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BIRTH, DEATH AND CONDITIONING OF MARKOV CHAINS!

By M. JACOBSEN AND J. W. PITMAN
University of Copenhagen and Cambridge University

Given a Markov chain with stationary transition probabilities, we
study random times ¢ determined by the evolution of the Markov chain
for which either the pre-z or post-r process is Markovian with stationary
transition probabilities. A complete description is given of all such random
times which admit a conditional independence property analogous to the
strong Markov property at a stopping time.

1. Introduction. Given a Markov chain X, X;, - - - with stationary transition
probabilities, we investigate random times r with the property that the joint
distribution of the pre-r fragment (X,, ---, X,_;) and the post-r fragment (X,
X.,1, -+ +) can be described by saying that one or other of these fragments is
Markovian with stationary transition probabilities, and that the two fragments
are conditionally independent given the position of the inner endpoint of the
Markovian fragment at = — 1 or . Such a description of the joint law of the
pre-7 and post-r processes for a random time = will be called a path decomposition.
For some examples of more sophisticated path decompositions which provided
motivation for the present study see Williams [9], [10], Jacobsen [3], Pitman [5],
[6], Pittenger and Shih [7]. Following Meyer, Smythe and Walsh [4] we refer
to those random times ¢ for which the post-r fragment is Markov as birth times,
and to those for which the pre-z fragment is Markov as death times. We show that
for discrete time Markov chains with countable state space the analogues of the
types of birth times and death times considered by Meyer, Smythe and Walsh
for continuous time processes, namely optional, cooptional, terminal and coter-
minal times, all admit the additional conditional independence property described
above; and that from these special types of random times it is possible to con-
struct the most general random times determined by the evolution of the Markov
chain which allow this kind of path decomposition.

Let (X,, ne N) be the coordinate process defined on the space Q of all se-
quences in a countable set J indexed by the nonnegative integers N, and equip
Q with the usual product ¢-field #". A probability P on (Q, &) is Markov, or
Markov (p), if P makes (X,) a Markov chain with stationary transition probabi-
lities p. For background see Freedman [1].

A random time r = r() is now an % -measurable function of sequences
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o € Q with values in the extended time set N U {oo}. Given a Markov (p) proba-
bility P, a random time t is a birth time for P if the P distribution of the post-r
process is Markov (¢) for some transition matrix ¢, and < is a regular birth time
for P if in addition the pre-r and post-z processes are conditionally independent
given X, on (r < o). According to the strong Markov property each optional
(stopping) time ¢ is a regular birth time for every Markov probability P, and in
this case ¢ = p. If all states are recurrent it will be seen that every regular birth
time is a.s. equal to an optional time, but if there are transient states there will
usually be many regular birth times = for which ¢ differs from p; e.g., the last
time ¢ that a certain set of states H is visited, when the post-z process is like the
original process conditioned never to hit H.

It turns out quite generally that the Markov chain which emerges at a regular
birth time ¢ can be described by conditioning a Markov chain with the same
transition probabilities as the original. With this in mind we determine in Sec-
tion 2 the collection of all events C e % with the property that when a Markov
probability P on (Q, &) is conditioned on C, another Markov probability
results. Then in Section 3 it is shown that there is a class of random times <%
with the property that for each Markov probability P

(i) every r € s a regular birth time for P,
(ii) every regular birth time for P is P-a.s. equal to a random time in <.

Roughly speaking, <%’ comprises “‘optional times after coterminal times.” It
is interesting that the conditional independence hypothesis involved in regularity
is essential for this type of result. We show that there exists no such canonical
collection of plain birth times by exhibiting two Markov probabilities P and Q
with the same null sets together with a random time = which is a birth time for
P but not for Q.

In Sections 4 and 5 we consider death times. A notion of regularity for death
times is introduced in Section 5, and it is shown that there is a canonical class
< of regular death times which roughly speaking comprises “cooptional times
prior to terminal times.” This result is like a dual to the existence of the class
2% of regular birth times, but owing to the impossibility of reversing on (r = o)
we are unable to bridge between the two results by any direct use of time re-
versal. For the death time theorem we instead make use of a new method deve-
loped in Section 4, exploiting a functional equation satisfied by certain condi-
tional probabilities associated with any death time, regular or not. Once again
we show that there is no canonical collection of plain death times.

Section 6 is devoted to random times which are both regular birth times and
regular death times. We show that for nice transition matrices p these times
are essentially either terminal times or coterminal times, and give a detailed des-
cription of the associated path decompositions. Finally, in Section 7 we discuss
possible extensions to Markov processes with more general time set or state space.

We set out now the basic notation. Except where otherwise specified, P is
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a fixed Markov probability on the sequence space (2, &) with arbitrary transi-
tion matrix p = (p(x, y), x, yeJ). For xeJ, P* is the probability on (Q, &)
which is Markov (p) with starting state x. For use after killing operations we
introduce a coffin state A: let J, = J U {A}, and let Q, be the space of all se-
quences ® = (®,, ®,, - - -) in J, which satisfy the coffin condition: w, = A implies
w, = A for allm = n. Forne N= N U {oco} define coordinate maps X, : Q, —
J,, kKilling operators K,,: Q, — Q, and shift operators 6,,: Q, — Q, as follows:

Xy (0) = o,, K, (0) = (&g, + -+, @y, A4, - )
01»(“’) = (wm @, 11 “‘)a neN,
Xm(a)) =A, Kw(a)) =, 000(0)) = w,,

where 0, = (4,4, - - -.) is the dead sequence.

Equip Q and Q, with the usual o-fields .7 and .7, generated by the coordi-
nates, and for random times r: Q — N define measurable mappings X, : Q — J,,
K. :Q-Q,and _: Q — Q, in the obvious way, e.g., X (0) = X, (®), we Q.
For ne Nlet &, be the sub-g-field of % generated by X,, .- -, X,, and let &7,
be the countable collection of the atoms of %, i.e., all events A of the form 4 =
(X, = x,, 0 < k < n) for some x,, ---, x,eJ. For a random time r define &,
the o-field of events up to and including time 7, to be the o-field generated by
K..,. This agrees with the usual definition for an optional time r, and especi-
ally &, = &, for the constant time = n. For each ne N the trace of &,
on the event (r = n) is identical to the trace of .5, on (r = n) and the event
(v < o0) is the union of the countable collection {A(r = n), A€ %, ne N} of
atoms of % _. Here and throughout, 4B denotes the intersection of events A
and B in & .

2. Conditioned Markov chains. Given a Markov chain with stationary transi-
tion probabilities, on what events determined by the evolution of the Markov
chain can one condition to obtain a new Markov chain with stationary transition
probabilities? For a probability P on (Q, %) and Ce.& with P(C) > 0 let
P; or P(- |C) denote the probability on (2, .5") obtained by conditioning on C:

P,(F) = P(F|C) = P(FC)/P(C), Fe = .

Thus the problem becomes: given that P is Markov, for which Ce & is P,
again Markov? We start by defining various collections of events contained in
T '

2.1) DEerFINITION. Let

Co={C:Ce F,C = (X,e H) forsome HcJ},
Cy={C:CeF,C=[(X,, X,.,)eV,neN] forsome VcJxJ},
C.={C:CeF,C=(,eC)}.

Thus &, = & is the o-field of initial events generated by X,, &, is the o-field
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of invariant events, but the collection &, of events which constrain all the transi-
tions to be of a certain type is not a o-field at all.

(2.2) DEFINITION. Let
&, ={C:Ce&#,C=C,C, forsome C,eZ&,,C,e E.},
z={C:Ce&,C=CC,C, for',some Coe Gy Cop € Cp» Con € &)

Events in &, will be called coterminal-events, anticipating the connection be-
tween these events and coterminal times which is described in the next section.
Events in & are intersections of initial events and coterminal events.

Now each of the collections &7, § = 0, *, oo, is readily seen to have the pro-
perty that if P is Markov then so is P, whenever Ce & and P(C) > 0, and it

follows by repeated conditioning that the class & of all intersections of events
from these collections must again have this property.

(2.3) THEOREM. Suppose P is Markov and C is an event with P(C) > 0. Then
P, is Markov if and only if C is P-equivalent to an event in &.

The theorem is an immediate consequence of Lemma (2.5) and Proposition
(2.10) below. Proofs of these results take up the remainder of the section, but
we mention first a simple corollary:

(2.4) COROLLARY. Suppose the Markov probability P makes all states recurrent.
Then P, is Markov if and only if C is P-equivalent to an initial event.

Proor. If P makes all states recurrent then every coterminal event is P-equi-
valent to an initial event (see Freedman [1], 1.120).

(2.5) LEMMA. If C is a coterminal event, then there are events F, € 5, such that
i) C=F,(0,e0), neN.
Conversely, if C is an event such that
(ii) C =F6,eC)

for some F, € 5, then C is a coterminal event. Furthermore, if (ii) holds only P*-
a.s. for all xe J, where P* is Markov (p) starting at x, then there is a coterminal
event which is P*-equivalent to C for all x.

Proor. The first assertion is obvious, For the converse suppose that C e &~
satisfies (ii). Since F, = ((X,, X;) e V) for some V c J X J,

C = ((X» X) e V)(6,€C),
whence
C= (X Xp)eV, 1<k <n)@,eC), - n=1,

by iteration. But intersecting this identity over all n = m gives

C=Cy0,eC,n=m)
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where C, = ((X,_;, X)) €V, 1 £ k < o0) € &, and taking the union of this iden-
tity over all m gives C = C, C,, where C,, = lim inf,__ (6, € C) is invariant, and
thus C is a coterminal event. For the final assertion the same sequence of iden-
tities is justified P*-a.s. for all x by using the fact that if two events F, and F,
agree P=-a.s. for all x then so too do the events (¢, € F,) and (0, € F,) for each
neN.

(2.6) NotaTIoN. Recall that &7, denotes the countable collection of all
atoms of .&,. Now for y e J let %7, denote the subcollection of %, comprising
those atoms contained in the event (X, = y).

We observe that a probability P on (Q, &) is Markov if and only if for each
y eJ the P, distribution of the post-n process ¢, remains constant as A varies
over all events in .7, with P(4) > 0 and n varies over N. When P is Mar-
kov (p) this constant distribution is of course P¥.

2.7) DEefINITION. For each event A4 in .%,, and each event F e .5, define
aset F, c Q, the section of F beyond A as follows: for 4 = (X, = x,, 0 <k <
n) € 57, F, comprises those sequences o = (w,, ®,, - - -) such that o, = x, and
(xo,...,xn,wl,wz,...)eF, \

Then F, is an event in .% and we shall make repeated use of the identity

(2.8) AF = A0, F,), Ae S, Fe & .
Notice that if 4e %, then F, C (X, =y), Fe F.

(2.9) LEMMA. Suppose P is Markov (p), Ce % with P(C) > 0. Then for
Ae 7, with P(AC) > 0, the P, distribution of 0, is P}, = P¥(+|C,).
Proor. For Be ., Ae %7, with P(AC) > 0, we have
P[AC(0, € B)] _ P[A(0,¢cC,B)]
P(AC) P[A(G, € C))]
_ P,0,€C,B) _ P'(C,B)
P,(0,€C,) PY(C,)
(2.10) PROPOSITION. Suppose P is Markov (p), Ce % with P(C) > 0. Then
P, is Markov if and only if there exists an event D € .F such that

(i) C=C,D Pas.

PAC(an € B) =

= P”(B|CA) .

for some initial event Cy€ &,, and
(ii) for each ne N there is an event F, € .Z, with

D =F,0,eD) Pas.
forall xeJ.

Proor. Fix Pand C e % with P(C) > 0, and define /  J to be the essential
range of (X,) under P, :

I={yelJ: PyX, =y) >0 forsome n}.
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For y e J define .27}, to be the collection of all atoms A in .7, with Pi(A4) > 0,
and set %7, * = |J, ;). Thus %7 * is nonempty if and only if ye 1. Now P,
is Markov if and only if for each y e I the P,, distribution of 4, is constant as
A varies over %7} and n varies over N. Thus by (2.9) P, is Markov if and only
if for each y e I the probabilities P¥(+|C,) are identical, 4¢ .%7,*, i.e., if and
only if the events C, are Pv-a.s. identical, 4 € &7, *. Butifthereisa D satisfying
(1) and (ii) then clearly for all 4 ¢ .97 ,*

C,=(X,=y)D Pra.s.,

hence P, is Markov. Conversely, if P, is Markdv, say Markov (g), then for
y € Iselect a representative event C, with 4e .7, *, and call it D,. Let D =
U,e: D, Then for yer

(2.11) PY(+|D) = PY(-

DV)ZP”(.|CA>:Q1’(')’ Ae%”+,

where Q¥ is Markov (¢) starting at y. Obviously this D satisfies (i) with C, =
(Xoe H) for H={y: Py(X, =y) >0}, and it will now be shown that this
D also satisfies (ii). For yel, P,¥ is Markov (¢) so that D = D, P:-a.s. for
Ae 7, with PY(AD) > 0. Consequently AD = A(f, € D) P¥-a.s. for Ae o7,
with PY(4D) > 0, and taking the union over all such atoms A gives a represen-
tation D = F, (0, € D) P'-a.s. with F, € & ,. LetF, = U,c, (X, = y)F,,. Then
D = F,(0,¢€ D) P*a.s., xe I, and since P*(D) = P*(F,) = 0 for x ¢ I, D satisfies
(ii). The proof is complete.

3. Regular birth times. The main result of this section is Theorem (3.9)
which describes all regular birth times for a Markov probability P in terms of
certain fundamental birth times associated with the coterminal events of the
previous section. Using the notation defined in the introduction, a random time
t is a regular birth time for P if and only if a P conditional distribution of 4,
given .#_ is equal to Q° on (r < oo, X, = x), where Q% is Markov (9) with
starting state x for some transition matrix ¢. Put another way, r is a regular
birth time for P if and only if under P the post-t sequence (X,,,, ne N) is
Markov (¢) with respect to the increasing sequence of o-fields (& _,,, n € N).

Suppose now that C is a coterminal event as defined in (2.2), i.e.,

3.1) c=¢C,C,
where
3.2) C,=[X,., X)) eV,1 <n< oo]

for some V — J x J, and C_, is invariant.
(3.3) DEerINITION. The coterminal time associated with C is the random time

7, defined by
o =inf{neN:60,eC}.

Note. Here and elsewhere we use the convention inf ¢ = oo, sup @ = 0.
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The connection between these coterminal times and the coterminal times of
Meyer, Smythe and Walsh [4] will be pointed out later in the section. Since
for coterminal events C

3.4) 0,eC)c (0,€0), 0ksm< oo,
we have the identity
3.5) (reg £n)=(0,€C), neN.

In particular, if C = C,, then 7, is the time that the last transition in V° is
completed:

(3.6) To, = sup{n = 1: (X,

n

-1 Xn) € Vc} ’
while if C = C_, is invariant, then
3.7) 7, =0 on C,, o on C_°,

and in general if C = C, C,, then 7, is the maximum of z,, and 7,_.

Now each coterminal time z, is a birth time for the Markov probability P: in-
deed Lemma (3.12) below shows that for © = r, a P conditional distribution of
0. given & _equals P, on (X, = x), where P,* = Q7 is Markov (g) for some ¢ by
(2.3). This is the analogue in the present context of Theorem 5.1 of Meyer,
Smythe and Walsh [4]. For a more detailed description of the path decom-
position at 7, giving the transition probabilities ¢ of the post-z, process, see
Section 6.

(3.8)  DEFINITION. Let &7 be the class of all random times = of the form

T=Tc+p

where 7, is the coterminal time associated with a coterminal event C, and p is
an optional time for the increasing sequence of ¢-fields (& ,,, n€N), i.e.,
(o = n)e'?rw-m neN.

Once it is known that each 7, is a regular birth time for P, it follows from
the strong Markov property of the sequence (X, ,,, n € N) adapted to (-F .,
n e N) that each r € &7 is again a regular birth time for P. This proves one of
the implications of the following theorem. Proof of the converse implication
takes up the rest of the section.

ctn

(3.9) THEOREM. A random time < isa regular birth time for a Markov probability
P if and only if © is P-equivalent to a random time in 5.

(3.10) COROLLARY. If P makes all states recurrent then every regular birth time
for P is P-equivalent to a stopping time.

PRrooF. Just as for (2.4).

(3.11) DEFINITION. A random time ¢ is a conditional independence time for
P if under P the pre-r and post-r processes are conditionally independent given
X,, i.e., if there is a conditional distribution of #_given & _ within (r < o)
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which is a function of X, alone.

(3.12) LEMMA. A random time < is a conditional independence time for P if and
only if there are events F, ¢ & ,, ne N, and G ¢ F such that

(3.13) (r =n)=F,0,eG), Pas, neN,

and there is then a conditional distribution of 0. given # _ which equals P* on (7 <
o0, X, = X).

REMARK. The proof can be sharpened to show that r is a conditional inde-
pendence time for P if and only if z is P a.s. equal to a ¢* with (¢* = n) =
F (0, € G) exactly for some F, e & ,, G e.% . Every such time is thus a.s. equal
to a splitting time, defined in Jacobsen [3] as a random time ¢ for which (.= n) =
F,0,¢€G,) for some F,e & ,, G, e Z. The present argument will also show
that splitting times are characterized by conditional independence of the pre-t
and post-z processes given both X_ and <.

Proor. Working on atoms as in the proof of (2.10), let %7, be the collection
of all atoms 4 of ., contained in (X, = x) with P(4G,) > 0, where G, =
(r = n), so that (X, = x)G, is P-a.s. equal to the union of the sets 4G, over all
Ain &7, Defining G,, as in (2.7) to be the section of G, beyond 4, we have
from (2.9) that the P conditional distribution of 6, given AG, is P*(+|G,,),
Ae 57}, Butris aconditional independence time if and only if this conditional
distribution is a function of x alone for all 4 € 27}, ne N, i.e., if and only if

for each x e J there exists G, ¢ F# with G, c (X, = x) and

(3.14) G.. =G, Pas., Ae 7.
But (3.13) implies (3.14) with G, = G(X, = x), while (3.14) implies (3.13) with
G = U..;G., and F, the union of all 4 e %, with P(4G,) > 0.

Proor oF THEOREM (3.9). That each r € &7 is a regular birth time has been
argued already. For the converse, suppose r is a regular birth time for P. Then
by (3.12) there are events F, e % ,, G ¢ # with

(3.15) (T = n) = F,,(ﬁneG) P-a.s.,

and the conditional distribution of 6, given & is P;® on (r < o0, X, = X).
Moreover this probability is Markov (¢) for some ¢ not depending on x, and
thus Theorem (2.3) shows that for every x with P(r < o0, X, = x) > 0, G is
P*-a.s. equal to a coterminal event C which because of (2.10)(ii) and (2.5) (ii)
may be chosen so as not to depend on x. Thus the set G, = G(X, = x) which
appears in (3.14) can be replaced by the set C, = C(X, = x) to give

(3.16) (t=n=F,(0,eC) P-as., - neN.
But now let
3.17) C,=F,0,€C)



438 M. JACOBSEN AND J. W. PITMAN

and define a random time 7’ by setting
' =n on C\U:zCe» neN
= on (Ui Ch).

(The sets C, might not be disjoint.) Clearly ' = ¢ P-a.s., and we conclude by
showing that ' > 7, and that p = ¢/ — 7, is an optional time for (& ., me
N). But from (3.17), (3.4) and (3.5),

(7" <n) =Uis G € Ui (0,€C) = (zg = 1) neN,

which implies ¢ = z,. Now put p =7’ — 7,. Then for me N we have the
identities

(3.18) (0= m) = Uson(co=n—m o <n),
(3.19) (te=n—m, v < n) = (¢ =n—m[Ui, C.] = Ui B,

where B, = (r, = n — m)C,. If k < n —m, (3.17) and (3.5) show C, c (6, ¢
C) = (ty < k) so that B, = @, while if n — m < k < n then (3.5) and (3.4)
make (rg =n —m) C (,_,€C) C (6,€C) so that (3.17) yields B, = (7, +
m = n)F, where F, e %, C % ,. In either case B, e % ,,, and thus working
back through (3.19) to (3.18) shows (0 < m) € &, ., Which is to say that p is
an optional time of (7, ,,., me N). The proof is complete.

We now point out the connection between the random times 7, of Definition
(3.3) and the coterminal times of Meyer, Smythe and Walsh [4] (MSW). A

MSW coterminal time is a random time r defined on Q, satisfying

(i) t00,=(t—n)*, neN,
(3.20) (i) 7oK, =71 on (r<n, neN,
(ili) 7oK, <n, neN.

The random time 7, of (3.3) is defined only on Q. If (3.3) is Ifnterpreted asa
definition on Q,, the resulting random time will not be MSW coterminal because
both (ii) and (iii) above may be violated. However, every t, admits an exten-
sion to Q, which is MSW coterminal and the restriction of every MSW coterminal
time to Q is of the form z, for a coterminal event C, as will now be shown.

For V c J x J define ¥V < J, x J, by

(3.21) - V=Vu @) x {4} U {(A, b))},

where z(V) = {xeJ: (x, y) e V for some y e J}. Now for C = C,C, as in(3.1)
define Ce &, by

(3.22) C =[(Xpp X)) eV, n = 1][C, U (Q,\Q)],
and define z; on Q, by
(3.23) t; = inf{n: 6,eC}.

Then it is easily checked that r; = 7, on Q, and that ¢z is MSW coterminal.
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Conversely, if 7 is a MSW coterminal time, then C = (r = 0)Q is a coterminal
event asin (3.1), and ¢ = r,on Q. To see this observe first that (3.20) (i) implies

(3.24) (r<n)=(tob,=0)=(0,e(r =0)), neN.

Thus by (3.5) it suffices to show that (r = 0)Q = C for a coterminal event C.
But by (3.20) (ii) for n = 2 and (3.24) for n = 1,

(T=0):(T:O,T<2)=(TOK2=O,T<2)
=(TOK2=0,01€(T=0)).

Since (r o K, = 0)Q ¢ &, (2.5)(ii) now shows that (r = 0)Q is a coterminal
event.

We conclude this section with some remarks about plain birth times. For
an interesting example fix m > 1 and define '

c=inf{n 2 1: (X, -, Xopp) = (Xop 05 X)) -

If P makes all states recurrent then r is P-a.s. finite and since ¢ 4 m is a stopping
time and (X, -+, X,,,) = (Xp -+, X,,) on (z < o0) it is easy to see that the
P distribution of 4, is P. Thus ¢ is a birth time for P, but certainly not a regular
birth time, since knowledge of the pre-r process completely determines the first
m-moves of the post-r process. Examples show that r can fail to be a birth
time if there are transient states. But it is of greater interest to use the idea
behind this example to construct two Markov probabilities P and R with the
same null sets and a = which is a birth time for P but not for R, since this shows
that there exists no canonical class <#* of plain birth times with the property
that ¢ is a birth time for a Markov probability P if and only if z is P-equivalent
to a time in <Z*.

(3.25) ExampLE. Let J = {1, 2, 3}. Define transition matrices p and r on
J by

1 1 1 3

0 3 3 0 : %

— 1 1 — 1 1
p=10 3 3|, r=10 % 3
1 1 1 1

0 % 3 0 % 3

Let Pand R be Markov (p) and Markov (r) respectively, both starting at 1. Then
P and R have the same null sets but the random time r defined by

t=inf{n: X, =2, X,,, =2} if X,=2
=inf{n:X”=2,X,t+1=3} if X,=3
is a birth time for P only.
4. Death times. Given a Markov (p) p\robability P on (Q, %) we now in-
vestigate death times for P, i.e., random times r such that under P the distri-
bution of the pre-r fragment (X,, ---, X,_,) is Markov with stationary substo-

chastic transition probabilities, or, what is the same, that the killed process
K. = (Xp -+, X._1, A, A, .. .)is Markov with stationary transition probabilities.
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Let  be a death time for P. If we let J, denote the essential range of the
pre-r path,
Jy={xeJ: P(r >n, X, =x) >0 forsome neN},

then the transition probabilities ¢(x, y) of the killed chain are well defined for
all x, yeJ, U {A} and induce a family of probabilities {Q* xeJ, U {A}} on Q@
which concentrate on paths @ which remain forever within this restricted state
space J, U {A}. Clearly if P(r > 0, X; = x) > 0 then Q¢ is identical to the P*
distribution of K, given (z > 0). This conclusion may be either false or mean-
ingless if P(r > 0, X, = x) = 0, but we shall see that matters can be rectified
by redefining r(w) properly for paths o starting at such points x.

We consider now the whole family of probabilities {P*},., where P* on (2,
#") is Markov (p) with starting state x. For each random time r define J. < J by
J.={xeJ: P(r > 0) > 0},
and say that t is a death time for the family {P%},., if there is a transition matrix
g on J. U {A} such that for each x e J, the P= distribution of K, given (z > 0) is
Q®, where Q% on (Q, %) is Markov (¢q) with starting state x. In particular Q*
concentrates on the set of sequences in J_ U {A} which satisfy the coffin condition.

Obviously every death time for the family {P"},., is a death time for each
Markov (p) probability P. Conversely:

4.1) PROPOSITION. Let t be a death time for a Markov (p) probability P. Then
there is a death time t* for the family {P%},., such that t*(w) = t(w) for all paths
o starting at points x € J with P(r > 0, X; = x) > 0.

REMARK. If P = P for a fixed state y then ¢* and r agree P-a.s.

PrOOF. As before let J, be the essential range of the pre-r path under P,
and suppose K. is Markov (g) under P. For those paths o starting at an x e J\J,
set t*(w) = 0, while for those starting at an xeJ, with P(r >0, X, = x) >0
put 7*(») = r(w). Finally, if xeJ, and P(r > 0, X, = x) =0 find an m > 1

and x,, - - -, x, €J, with x,, = x such that P[4(r > m)] > 0 where 4 = (X, =
Xos ++» X = X,), and then for ® = (@, ®,, -+ +) with w, = x define
T*(a)) = (T(xo, ce oy Xpygs Woy Wy, ¢ .) — m)+ .

Obviously J.. = J, and it remains only to check that the P* distribution of K..
given (c* > 0)is Q* for x € J, with P(z > 0, X, = x) = 0, where Q* is Markov ()
starting at x. For this it suffices to show that for ne N, y, = x, y,, - -+, y, €J,,
B=(Xo=yp s Xy =)
P[B(z* > n)|c* > 0] = Q*(B),
where Q*(B) = q(yo 1) * * * §(Pu-1> y) by definition.
But let m and n be as above. Then, first using the Markov property of P and
then the fact that t* o ,, = (t — m)* on 4,
P*[B(z* > n)] = P[A(0,, € B, t* o 0,, > n)]/P(4)
= P[A(0,,€ B, > m + n)]/P(A).
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Similarly P*(z* > 0) = P[A(t > m)]/P(A), whence
P*[B(t* > n)|t* > 0] = P[A(8, € B, > m + n)]|/P[A(r > m)]
which equals Q°(B) because the P distribution of K, is Markov (g).

This result reduces the problem of describing the death times for a given
Markov probability P to that of characterizing the death times for a family
{P*};c,. Such a characterization is provided by the following proposition. Write
P(.|.#,) for any of the identical conditional probabilities P*(. | .&",), and given
a random time r introduce

f) =P >0),  Z,=P>n|F), neN.
Note that Z, = f(X,) and recall that J, = {xe J: f(x) > 0}.
(4.2) PROPOSITION. A random time t is a death time for the family {P*},., if
and only if for m, n e N the identity
Znpin=ZnZyo 0u[f(Xn) on (Xnel)
=0 on (X,el.)
holds P*-a.s., xeJ.
Proor. With Q* the P* distribution of K, given (z > 0), the condition that

v be a death time for {P*} is equivalent to requiring that for all m, n, k € N,
Xos * 0 s Xpys err’

(43) Q"(Xy = X -+ +» X,

min = Xmin)

= Qo Xy = Xp + o+, Xy = X)Q"m( Xy = X, -5 Xy = Xpin)
4.4 Q°(X,¢J. U {A) =0.
Introducing the atoms 4 = (X, =x,, -+, X,, = x,), B=(X, = x,, - -, X, =

Xn.n)s it is seen that (4.3) and (4.4) are equivalent to
(4.5)  Po[A(B, € B, v > m+ n)] = Pu[Ax > m)]Pa[B(z > m)]/f(x,)
(4.6) Pi(X,¢J.,t>k)=0.
But the left side of (4.5) equals
P[Z, ;s A0, € B)]
while the right side becomes
PoZ, 3 A)P'm(Z, 5 B)lf(xy) = PU[Z,Z, 0 0,]f(Xy); A(B€ B)] -

Since 4 and B are arbitrary atoms for paths within J, and since (4.6) is equiva-
lent to demanding that Z,, Z, ,,, - - - vanish P*-a.s. on (X}, ¢ J,) the result follows.

We finish this section with an example of two Markov probabilities P and R,
with the same null sets, and a random time r which is a death time for P but
not for R, thus proving that there exists no collection of random times &7* such
that ¢ is a death time for a Markov probability P if and only if z is P-a.s. equal to
a random time in Z'* (cf. Example (3.25)).
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4.7 ExampLE. LetJ = {1, 2, 3, 4}. Define transition matrices p and r on
J by

55400 5440
_j00 3 4| 00} 3
Plop 0 gt TTHo g0 g
0 0 0 1 0 0 0 1

Let P and R be Markov (p) and Markov (r) respectively, both starting at 1.
Clearly P and R have the same null sets. Define p as the time of entry into
{2, 3}, o as the time to absorption in state 4, put 6 = ¢ — p and finally let = be
the minimum of p and 4.

Under both P and R the random times p and 6 are independent, under P they
both have a geometric distribution, whence so too does z, but under R the ran-
dom time p is geometric while d is not, and thus = is not geometric either. Since
the pre-r process never leaves state 1 it is therefore Markov under P but not
under R.

5. Regular death times. A random time t is a regular death time for the
Markov probability P if the P distribution of the pre-z process (X, -- -, X,_,) is
Markov (r) for some substochastic transition matrix r, and in addition the pre-r
and post-r processes are conditionally independent given X,_,on (0 < 7 < c0).
Since the time reversal of a Markov fragment with finite lifetime and stationary
transition probabilities is again Markov with stationary transition probabilities,
the regularity condition for a death time is equivalent to demanding that there
is some substochastic transition matrix 7 such that conditional on the post-z pro-
cess, 0 < 7 < oo and X,_, = x (for each state x), the reversed pre-r fragment
(X, Xy - -+, X,) is Markov (7) with starting state x. Thus the notion of a
regular death time may be viewed as the dual under time reversal to the notion
of a regular birth time, but we shall not make any use of this fact.

5.1 DEFINITION. Let & be the class of all random times = of the form
t=r,,=supf{n: 1 <n<r,0,,€F}
for some V c J x J, Fe &, where 7, is the terminal time associated with V:
,=inf{n:n=1,(X,_,, X,)eV}.

According to the following theorem, &7 is a complete canonical collection of
regular death times for each Markov' probability P* on (Q, .5 ) with a fixed
starting state x. For random starts &2 must be enlarged to include all times
of the form z1(X, € H) for r € &, H C J, but we shall ignore this trivial com-
plication.

(5.2) THEOREM. A random time t is a regular death time for a Markov proba-
bility P* if and only if © is P*-equivalent to a random time in .

The proof of this theorem will be taken up later in the section under (5.7)
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and (5.9). We consider first various characterizations of .

(5.3) PROPOSITION. Each of the following three conditions for a random time t
is equivalent to T € Z.

(a) ForeveryneN

i) (t >n) =F,(c00,>0)  forsome F,e7,,

(ii) T0f,=7t—n on (t >n).
(b) For each ne N there is an F, € &, such that

(t>m+n)=F (o080, >n), meN.
(c) There is an F, e & | such that for
Fn:(ameF1’0§m<n)’

(i) (T=n-|—1):F,,(1'00”=1), n

(i) (T=oo):F"(1'00n=oo), n

ReMARK. It will follow from the proof that if ¢ satisfies either (a), (b) or
(c), then 7 = 7, , where
(5-4) F=(t>0), F, = (X, X) e V).

The representation of r € & as 7, , is far from unique however, and in partic-
ular it is not the case in general that (¢, , > 0) = F.

Proor. It is plain that (a) and (b) are equivalent and that (c) implies (b).
Since it is also easily checked that any ¢ = 7, , € & satisfies (c), it is enough
to show that any r satisfying (b) is in &7. So suppose r satisfies (b). Define F
and ¥V according to (5.4), and consider that for ne N

(r>n=F((tob,>n—1)=F(0,eF)rol,>n—-2)=---
=0,eF,0<m<n)=(t,>n0,eF),
and hence for me N
(r > m) = Unzm (z > 1) = Unzm (tv > 1,0, € F) .

But the definition of 7, , identifies this last event as (r, , > m), and the conclu-
sion that r = 7, , is now apparent.

For an optional time ¢ we have (r > n)e.%, so that condition (a) of (5.3)
collapses to () (ii) alone. Since an optional time satisfying (a) (ii) is by defini-
tion a terminal time, an optional time is in &7 if and only if it is a terminal time.
Furthermore, it is plain from the original definition of &7, that r is a terminal
time if and only if  is the first time that the path either enters H or completes
a jump in V for some H C J, V < J x J (cf. Walsh and Weil [8]).

For a cooptional time, 7 o §, = (r — n)* by definition, and since this obvi-
ously implies (5.3) (a), & includes all cooptional times. Moreover, every coop-
tional time 7 can be representedas r = sup{n = 1: 0,_, € F} where F = (z > 0),
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and since also (z > 0) = (6, € G) for some G € &, it follows that 7 is a coop-
tional time if and only if = = sup{ne N: 0, € G} for some Ge ..

Finally we mention two important closure properties of & which are readily
checked using (5.3) (b): (i) if ¢ and = are in 7, then so is their minimumo A 7;
(ii) if 7 is in <7, and ¢ is in Z,, the class of random times on , obtained by
applying Definition (5.1) to Q, rather than Q, then the random time ¢ o K, ob-
tained by using ¢ after killing at 7 is in & provided ¢ < inf{ne N: X, = A}.

(5.5) LEMMA. A random time t is a regular death time for P if and only if © is
a death time for P and there are events F, ¢ % ,, ne N and G € . such that

(5.6) (c=n+1)=F,(0,eG), Pas., neN.

Proor. Define 7 to equal 7 on (0 < 7 < ©0), co on (zr = 0 or co). Then ris
a regular death time if and only if z is a death time and ¢ is a conditional in-
dependence time. Now apply (3.12).

5.7 PROOF OF THEOREM (5.2), FIRST HALF. Let 7 =7, ;. Then (5.3)(b)
implies that for Z, = P(z > n|.%,), Z,,, = g Z, 00, P-as., xeJ. ButPro-
position (4.2) now shows that = is a death time for the family {P},.,, and regu-
larity follows from (5.3)(c) and Lemma (5.5). Hence if r is P*-equivalent to
a member of Z, then r is a regular death time for P=.

We now prepare for the proof of the converse.

NotaTION. Henceforth “a.s.” means “P*-a.s. for all xe J.”

The arguments below lean heavily on the fact that for F, F' ¢ &, F = F’ a.s.
implies (0, € F) = (0, € F') a.s. Note that this would fail if a.s. just meant P=-
a.s. for a single x.

(5.8) LEMMA. Let t be a random time such that for some F, € 5 | the identities
of (5.3)(c) hold a.s. Then t is a.s. equal to a member of Z.

Proor. Let 7 satisfy the identities of (5.3)(c) for all n except on a P* null set
L,. Then L = {,.; (X, = x)L, is a null set for all P*, x € J simultaneously, and
thus for Q* = N,y (6, € L°) the identities

(t=n+1)Q*=F(cof,=1)Q%, (r=00)Q* =F,(ro00, = co)Q*

hold exactly, ne N. But because Q* c (6 € Q*), the proofs used for Proposition
(5.3) apply here to show that for the V and F of (5.4), 7 = 7, , on Q*.

(5.9) PRrOOF oF THEOREM (5.2), SECOND HALF. FixxeJ, andlet rbea regular
death time for P*. Then Lemma (5.5) provides F, e %, G € & such that (5.6)
holds with P = P=, :

Replacing = by the * constructed in Proposition (4.1) we get a random time
which is P*-a.s. equal to = and which is a death time for the family {P¥} ,.
Furthermore, it is not difficult to verify that (z* = n 4 1) = F *(¢, € G) a.s.,
ne N, where F,* is the union of the events F,  over y in J.., with F,  the sec-
tion of F,,,, beyond the atom A4, = (X, = X, - -+, X,, = y) used to define * on
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paths starting at y € J.. (see (2.7) and the proof of (4.1)). Thus we may as well
drop the stars and take it from the start that 7 is a death time for the family
{P},c, such that there are events F, e .5, G € 7 with

(5.10) (c=n+1)=F,(0,eG) as.

We now aim to show that such a r satisfies the hypothesis of Lemma (5.8).
From (5.10) it follows that

P(r =n+ ll“g-n) = anPX(")G a.s.,

while by Proposition (4.2) this conditional probability can be expressed (using
the terminology of that proposition) as

Z, = P(Zys| F3) = Ligyern ZoP®(z = 1] > 0) as.
Therefore
(5.11) F (P¥"G > 0) = (Z, > 0, P (r = 1) >0) as.,

since (4.2) implies (Z, > 0) C (X, eJ,) a.s. Now by (5.10) for n=0, F, D
(r = 1) a.s., hence F, D (P*®(r = 1) > 0) a.s., and also (¢, € F) D (Px¥™ (v =
1) > 0) a.s. But with (5.11) this implies

(c =1+ 1) = F,(0,€G, PXG > 0) = (Z, > 0, PX(e = 1) > 0,6,€G)
= (Z,> 0, PX"(z = 1) > 0, 8, € F,G)
:(Z”>O,‘L'00n: 1) a.s.

and (4.2) now shows that ¢ satisfies the first identity of (5.3)(c) a.s. with F; =
(Z, > 0). To establish the second identity of (5.3)(c) observe that by the martin-
gale convergence theorem 1(z = co) = lim,,., Z, a.s. But according to Pro-
position (4.2) that limit equals

ZIfX) (X, e ) lim, Z,, 0 0, = Z[f(X)]'1(X, €l 00, = 00) as.

for every ne N, whence (z = o0) = (Z, > 0,700, = ) as. That 7 is a.s.
equal to a member of 7 now follows from (5.8).

As a final comment on death times, it may be observed that there exist ran-
dom times = which are death times for all Markov probabilities simultaneously
without being regular. A simple example is obtained by taking an integer a = 2
and defining

(r >0)=1Q, (e>n=WX=" = an) » nx=1.

6. Birth and death times. We now consider random times which are both
regular death times and regular birth times for each Markov (p) probability P.
For such a random time ¢ it is seen that a path decomposition specifying the
joint distribution of the pre-r and post-c processes can be given in terms of just
four quantities determined by ¢ and p, namely the function f:J — [0, 1], the
substochastic matrix ¢ and two stochastic matrices 7 and s on J, such that under
the probability P* on (Q, & ) which makes (X,) Markov (p) starting at x, we
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have
(i) P(c>0)=f(x), xel,
(ii) conditionalon >0 the P* distribution of the pre-r pro-
cess is Markov (g) starting at x,
(6.1) (iii) conditionalon 0 < 7 < co and a pre-r path with X,_ =y
the P* distribution of X, is r(y, ),
(iv) conditionalon 7 < oo, the pre-r pathand X, =z, the P*

distribution of the post-t process is Markov (s) starting at z.

With f, ¢, r and s specified by (6.1) the path decomposition involved in (6.1)
can be expressed more intuitively by saying that the following probabilistic
motion describes a Markov chain with stationary transition probabilities p: start
at x, and then with probability f(x) move off according to a Markov chain with
transition probabilities ¢; when (if ever) this chain dies look back at the position
y where the chain was at the instant before it died and instead of dying make a
single transition according to r(y, +); if this gets you to state z (where z = x if
there was no motion according to q) complete the motion by moving forever-
more according to a Markov chain with transition probabilities s starting at z.

There are two basic kinds of random times which induce a path decomposition
of this kind: terminal times and coterminal times. We first indicate how the
parameters f, ¢, r and s are obtained for these times, and then show that for
nice transition matrices p these are essentially the only random times inducing
such a path decomposition.

Suppose first that 7 is a terminal time. Then as mentioned below (5.3) there
is a subset H of J and a subset V' of J x J with V* < H° x H° such that

(r > 0) = (X, e H),

(t>n=((Xp Xep)eV,0<k<n—-1), nx>1.
With H and V so defined it easily is checked that the parameters f, ¢, r and s
are given by

J(x) = 1ye(x)

q(x; y) = p(%, p)lye(x, y) 5

r(xs y) = p(xs )1y (xs y) 20 p(xs 2)1y(x, 2) xeH°

s(x, y) = p(x, ) »
where r(x, y) may be defined arbitrarily for x e H, and 1, is the indicator of a
subset B of either Jor J x J. '

For r a coterminal time there is a subset V of J X J and an invariant event
C_, such that :

(r<n)=(,¢eC), neN,

where C is the coterminal event ((X,, X,,,) € V, k e N)C,,. Define functions f,
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/> g and & from J to [0, 1] by setting for x e J

flx) = P*(z > 0) = P*(C7),

flx) =Pz =0) = P(C),

9(x) = Px(r = 1) = P[(X,, X,) e V°, 6, C],

h(x) = P*(t = o) = P*[((X,, X,.1) € V° infinitely often) U C.°].
Then f, f and g are related by the identities f + £ = 1 and

9(x) = 3, p(x, »)1ye(x, YY) xel.

and it may also be observed that f is p-excessive, that A is p-harmonic, and that
the Riesz decomposition of f'is f = Ug + h where U = };7_, p" is the potential
operator associated with p. The parameters f, ¢, r and s for the path decom-

position are now readily seen to be specified as follows: f has already been
defined,

q(x, y) = p(x, )f(»)/f(x)
r(x, y) = p(x, Y)Lye(x, Y)f(p)/9(x)
s(x, y) = pxs Y)Ly(x AR

where the definition of any of these quantities is arbitrary if the denominator
on the right-hand side is zero. In this case parts (i), (ii) and (iv) of the path
decomposition statement (6.1) are the discrete analogues of Theorems (2.1) and
(5.1) of Meyer, Smythe and Walsh [4]. Part (iii) provides the inner link between
the pre-r and post-r processes which is required for the full statement of the
path decomposition.

We now establish a characterization of terminal and coterminal times by the
path decomposition (6.1).

(6.2) THEOREM. Suppose p is irreducible and let P = P* for some fixed x € J.
A random time 7 is both a regular birth time and a regular death time for P if and
only if t is P-equivalent to either a terminal time or a coterminal time.

REMARK. The characterization fails without some hypothesis on p. If p in-
duces two closed communicating classes 4 and B and a transient state x from
which absorption into either 4 or B is possible, examples can be given where
t equals a terminal time on paths entering 4 and a coterminal time on paths
entering B.

Proor. The “if” part is contained in Theorems (3.9) and (5.2). For the “only
if”” part, observe that if = is a regular birth time and a regular death time for
P, then by the same results

(6.3) T=1,+p P-as.,
(6.4) T=r1,, P-as.

where 7, is a coterminal time associated with some coterminal event C, p is an
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optional time for {&" ,,,n > 0}, and 7, . is given as in (5.1) for some V
J X J, Fe & . In particular, if 7, > 1 is the terminal time associated with v,
we have

(6.5) . =<t<71, P-as.

Now C is the intersection of an invariant event C,, with an event requiring that
all transitions belong to some subset, W* say, of J x J. By (6.5) therefore
T¢ =T =Ty = oo, P-as. on C.° so that C.° C ((X,, X,,,) € V°, ne N), P-as.,
which because P is irreducible is possible only if either PC.° = 0 or transitions
in V are impossible. Thus either (i) r, = g,, P-a.s., where g, is the last time a
transition in W is completed, or (ii) 7, = co P-a.s. In case (i) the inequality
oy < 7, shows it is impossible to perform a W transition after a V transition,
so that either W or ¥ must consist of transitions which are impossible under p
(using irreducibility again). Thus we may assume 7, = 0 P-a.s., i.e., that 7 is
P equivalent to an optional time p, since otherwise we are back to case (ii). It
was observed below Proposition (5.3) that an optional time satisfying (6.4)
exactly must be terminal, but here we only have (6.4) with ¢ = p P-a.s. It is
still true that z is P equivalent to a terminal time, but the definition of this time
now depends on the transition matrix p. From r = p P-a.s. for optional p it
follows that P(z > n|.%,) = 1,,,, P-a.s., while by (6.4) and (5.3) the same
conditional probability becomes 1, ., a(X,) where a(y) = P¥r, , > 0). Thus
forne N
(r > n) = (r, > n, a(X,) >0) P-as.,

and hence also

(t>n) = Nnsa(t >m) = (7, >n,a(X,) >0,0<m=<n) Pas.

which shows that r is P-equivalerit to a terminal time.

Similarly in case (ii), ¢ = 7, , P-a.s. implies P(r < n|.%",) = b(X,), where
b(y) = P¥(ry4,» = 0), while (6.3) gives (r < n) = F,(0, € C) for some F, € &, 50
that the conditional probability equals 1 r, P¥™C. Thus F,(P*™C > 0) =
(6(X,) > 0) P-a.s., whence

(r < n)=F,(0,eC, PX"C > 0) = (6,cC, b(X,) >0,m>=n) Pas.,

showing that z is P-equivalent to a coterminal time 74 for a new coterminal event
C. The theorem is proved.

7. Possible extensions. Though we have restricted ourselves in this paper
to Markov processes in discrete time with countable state space, the concepts
of birth times, death times, and conditional independence times can all be for-
mulated for Markov processes with more general time set or state space. We
conclude in this section with some comments on the difficulties involved in ex-
tending our results to apply to these situations.

A few of the results do carry over to apply to Markov processes with abstract
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measurable state space and time set T either N or [0, co). Copying the definition
from Section 4 of a death time for a family of Markov probabilities, a generali-
zation of Proposition (4.2) remains valid, and by adopting an analogous defini-
tion of a conditioning event for a family rather than a single Markov probability,
it can be shown that F is such an event if and only if there are events Ce &,
F,e &, te T such that F = F,(0, € C), P*-a.s. for every x and every ¢t > 0 (cf.
(2.10) and Jacobsen [3], Lemma 1). :

As for our other results, the assumption of a countable state space is used
chiefly to avoid measure theoretical problems in the proofs of the harder “only
if”” assertions of Theorems (2.3), (3.9) and (5.2), while the restriction to discrete
time is essential for our treatment of conditional independence across a random
time. The basic criterion for deciding whether a random time possesses the
conditional independence property is Lemma (3.12), the proof of which relies
on the fact that within the set A(r = n), where A is an arbitrary atom in .%,,
the conditional probability law of 6, given the pre-r field may be determined
as a conditional P’-probability given the event G,, which is the section of (z =
n)beyond A. A generalization of this to processes in continuous time fails, partly
because the conditioning event G,, may now have measure 0 for more than a
negligible collection of atoms A, and partly because, even when this is not the
case, it is no longer obvious that the desired conditional probability given F .
results. For some criteria for conditional independence and some of the subtle-
ties involved see Getoor and Sharpe [2], Jacobsen [3], Pittenger and Shih [7].

Finally it may be observed that results for inhomogeneous Markov chains
with countable state space can be read off from the present results for homo-
geneous chains by using the device of considering the space-time chain.
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