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JOINT ORDERS IN COMPARATIVE PROBABILITY

By MicHAEL KAPLAN AND TERRENCE L. FINE
INRS-Telecommunications and Cornell University

Comparative probability (CP) is a theory of probability in which un-
certainty is measured by a CP ordering of events, rather than by a prob-
ability measure. A CP order is additive iff it has an agreeing probability
measure. This paper deals with the formation of joint CP orders from
given marginals, both with and without a certain independence condition,
and with emphasis on the nonadditive case. Among the results are these:
a CP model for many independent and identically distributed trials of a
single experiment must be additive, with an agreeing probability measure
of product type; there are CP marginals that have no joint CP order at all;
there is a class of CP models, strictly containing all the additive ones, which
are well behaved with respect to the formation of joint orders. We present
as well several sufficient conditions, and one necessary condition, under
which given marginals have a joint CP order.

1. Introduction.

A. Comparative probability (abbreviated CP) is a theory of probability in
which probability assessments are expressed through a collection of statements
of the form 4 < B (read “event B is at least as probable as event 4”). Its axioms
date from de Finetti [2] (though there was even earlier consideration of CP by
S. M. Bernstein and J. M. Keynes). It will be assumed here that the family of
events (denoted %) is an algebra of subsets of a sample space X. The axioms
are then the following, where 4, B, C run over all sets in %, and ¢ is the null
set:

(Nontriviality) Not (X < ¢)
(Nonnegativity) o< A
(Transitivity) A< B, B<SC imply 4<C

(Disjoint unions) AnC=BnC=¢ implies
) A< Bif AUCZSBUCQ)
(Completeness) A<B or BSA.
Any ordering < of sets in % which satisfies these axioms will be called a CP

order, and the corresponding triple (X, &, <) a CP space.
Every probability measure P on % induces a CP order < on &% via

A< B iff P(A) < P(B) A, Be 7.

In the case that a given CP order < arises in this way from some probability
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measure P, it will be said that < is additive, and that P agrees with it. If at least
the weaker relation

A < B implies P(A4) < P(B) A,Be &

prevails, for some probability measure P, then < is almost additive, and P almost
agrees with it. That these distinctions are nontrivial was shown by Kraft, Pratt
and Seidenberg [10]; the facts are these:

(i) All CP orders on four or fewer atoms are additive.
(ii) There is a CP order on five atoms that is almost additive, but not additive.
(iif) There is a CP order on six atoms that is not almost additive.

B. The literature of comparative probability is small, and devoted mainly to
the problem of finding conditions under which CP orders are additive; we refer
particularly to references [10] through [15], and to the survey in [5]. For moti-
vation, see [5] and [13].

The concern of the present paper is not with additivity, but with the properties
of the CP axioms in the absence of extra restrictions. The following can be said
in favour of considering CP in its own right, rather than as a step on the way
to quantitative probability:

(1) The foundations of subjective probability ([13]) encourage the notion that
a qualitative view of probability is a natural one.

(2) If you can produce probability numbers, then certainly you can produce
probability orders. Thus comparative models for probability ought to be easier
to estimate or learn than quantitative ones, especially in applications where there
is little prior information.

(3) The necessary conditions required to reduce CP to quantitative probability
do not, in our view, have the universality desirable in axioms capable of charac-
terizing the manifold forms of random phenomena and uncertainty (see Chapters
2 and 3 of [5]).

Our purpose is specifically to present some results on the subject of joint orders
in CP, with and without an independence condition. The following remarks are
intended for motivation.

The underlying problem is to describe the structure of CP. One approach is
to organize the body of CP orders into subclasses, according to their extension
properties. (The results on additivity may be interpreted so as to address a
special case: namely, the characterization in terms of extensions of the subclass
consisting of the additive orders.) Thé formation of joint CP orders from given
marginals is a special kind of extension (some others are discussed in [9]).

The problem of extending CP orders arises in a natural way, in contexts that
have nothing to do with additivity. Suppose, for example, that & is the algebra
of events from the simultaneous performance of n experiments. It is common
practice in quantitative probability to form at least a gross description of a joint
measure on . by specifying the n marginals, together with a law of interaction
(independence, say, or exchangeability) between them. It is tempting to try the
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same in CP; or at least, to begin the description of a joint order by prescribing
the marginals.

In quantitative probability, the marginals can be chosen independently of each
other; in CP they cannot. Generally speaking, it is not easy in CP to decide
whether or not a given family of inequalities is consistent in the sense that it
extends to a CP order (actually trying to complete a partial order by scanning
all possible extensions is generally impossibly arduous, even for small sample
spaces). In this paper, we give some general conditions for consistency in the
event that the given inequalities constitute the marginals for a product space;
possible interpretations for the case that the marginals do not have a joint order
are discussed at the conclusion.

Our chief motivation for studying CP is the hope that it someday might be
useful: for example, in applications where, because of lack of data or the limited
nature of the experiment, it is difficult to specify, or make sense of, a probability
measure; or in quantum mechanics, where the existence of complementary ob-
servables suggests the need for a theory of probability that restricts the formation
of joint orders. The problem of how to calculate (make decisions) with CP is
not treated here (there are some preliminary results in [5]). We point out merely
that one would expect that applications of CP would be guided by an under-
standing of its properties.

Our contribution to CP, and its relation to previous work, is summarized in
the following: ‘

(1) We present (Section 2) two qualitative axioms for i.i.d. (independent and
identically distributed) trials in CP, both of which seem intuitively necessary;
their main property is that the low-dimensional subspaces of large i.i.d. product
spaces are additive, with agreeing probability measures of product type. In par-
ticular, the only CP spaces which are amenable to arbitrary i.i.d. repetition are
additive; this establishes the general impossibility of forming i.i.d. product spaces
with given CP marginals.

The result is presented in two parts. The first (Section 2B) applies to the case
that the marginals are finite; the proof relies on the characterization of the ad-
ditive orders in [10], and on an algebraic condition, due to Domotor [3], under
which a (non-CP) ordering of pairs from a finite algebra .5 can be represented
by a product of two identical probability measures on .5 . The second part
(Section 2C) applies when the marginals are continuous; the definition and prop-
erties of continuous CP orders are due to Villegas [15].

(2) CP spaces are said to be compatible if and only if they have at least one
joint order. Section 3B presents a necessary condition for compatibility of two
CP orders; it is based on the algebraic characterization of the almost additive CP
orders given in [10]. A sufficient condition in Savage [13] for almost additivity
is a special case. A corollary is that the almost additive CP orders are precisely
those that are compatible with every finite, additive, antisymmetric CP space
(a CP space is antisymmetric if it has no equivalences).
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(3) The fact that it is generally impossible to complete a joint order follows
from Section 3B, provided that one of the marginals is not almost additive. In
Section 3C we extend the conclusion, by means of an example, to the case that
both marginals are almost additive.

(4) CP orders <,, <, are commensurate if and only if they accommodate a
certain partial joint order. We show (Section 3D) that if <,, <, have positive
almost agreeing probability measures, then commensurability and compatibility
are equivalent. Some applications are given to the problem of deciding whether
or not given marginals have a joint order.

(5) Let X stand for the class of CP orders compatible with all the finite, addi-
tive ones. We show (Section 3E) that X contains infinitely many nonadditive
orders, and that all the orders in X are mutually compatible (hence that the
additive orders are not “‘closed” with respect to the formation of joint orders).
The paper concludes with a test for membership in X for CP orders with a posi-
tive almost agreeing probability measure: compatibility with all finite, additive
orders is shown to follow from compatibility with a certain one of them.

C. Our notational conventions are these: capital letters 4, B, ... stand for
sets; A4, |4|, and I, denote, respectively, the complement, cardinality, and indi-
cator function of 4. Asusual, 4 < B, A ~ Bmeannot (B < A)and (4 < BA
B < A), respectively. The notation (X, <) will denote a CP space in which the
algebra of events is the power set of X.

The following property of CP orders will be used without comment (see [13]
for the proof):

If AnB=CnD=¢, then A< C, B<SD imply
AUB<CuD,; ifalso A< C or B<D, then
AUB<KCUD.

2. Independent joint orders. The content of this section is roughly that a joint
order corresponding to many i.i.d. trials of a single experiment has a representing
probability measure of product type. A qualitative definition for the “independent
and identically distributed” property is presented first.

A. LetI={1,2, -..,|I]}, where |I| may be infinity. Suppose that (X, &,
<,) is a CP space for each i ¢ I. Let X* be the cartesian product of all the X.
For each 4 € &, let A be the set of points in X* with ith coordinate in 4. For
each a I let 5 (a) be the algebra generated by the sets 4°, where 4 runs
through ., and i through a. If m < |I|, X™ is the cartesian product of X, - - -, X,
and & ™ = F({l, ---, m}). Write & * for F(I).

DerinNiTION. The (X, &, <,), i € I, will be said to be independently compatible
if and only if there is a CP order <* on .& * with the following properties:

(1) <* has marginals <,; thatis 4° <* B*iff 4 <, B, where 4, Be % *and
iel,
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(2) If Ae F(a), Be F(B), Ce F(y), De F(9), where a, §, 7,0 < I and
anB=7nd=¢, then 4 <*C, B<*D implies AN B<*CnD. If also
A<*CorB<*D,and ¢ <*C, ¢ <*D,then4n BI*CnD.

DeriNiTION. If for each ie I(X,, &, <) is identical to (X, &, <), and if
<* is a CP order on .# * which satisfies (1), (2), and

(3) A ~, A' (Ae F andi,jel), then (X*, F*, <*) will be said to be an
|I|-fold i.i.d. product space for (X, &, <). :

A CP order <* on & * will be said to be of independent (or of i.i.d.) type
according to whether only the first (or both) of (2) and (3) holds. Conditions
(2) and (3) have a couple of easy consequences that are needed shortly. T he
first amounts to the qualitative analogue of exchangeability [4]. For the proof
of the second, see [8].

PROPOSITION 1. Let (X*, & *, <*) be an i.i.d. product space for (X, &, <).
Then for each sequence a = {i,, - - -, i,} of distinct elements in I, and for each per-
mutation {jy, - - -, j.} of a,

Alilﬂ.-.ﬂA%in;w*Aljlﬂ..-ﬂAﬂjn Ay ooy A, 6 F .

PROPOSITION 2. Let (X™, F ™, <™) be an mn-fold i.i.d. product space for
(X, 5, ). Let <™ be the restriction to F ™ of <™. Then (X™, & ™, <™)
is an n-fold i.i.d. product space for (X™, & ™, <™).

REeMARKS. 1. Conditions (2) and (3) are valid when <* is induced by an
i.i.d. product probability measure on & *; in this regard, the condition for
independence in CP is contained in the condition for independence in quantita-
tive probability.

2. It is not intended that independence (in any intuitive sense) be inferred
when the joint order for the experiments (X;, &, <,), i € [, satisfies (2); (2) is
meant only as a necessary property of a joint order for independent experiments.
For a more extensive discussion of axiomatic questions related to independence,
see [3], [5], [7] and [8].

B. Assume that X is finite. Denote by X™ the m-fold cartesian product of X
with itself, where m is a positive integer.

THEOREM 1. The following conditions are equivalent:

(i) (X, <) has an n-fold i.i.d. prodz;ct space for every finite n.
(i) (X, <) is independently compatible with every finite, additive CP space.
(ili) < is additive.
THEOREM 2. Let <™ be a CP order on X™. The following conditions are equiva-
lent:

(iy For all n > m, (X, <) has an n-fold i.i.d. product space (X", <") in which
<®extends <™; thatis, A X X»™ <* B X X»~™iff A <™ B, whenever A, B Z X™.
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(ii) There is a probability measure P on the power set of X, with corresponding
i.i.d. product measure P, on the power set of X™, such that P agrees with < and
P, with <™.

REMARKS. (a) One of the assumptions on which our conclusions are based is
that (X, <) is amenable to many i.i.d. repetitions; this is not an axiom, it being
easy to imagine experiments or decision-problems in which repeated trials are un-
interesting or nonexistent. Another assumption is that CP orders are complete;
the appropriateness of the completeness axiom is discussed in the conclusion.
A third assumption is that corresponding events in different trials are exactly
equiprobable. We do not know in what form Theorem 1 would survive in the
absence of (3); that is, when the necessary properties of a CP model for i.i.d.
trials are simply that (2) holds and that the marginals are identical.

(b) Theorems 1 and 2 are false if X is infinite. However, the conclusions may
be qualified in an obvious way so as to hold for arbitrary X. For example, if
for every n (X, <) has an n-fold i.i.d. product space, then < is additive on finite
sub-algebras, hence is almost additive on X.

The proof of Theorem 1 is based on the following lemma. For proof of the
lemma, see [8]; the line of reasoning is similar to that employed in [10] in con-
nection with the polarizability condition.

LemmA. If for each k (X, <) is independently compatible with a CP space con-
taining k equiprobable, nonnull, and disjoint events, then < is additive.

Proor oF THEOREM 1. The equivalence of (ii) and (iii) is plain from the lemma.
Obviously (iii) implies (i). It remains to show that (i) implies (iii). Suppose (the
conclusion is trivial otherwise) that there exists 4 C X such that ¢, < 4 < X.
Note that every k-fold i.i.d. extension (X*, <*) of (X, <) contains k disjoint,
nonnull, equiprobable events: namely, the subsets of X* with ith coordinate in
A° and all other coordinates in A4 (i < k). Since by assumption there is at least
one such extension, for each k, which is independently compatible with (X, <),
the conclusion follows from the lemma.

ProOF oF THEOREM 2. We show that (i) implies (ii). Assume that (i) is true,
and observe that, X being finite, there are only finitely many CP orders on X*™,
There is, therefore, a CP order <?™ on X*™ which extends <™, and which for
each n > 2m extends to an n-fold i.i.d. product space for (X, <). By Proposi-
tion 2 and Theorem 1, <* is additive. By Theorem 7 of [3] (see the remark
below), there is a probability measure P,, on X™ such that forall 4, B,C,D < X™

Ax B<S™Cx D iff P,(4)P,(B) £ P,(C)P,(D).

The proof is completed by observing that P, agrees with <™, and that P,, is of
i.i.d. type. To prove the latter, take 4,, - .-, 4,, € X. By Proposition 1,

(Ay X ++o X Ap) X X"~ (A X X™Y) X (A X -+- X 4, X X),
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whence
P, (A, X «-+ X A,) = Pp(4, X X" HYP, (4, X -+« X 4, X X).
The conclusion follows by repeating the argument (m — 1) times.

REMARK. In light of the fact that <*" is an additive CP order, all that must
be checked, in order to apply the theorem in [3], is the following: if 4,, - .., 4,
and B, ..., B, are sets in X™, and if a, 8 are permutations of {1, - .., n}, then
the conditions 4; X B; > ¢ and 4; X B, <™ A, X B, (alli < n)imply 4, X
B, <™ A, X B,. But suppose to the contrary. With C = X7 4, X B;, D =
Xt A,, X By, and < a CP order of i.i.d. type on X’ extending <", you
get the contradictory conclusions C <*** D (from the independence property)
and C ~*** D (by Proposition 1).

C. Without the finiteness condition on X, Theorems 1 and 2 are false (at least
for measures taking values in the standard reals). There are a number of tech-
nical hypotheses on the strength of which one could proceed to related results
for the infinite case. The one we mention here is based on the CP analogue,
due to Villegas [15], of countable additivity. It is defined as follows:

A CPorder < onaog-algebra & is monotonely continuous iff
for each increasing sequence A4, & 4, < --- of events in &,
andeach B in &, B> A, forall i implies B> |, 4,.

The general inapplicability of Theorems 1 and 2 in the infinite case persists
(though not obviously) even when the CP orders are monotonely continuous.
Theorem 3 below is obtained by passing to the infinite-dimensional product space.
The notation is the same as before, except that all algebras assumed to be o-
algebras; specifically, % is a g-algebra of subsets of an arbitrary set X, X* is
the countably infinite cartesian product of X with itself, and .% * is the minimal
c-algebra in X* generated by the 4, 4 € & and i a positive integer.

THEOREM 3. Suppose that <* on & * is a monotonely continuous joint CP order
for infinitely many i.i.d. copies of (X, &, <). Then there is a unique probability
measure P* on .F * agreeing with <*, and P* is an i.i.d. product measure.

It follows that there is a one-to-one correspondence between probability meas-
ures P agreeing with < and CP orders <* on & * extending < according to
the axioms for i.i.d. trials. Choosingl a particular representing measure P is
equivalent to choosing a particular infinite-dimensional i.i.d. extension for <.

The following is an outline of the proof for Theorem 3 (see [8] for details).
Assume that there is a set 4 € & such that ¢ < 4 < X (the theorem is trivial
otherwise). The first step is to show that then (X*, & *, <*) is atomless; that
is, that every nonnull event in % * contains a strictly less probable event that
is also nonnull. By a theorem of Villegas [15], every atomless, monotonely con-
tinuous CP space has a unique agreeing probability measure which is countably
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additive. It follows that <* has a unique representing measure P*. To show
that P* is a product measure, one observes from the axioms for independence
that there is a single-valued function g, defined on some domain D in the plane,
such that

S

PX(4 0 B) = g(P(4), PX(B))

whenever 4 e % (@), € F(p), and a, § are disjoint sets of positive integers.
It turns out that in fact: (1) D is the whole unit square; (2) g(0, v) = 0 and
g(1,v) = v for all v; 3) g(u + v, w) = g(u, w) + g(v, w) whenever u + v < 1;
and (4) g is symmetric and continuous in each variable. It ensues that g(u, v) =
uv, as claimed.

3. Joint orders without independence.

A. Tt follows from the previous section that if (X;, <,) is a CP space in which
X, is finite and <, nonadditive, and if (X;, <,) contains sufficiently many dis-
joint, equivalent events, then any attempt to form a joint CP order for the two
leads to a violation either of the axioms for CP or of the independence property.
In fact, more is true. Nonexistence of joint orders is a pervasive phenomenon
in CP. It does not rely on independence or on the presence of equivalent events;
it can occur in the absence of both. The purpose of this section is to prove this
fact, and to present one necessary and a number of sufficient conditions in order
that specified marginals have a joint CP order. Though some of the results may
be generalized, they are essentially for finite CP spaces. All sample spaces in
this section are finite, and all algebras are power sets.

Terminology. CP spaces (X;, <), i €I, will be said to be compatible if they
have a joint order; that is, if there is a CP order < on the cartesian product of
the X, such that 4° < B*if and only if 4 <, B (4, B< X, and ie]).

CP spaces (X, <o), (X, <) will be said to be commensurate if a certain partial
joint order exists. Let C be the class of sets in X; X X, of the form 4 x X, or
X, X B, where 4 C X, and B C X,. A scale for (X,, <,), (X, <,) is a CP like
ordering < of C with marginals <,, <,; that is,

(1) AXX,<Bx X, if A<S,B(4,BC X)), X\, X A< X, X Biff A<,B
(4, B S X));

(2) A< B, B< Cimplies 4 < C (4, BeC);

(3) If 4,B,C,DeCaresuchthat ANB=CnD=¢and 4 <C, B< D,
then AUB< CuD;ifalso A< CorB< D,then 4 UB<CUD.

(4) < iscomplete: A < Bor B < A(A4,BeC).

(Xpr <o) (X <4) will be said to be commensurate if they have a scale. It is

easy to see that compatible CP spaces are commensurate.

B. We proceed to derive a necessary condition for compatibility in the case
that one of the CP orders is not almost additive. Recall that we assume that all
sets are finite.
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Suppose that (X, <,) isa CP space, where <, is not almost additive. Suppose
that (X;, <,) is also a CP space, and that < is a scale for the two. We will
define a number d, that depends on <,, a number 2 that depends on <,, and a
number A that depends on <,, <, and <. It will turn out that under the right
conditions, d,, 2 and A are simply related.

Because <, is not almost additive, there are, by the algebraic condition for
almost additivity given in [10], a positive number d, and sets 4,, - - -, 4;, B, - - -,

B, in X,, such that

A, <08, i=1,...,1
(1) Z£=1 IAi = Zzl'=1 IBi + IXO
1
a4y = Pl >

d, is the largest such d.
DEerFINITION. Let M,, - .., M, be a sequence of sets in X satisfying
G~ My <y <My~ X

(a) fA4 >, M,B >, M;imply AUB >, M, ; wheneveri+ j<land 4, B C
X, are disjoint, {M}}, is said to be a lower series.

(b) f4 <, M, B<, M;imply AU B <, M,,; wheneveri+ j<land 4, B
X,, {M}}, is said to be an upper series.

REMARK. Think of the M, as intervals, with M, ; the “sum” of M, and M,.
The content of (a), colloquially, is that the “width” of a sum is no greater than
the sum of the widths. The content of (b) is that the width of a sum is no less
than the sum of the widths.

Suppose that 2 is chosen so that there is a lower series M,, ---, M,, and an
upper series N, - - -, N,, in (X;, <,). These, together with <, give rise to a pair
of integer-valued functions m, n on the power set of X;:

m(A) = max {i: X, X M; < A X. X}

n(A)=min{i: X; X N, = 4 X X}, AC X,.
A is now defined by

A = max,, x, (1(x) — m(x)) .

Each of the functions m, n is a one-s1:ded version of a probability measure (see
(2) and (3) below). If the M,, N, are well interleaved, in a certain sense, the two
functions together form a probability-like approximation to <,. Specifically, to
each 4 C X, there attaches the interval (m(A4), n(A)), of “typical” width A. The

idea is that because <, is not almost additive, the ratio of A to 2 cannot be too
small.

THEOREM 4. Suppose that N, <, M, i =1, ..., 4. If < isa scale for (X;, <),
(X1, 1), where <, is not almost additive, and if m, n, A, and d, are defined as above,
then Aj2 = d,.
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Proor. The functions m, n have the following properties, where 4, B & X;:

2) If AnB=¢, then m(4 U B) = m(A) + m(B).
3) n(A U B) < n(A) + n(B) .

) If A<,B, then m(4)<m(B) and n(4) < n(B).
5) m(A) < n(4).

Properties (2) and (3) are immediate from the definition of lower and upper
series, respectively. Property (4) follows from the fact that the M; and N, are
increasing with respect to <,. To prove (5), let i = m(A4) and j = n(A); then
X, X M; < AX X, < X, X N, soN, <, M, implies N, <, N;. Since the N, are
strictly increasing, it follows that i < j.

Let A, ---, Ay, By, - -+, B, be sets in X, satisfying (1) for d = d,. From (2)
through (5) and the first condition in (1) it follows that

(Vi) Xoea,mx) < m(4) < m(B) < n(B)) < 2laen, M) >
hence
Dtet Dsea, M(x) = Xibar Daes, 1(%) -

From the second condition in (1),

2iia Divea, N(x) = 2ite1 Dzen, M(X) + Daexy 1(X) -

Substituting above gives

Db erAi m(x) < Xl erAi n(x) — Z“’”"o n(x) ,

or
Do ZzeAi (n(x) — m(x)) = erxo n(x) = n(X,) = 23
thatis, A 33t |4, = 2. [

Here is an example of sequences {M,},, {N}, satisfying the hypotheses of the
theorem. Suppose (just for the sake of the example) that <, is positive; that is,
x >, ¢ for each x ¢ X;. Choose M, among the most probable sets in X, of cardi-
nality i, and N, among the least probable. That is,

(6) M| =i, |N|=i 0=<i=<|X|
N; <, 45, M, AC X, |4 =1i.

The M, and N, are strictly increasing, because <, is positive. It is easy to com-
plete the argument that {M;}, is a lower series and {N,}, an upper series. The
condition N, <, M, is evident from the definition.

The choice of M,, N, in accordance with (6) is attractive in that A then has
an upper bound which depends only on <, and not atall on <. The necessary
condition in Theorem 4 can then be made a function of the properties of the
marginals alone: specifically, of d, and a number r, associated with (X;, <) by
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the following prescription: r, is the smallest integer r satisfying
|4] < |B| — r implies A4 <, B A, BC X.

(r, measures the “uniformity” of <,; it is zero when <, is the uniform distri-
bution on X;.)

CoroLLARY 1. If (X, <o), (X, <,) are commensurate, and if 2 is the number
of xe X, such that x >, ¢, then 2(r, + 1)/2 = d,.

Proor. It is enough to prove the inequality for the case that <, is positive,
the extension to the general case being obvious.

Suppose, then, that <, is positive, and that < is a scale for (X,, <,), (X;, <))-
Choose M;, N, C X satisfying (6), i = 0, - - ., | X;|, and define functions m, n on
the power set of X, as before. From the theorem, A/|X;| = d,. It remains only
to prove that A < 2(r; 4 1).

To this end, fix 4 £ X,, and choose B C X, satisfying

X, X B AXX,
C>,B implies X, X C> 4 X X, ccy,.
Then for all C C X,
ICl £|Bl —r,— 1 implies X, X C< 4 X X;
ICl = |B] +r,+ 1 implies X, X C> A4 X X.

In particular, X; X My _, 2 < AX Xy < Xy X Nigyras that is, m(4) = |B| —
r, — 1 and n(4) < |B| 4+ r, + 1. Subtracting the first of these inequalities from
the second gives

n(d)y —m(A) < 2(r, + 1) . 0

The following may be read directly from the corollary.

(I) There are incommensurate (and hence incompatible) CP orders; for ex-
ample, if <, is not almost additive, it is incommensurate with the uniform dis-
tribution on n atoms whenever n > 2d,”!. In fact:

(2) If for every ¢ > O there is a finite CP space (X,, <,), commensurate with
(X, <,) and satisfying

hElce, a=lxeXix>.gl,

then <, is almost additive.

~

The last conclusion, together with its converse, constitutes

THEOREM 5. <, is almost additive if and only if (X,, <,) is compatible with every
finite, additive, antisymmetric CP space.

The proof requires the following construction, used repeatedly in the sequel:

DEFINITION. Let <, - -+, <, be CP orders on a set X. Their lexicographic
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composition (denoted L(<,, -- -, <,)) is the ordering < on X defined by
A~;B, i=1,.--,j—1, and A <;B implies A< B
A~,;B, i=1,.--,n, implies 4~ B.

It is easy to verify that L(<,, - -+, <,) is a CP order.

Proor. We wish to prove that the condition is necessary. Suppose that <,
is almost additive, with almost agreeing probability measure P. Suppose that
(X,, <,)is finite, additive and anti-symmetric. There isa CP order < on X, X X,
with marginals <., <,, where <, is the CP order on X, induced by P. There
is another CP order <’ on X, X X, with marginal <, on X, (the marginal on X,
is arbitrary; it may be the trivial CP order corresponding to unit mass on one
atom). L(<, <’)isa CPorder on X; X X; with marginals <,, <,, as required.
(Antisymmetry of <, ensures that the X,-marginal of < is unaffected by the
lexicographic composition.) [J

REMARK. A CP space is almost additive if and only if all its finite subexperi-
ments are almost additive. Though we will not prove this here, we mention it
because it entails that Theorem 4 holds for arbitrary X,, finite or not. It entails
also that Savage’s condition for almost additivity ([13], page 34) can be inferred
from Theorem 4. The condition to which we refer is that the CP space in ques-
tion (call it (X;, <)) has an n-fold “almost uniform” partition for infinitely
many values of n. Pick any such n and denote by (X;, <,) the CP space generated
by the corresponding n-fold partition, so that (trivially) (X, <,), (X,, <,) are
commensurate; the requirement that the partition be “almost uniform” means
r, = 0. To see now that <, is necessarily almost additive, let n increase without
bound and apply the second comment following Corollary 1.

We remark also that the sufficiency part of Theorem 5 can, with a little extra
effort, be obtained from Savage’s result.

C. We shall prove, by means of a single example, that incommensurability
occurs in the almost additive case, and that the antisymmetry condition in
Theorem 5 is essential. It is enough to exhibit CP orders <,, <, such that <,
is additive, <, is almost additive, and the two are incommensurate. Let X =
{a, b, c, d, ¢}. Consider the following family of equivalences: 3

7 ¢ ~ ab
®) ac ~d
) e ~ abc
(10) cd ~ ae
(11) ’ be ~ acd .

We need only prove

(a) there are two CP orders on X which extend (7) through (11); one is addi-
tive, and the other, almost additive;
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(b) if < isa scale on X X X with marginals satisfying (7) through (11), then
forall AC X A X X~ X X A.

It will follow from (b) that the orders promised in (a) are incommensurate.

ProoF oF (a). The problem is to exhibit <,, <, satisfying (7) through (11).
There is a unique probability measure P agreeing with (7) through (11), given,
up to a normalizing constant, by P(a) =1, P(b) =2, P(c) =3, P(d) =4,
P(e) = 6. Let <, be the CP order induced by P, and let <, be the CP order
defined by the following chain:

(12) P <o <ob<ocm~pab <gac ~yd <,ad < bc <ye ~,abc ~bd
<L cd ~yae ~,abd <,be ~ acd .

<, differs from <, only in the relations ad ~, bc, ad <, be, and in the corre-

~1

sponding relations for the complementary sets. In particular, <, is almost addi-

tive (the almost agreeing probability measure is unique and identical to P) and
satisfies (7) through (11).

ProoF OF (b). We temporarily abuse our notation by writing 4 for 4 X X
and 4’ for X X A. Suppose that < is a scale with marginals satisfying (7)
through (11). Then

13) be ~ b'e’
(14) acd ~ a'c'd’
(15) ac ~ a'c
(16) d~d.

To verify (13), notice that if be < b’¢’, then also (by (11)) acd < a’c’d’; hence
be U acd < b'e’ U a'c’d,or X X X < X X X, which is nonsense. Thus be < b'¢’
is false; by symmetry, also be > b’¢’ is false, and the conclusion follows. The
proofs of the other three are similar.

Now suppose that & < . From (13) and (9), b < &' implies e > ¢’ implies
abc > a'b'c’ implies ac > a’c’. The last inequality violates (15), hence b > b'.
Similarly, # < &', hence b ~ »’. From (13) again, e ~ ¢’, hence from 9), abe ~
a'b'c’; from (7), ¢ ~ ¢’ and ab ~ a’b’. The last relation, acting with & ~ &',
gives a ~ a’. In summary, x ~ x’ for all x € X, as claimed.

If < were a scale for <,, <,, then it would follow thai b¢c ~ b'c’ ~ a'd’ ~ ad,
that is, that ad ~ bc, in violation of (12). Thus, as claimed, (X, <,) and (X, <))
are incommensurate.

REMARK. Much use has been made of the equivalences in <,, <,. In fact,
one can find incommensurate <,, <, which are antisymmetric as well as almost
additive. The example is less transparent than the one given here, and the cal-

culations are lengthier, so we omit it.

D. The CP marginals shown to be incompatible in Section 3C are also
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incommensurate. This is not exceptional. In this subsection we show that the
equivalence between incompatibility and incommensurability prevails for a
certain broad class of marginals. The result is of some value for the problem
of showing that given orders are incompatible, it being at least occasionally the
case that scales are easy to guess and easy to describe; an application is given
in subsection E.

A CP order will be said to be positively almost additive if it has a positive almost
agreeing probability measure. The main result is

~

are compatible if and only if they are commensurate.

THEOREM 6. If <,, <, are positively almost additive, then (X, <o), (Xys <1)

Actually a little more will be proved. In the following sequence of steps, we
describe the substance of the proof. For notation we use X for the cartesian
product X, x X;, & for the class of sets in X of the form 4 X X, or X, X B
(4 S X,, BC X,), and &* for the set of vectors I, — I, (4, Be €). When
<', <'" are CP orders on the same set, such that for all subsets 4, B 4 <'B
implies 4 <" B, we say that <’ almost agrees with <"’ this extends the termi-
nology of almost agreement in a natural way.

Clearly only sufficiency needs proof. Assume that < is a scale for <,, <.

STeP 1. Let z stand for the set of probability measures on X with marginals
almost agreeing with <,, <,. Let S be the set of pairs (4, B), 4, B C X, such
that P(4) = P(B) for all Pe=.

CLAIM. (A, B) € S implies I, — I, € €*.

That is, the events that are equiprobable for all choices of P e essentially
belong to &. It is crucial to the validity of the claim that there are positive
probability measures in 7; that is, that <,, <, are positively almost additive.

STeP 2. By the finiteness of X, there is a sequence P,, ---, P, € = such that
for all 4, B C X, either (4, B)e S, or else P (A4) + P,(B) for some i < n. Let
<® be the CP order on X induced by P,. Define <, = L(<?', ---, <™), where
L stands for the lexicographic composition (see subsection B). < has the fol-
lowing two properties: first, its marginals almost agree with <. <,; second,
forall 4,BC X, A ~5Biff (4,B)€S.

STEP 3. < is not generally a joint order for (X,, <), (X;, <,); its marginals
may have equivalence where <,;, <,do not. Our intention is to modify < so
that these discrepancies disappear. In general, any perturbation in the marginals
of a joint order must propagate through the order, so that the axioms for CP
remain satisfied. What makes the theorem work is that for our problem, the
propagation is confined to S:

Facr. If <,, <, have at least one joint CP order <’, they have also a joint
CP order <” which agrees with < outside of S.

ProOF. <" = L(<;, <') has the asserted property.
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STEP 4. By Step 1, if (4, B) € S then essentially 4, Be <”. By hypothesis, <
is an ordering of & with the required marginals. Together these suggest that
we modify < on S according to <. Consider the order <, prescribed on X in
the following way:

(1) If (4, B)e S, choose A', B'e € sothatl, — I, = I, — I,,; define 4 <, B
iff 4/ < B'.

(2) If (4, B) ¢ S, define 4 <, Biff 4 < B.

Cramm. (1) <, is well defined; that is, if I, — I, = I, — I,,,, where
A',B" A", B" ¢ &, then A’ < B’ iff A" < B".

(2) <, isa CP order.

The proof of the theorem is concluded as soon as our claims are proved. The
details may be found in [9].

A slightly stronger version of Theorem 6 is accessible with only a little extra
effort. It follows upon the observation that the construction of <, does not make
use of the completeness of < on &; in fact, it is sufficient that < be defined
only for those pairs 4, Be & for which (4, B)e S. For each such pair, one of
three things can happen: '

(a) One of 4, B belongs to % ; the other to & ,.

(b) There exists i € {0, 1}, Ce & ,_,, such that both of 4, B belong to &,
and (4, C), (B, C) belong to S.

(c) Both of 4, B belong to &, where i € {0, 1}, but (b) fails.

Here &, is the class of sets 4%, 4 C X,, where, as before, A*is the set of xe¢ X
with ith coordinate in A.
Let T stand for set of pairs (4, B) satisfying (a) or (b).

THEOREM 7. Suppose that there is an order <, defined for all pairs in T, agreeing
with <,, <, where defined, and such that

(1) A< B,B< Cimplies A< C
2) AnB=CnD=¢and A< C, B< D implies AU B< CU D; if also
A< CorB< D,then AU B CU D.

Then (X, <,)s (Xy, <) are compatible.

Proor. It is enough, by Theorem 6, to show that < extends from 7 to a scale
on Z. Suppose that < is the CP order. on X defined before. Define <’ on &
as follows:

<’ has marginals <,, <,
A <gB implies 4 <'B
(4,B)eT implies A<'B if A< B.

(The effect of the last condition is to modify < for those pairs 4, Be & such
that 4 ~¢ B.) The three conditions are consistent. The proof that <’ has all the
properties of a scale is straightforward. []
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Denote by <,| T the restriction of <, to pairs 4, B C X, satisfying (4%, B) €
T. 1t follows from the theorem that if <,|7, <,|T extend to compatible CP
orders on X,, X; respectively, then (X;, <,), (X;, <,) are compatible. By way
of application, let K; be the set of 4 £ X, such that P(4) = constant as P runs
through all probability measures on X, almost agreeing with <,. Suppose that
i,je{0,1}and 4 C X,, B C X;. A necessary condition in order that (4, By e T
is that Ae K, Be K;. Hence

COROLLARY 2. If <, restricted to pairs from K,, and <, restricted to pairs from
K,, extend to compatible CP orders on X,, X, respectively, then (X;, <,), (X1, <1)
are compatible.

ArpLICATION. If < is the almost additive ordering on five atoms constructed
in [10], then <, is positively almost additive, and K, is an algebra with three
atoms. Since all CP orders on four or fewer atoms are additive, it follows that
<, on K, extends to an additive CP order on X, hence, by Corollary 2, that
(Xp» <o) is compatible with every finite, additive CP space.

REMARK. It is not known how far, if at all, Theorem 6 extends beyond the
case that both marginals are positively almost additive.

E. The purpose of this subsection is to balance the negative results of Sections
3B and 3C by exhibiting a large class of mutually compatible CP orders. Speci-
fically, let X stand for the class of finite CP spaces compatible with all the addi-
tive ones; we shall prove some simple properties of X.

The following are immediate:

(a) All CP orders in £ are almost additive.
(b) There are almost additive CP orders which do not belong to X.
(c) There are nonadditive CP orders which do belong to X.

In connection with the last, recall from Section 3D that the almost additive
ordering in [10] belongs to X; more generally, by Corollary 2, (X, <,) belongs
to X whenever <, is positively almost additive and the restriction of <, to pairs
from K, extends to an additive order on Xj.

The main property of X in connection with the formation of joint orders is

(d) Every n-tuple of CP orders from X has a joint order, and in fact, a joint
order which also belongs to X.

The proof is based on the following proposition; recall from Section D the defi-
nition for almost agreement of CP orders.

ProPOSITION. Let <,;, <, be CP orders on X, such that <, almost agrees with
<o i=1,--.,n. If for each i there is a joint CP order < on X, X --- X X,
with marginals < ;' on X; (j # i) and <, on X, then (X}, <y), « -+, (X,, <,) are

compatible.

The proposition is proved by noticing that L(<®, ..., <™) is a CP order
with marginals <, ---, <,.
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Proor oF (d). Suppose that (X;, <;)eZ, i=1,...,n. Write E(k) for the
CP space corresponding to the uniform distribution on k! atoms. The first step
is to show that (X;, <)), - -+, (X,, <,), E(k) are compatible; this is done by
taking for <" any additive CP order on X, almost agreeing with <, (that there
is at least one follows from (a)), observing that (X;, <,), (X;, <,), j # i, E(k)
are compatible (since <, belongs to X), and then applying the proposition. It
ensues that for each k there is a joint CP order for (X;, <), i = 1, -+, n, which
is compatible with E(k). Consider the sequence of such orders, indexed by k.
At least one element of the sequence (call it <*) occurs infinitely often, there
being only finitely many distinct CP orders on a finite set. Since each finite,
additive CP space is a subspace of E(k) for all & sufficiently large, it follows that
<* belongs to Z. []

Note that 2 is the largest class of mutually compatible CP orders containing
all the additive ones. The antisymmetric orders in X (of which the order in [10]
is an example) are especially amenable to the formation of joint orders:

(¢) The antisymmetric orders in X are compatible with all almost additive ones,
in X or not.

Proor. Suppose that <, belongs to X and that <, is almost additive. Then
there is a joint order <’ with marginals <,, <,” where </ is additive and al-
most agrees with <,. Let <” be any CP order at all on X, X X, with marginal
<, on X,. If <, is antisymmetric, then L(<’, <”) has marginals <,, <,, as
required. []

The next result is an application of Theorem 7. Itsimpact is thata positively
almost additive CP order is compatible with all the finite, additive CP spaces,
provided that it is compatible with a certain one of them.

(f) If <, on X, is positively almost additive, then a necessary and sufficient
condition in order that it belong to X is that there exist an additive CP order
<, on X;, almost agreeing with <, and such that (X, <,), (X;, <) are com-
patible.

Proor. Only sufficiency needs proof. Assume that there is available a CP
order <, on X; X X, with marginal <, on the first coordinate and <, on the
second, where <, is additive and almost agrees with <,. We wish to show
that (X, <,), (X;, <,) are compatible whenever <, is additive. To this end let
T be the class of pairs (4, B), 4, B Z X, X X,, defined in connection with Theo-
rem 7, and construct < for pairs in T in the following way: first, < is to agree
with <, <,; second, for pairs in 7 of the form (4 X X;, X, X B), where 4 C X,
and BC X, A X X, S X, X Biff 4 X X, <, X, X 4.

The proof is completed by verifying that < satisfies the hypotheses' of Theo-
rem 7; the details can be found in [9]. []

REMARK. It seems that the almost additive CP orders not in X are those with
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well-specified almost agreeing probability measure. We have no example of a
nonadditive CP order in ¥ with a unique almost agreeing probability measure.

4. Conclusion. As shown, one of the properties of the CP axioms is that there
are incompatible marginals. Since this is not a property of the additive theory,
it might seem (at least to one brought up in the quantitative tradition) problema-
tical in any theory of probability. We discuss below two ways in which the
nonexistence of joint orders in CP might be reconciled with intuition.

One way is to surrender the completeness axiom for CP. There is some
precedent for incomplete probability descriptions: complimentarity in quantum
mechanics in an instance in physical theory where marginals exist, but joint
distributions do not exist in an experimentally measurable sense; see [1] for an
analysis of complimentarity in which algebras of events are replaced with pro-
positional lattices, and [6] for a sketch of a possible relationship between CP
and quantum mechanics. Inany case, abandoning the completeness requirement
would mean formal acceptance (which seems realistic) of a world in which not
all acts or decisions are comparable; the role of our results would then be to
describe classes of comparisons that do, or do not, lead to contradictions.

A second way is to observe that to some extent the issue is terminological.
Our speaking of ‘“compatibility of experiments” encourages the view that
marginals are logically prior to joint orders; that is, that a priori there are two
separate experiments, each with its own probability description, and that the
problem is to describe them together. Were we to consider instead that the
marginals are simply different aspects of the same experiment, there seems little
reason to suppose that they can be chosen independently; the impossibility of
extending “given” marginals would seem no more unusual than the fact that
errors can occur in the course of construction of a CP order.

REFERENCES

[1] BIRKHOFF, G. and voN NEWMANN, J. (1936). The logic of quantum mechanics. Ann. of
Math. 37 823-843.

[2] pE FINETTI, B. (1931). Sul significato soggetivo della probabilita. Fund. Math. 17 298-329.

[3] DoMOTOR, Z. (1969). Probabilistic Relational Structures and their Applications. Technical
Report No. 144, Inst. for Math. Studies in the Social Sciences, Stanford Univ.

[4] FeLLEr, W. (1971). An Introduction to Probability Theory and its Applications 2, 2nd ed.
Wiley, New York.

[5]1 FiNg, T. L. (1973). Theories of Probability. Academic Press, New York.

[6] Fing, T. L. (1974). Towards a revised probabilistic basis for quantum mechanics. Synthese
29 187-201.

[71 Fing, T. L. (1976). A computational complexity viewpoint on the stability of relative
frequency and on stochastic indepehdence. In Foundations of Probability Theory,
Statistical Inference, and Statistical Theories of Science (W. Harper and C. Hooker,
eds.). Reidel, Dordrecht. )

[8] KAPLAN, M. A. (1971). A characterization of independence in comparative probability.
M. S. thesis, Cornell Univ.

[9]1 KAPLAN, M. A. (1973). Extensions and limits of comparative probability orders. Ph. D.
thesis, Cornell Univ.



[10]
[11]
[12]
[13]

[14]

COMPARATIVE PROBABILITY 179

KRAFT, C. PRATT, J. and SEIDENBERG, A. (1959). Intuitive probability on finite sets. Ann.
Math. Statist. 30 408-419.

Krantz, D. H., LUck, R. D., Suppgs, P. and TVERSKY, A. (1971). Foundations of Measure-
ment, 1. Academic Press, New York.

Luce, R. D. (1967). Sufficient conditions for the existence of a finitely additive probability
measure. Ann. Math. Statist. 38 780-786.

SAVAGE, L. J. (1972). The Foundations of Statistics. Dover Publications, New York. (This
is the second edition of a book published under the same name by Wiley in 1954.)

ScorT, D. (1964), Measurement structures and linear inequalities. J. Math. Psychology 1

233-241.

[15] VILLEGAS, C. (1964). On qualitative probability o-algebras. Ann. Math. Statist. 35 1787-
1796.

INRS-TELECOMMUNICATIONS ScHoOL OF ELECTRICAL

3 PLACE DU COMMERCE ENGINEERING

VERDUN, QUEBEC CoRNELL UNIVERSITY

H3E 1H6 CANADA ITHACA, NEW YORK 14853



