cubes
added outside the central blocks, we have

E[Y (diam)™] < 37k _ ., e(dmg—4)™
< ed*™m,~¥m "~
< ed2N

since 7, — rx_, = mg" by definition of y,. Now, ¢ and p can be chosen arbi-
trarily small. The theorem follows from (3.3), (3.4) and (3.5).

CoROLLARY 3.1. Almost all sample functions of W™® have zero d-dimensional
volume when d = 2N. ’

REeMARK. A different proof of this corollary can be found in Orey and Pruitt
(1973, page 160).
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