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Let {nx, k = 1} be a sequence of random variables uniformly distri-
buted over {0, 1} and let Fx(f) be the empirical distribution function at
stage N. Put fu(t) = N(Fn(t) — t)(Nloglog N)-}, 0 <t <1, N=3. For
strictly stationary sequences {nx} where n; is a function of random vari-
ables satisfying a strong mixing condition or where n, = nx mod 1 with
{nk, k = 1} a lacunary sequence of real numbers a fuctional law of the iter-
ated longarithm is proven: The sequence {fw(#), N = 3} is with probability
1 relatively compact in D[0, 1] and the set of its limits is the unit ball in
the reproducing kernel Hilbert space associated with the covariance func-
tion of the appropriate Gaussian process.
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1. Introduction. The purpose of this paper is to establish functional laws of
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random variables satisfying a strong mixing condition as well as for the empiri-
cal distribution functions of lacunary sequences {{n, 0>, k = 1} (0 < 0w < 1).
Let F,(f) be the empirical distribution function at stage N of a sequence {7,,
n = 1} of random variables uniformly distributed over [0, 1]. Then F, e D[0, 1].
We give D the topology defined by the supremum norm ||.||,. For N = 3 we put

(1.1) fu(t) = N(F(f) — 1)(2N log log N)~# 0<tr<1.

We shall prove, under the above-mentioned assumptions on the dependence of
the random variables 7,, that the sequence {f,(¢), N = 3} is with probability 1
relatively compact and that the set of its limit points is the unit ball in the
reproducing kernel Hilbert space associated with the covariance function of the
appropriate Gaussian limit process.

For independent identically distributed random variables this result is due to
Finkelstein (1971). For m-dependent sequences it has been recently obtained by
Oodaira (1975), who also obtained partial results for random variables satisfying
a strong mixing condition. Furthermore, Oodaira in his paper points out that
the most natural way to describe the set of limit points of the sequences {fy(?)}
for dependent random variables is in terms of the reproducing kernel Hilbert
space (which we shall call kernel space from now on).

In the lacunary case we obtain as a by-product a result in probabilistic number
theory on the discrepancy of lacunary sequences. Let {n,, k = 1} be a lacunary
sequence of real numbers, i.e., a sequence satisfying

(1.2) Myl = 4 > 1

forall k > 1. Let {[0, 1], &, 2} be the unit interval with Lebesgue measura-
bility and Lebesgue measure . Then {{(n,0), k = 1} can be considered as a
sequence of random variables with asymptotically uniform distribution. Here
&) denotes the fractional part of e. Let F,(f) be the empirical distribution
function at stage N. Then

(1.3) D, = Dy(w) = sup,<,<; |[Fu(t) — 1

is called the discrepancy of the sequence {{(n,w)», 1 < k < N}, a concept impor-
tant in probability as well as in number theory. Recently I proved (Philipp
(1975)) that for lacunary sequences of integers

NDy(w)
(Nloglog N)t = @)

(1.4) 1 < lim sup,, .,

with probability 1 where C(q) is a constant depending on ¢ only. The right-hand
inequality in (1.4) was conjectured by Erdds and Gal in 1954 (see Erdos (1964),
page 56). In Section 4 it is shown that (1.4) continues to hold for lacunary
sequences {n,} where the n, are not necessarily integers.

Except for the value of the constant, the left-hand inequality in (1.4) has been
well known since the publication of a result of Erdos and Gal (1955). As a
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matter of fact, this left inequality was the basis for their conjecture. For a proof
of the left inequality and a short history of the conjecture see Philipp (1975).

2. Description of the method and basic theorems. Chover (1967) gave a proof
of a weaker version of Strassen’s (1964) functional law of the iterated logarithm
for sums of independent identically distributed random variables using only clas-
sical results such as maximal inequalities and the central limit theorem with
remainder. His approach consists of two steps. He first proves that the sequence
of bookkeeping functions is with probability 1 uniformly equicontinuous and
bounded and thus by the Arzela-Ascoli theorem is relatively compact. He then
identifies the class of limit points by showing that certain polygonal functions
defined in terms of these bookkeeping functions converge to the corresponding
polygonal functions defined in terms of Strassen’s class K.

A modified version of Chover’s approach, which at the same time is more
general, has been formulated by Oodaira (1975). Let T =T, = {t,, ---, t,,} be
a finite subset of [0, 1]. Denote by ¢” = (4(t,), - - -, #(¢,)) the restriction of a
function ¢ to T and for a class A of functions ¢ on [0, 1] denote by 47 = {¢7:
¢ € A}. Let {T,} be an increasing sequence of subsets 7, such that Je_, T,, is
dense in [0, 1]. The following proposition is due to Oodaira (1975).

PropPosITION 2.1. Let {9,(f) = 94(¢, ®), N = 1} be a sequence of random func-
tions in C[0, 1]. Suppose that

2.1) {gn(8)} is with probability 1 relatively compact
and that
for each T e{T,}, the set of limit points of random vectors
(2.2) {9y"} is K" with probability 1 where K is a compact set
in C[0,1].
Then the set of limit points of {g,(f)} is K a.s.

Hence in view of Oodaira’s proposition the proof of the functional law of the
iterated logarithm may be carried out in two steps, consisting of the proof of
(2.1) and (2.2). :

We start with an informal discussion of the relative compactness. Let {,,
n = 1} be a sequence of random variables with 3, uniformly distributed over
[0, 1]. As a rule this assumption does not result in any loss of generality when
we consider the limit properties of the empirical distribution since the general
case can be easily reduced to the case of uniformly distributed random vari-
ables. (See Section 3.1.) For fixed s and # with 0 < s < 7 < 1 write
(2.3) L=][s1), l=1t—s
and

(2.4) X = x5, 1) = 1(7,) — 1.
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Here 1,(-) denotes the indicator function of L. We observe that

fw(t) = (2N loglog N)=# 37,y x,(0, 1) .

In Sections 3 and 4 we shall prove probability estimates of the large deviations
of the sums 37+ x, forall H> 0 and N > 1. These estimates will then be
used to prove some sort of Lipschitz condition for the bookkeeping functions
[(1) defined in (1.1). (See (3.1.8) and (4.1.3) below.) At the end of Section 3.1
it is shown that this Lipschitz condition implies the relative compactness of
/w0, N = 3).

To obtain the probability estimates of the large deviations for the sums > X,
we shall approximate them by martingales. This technique is explained at length
in the memoir Philipp and Stout (1975). The martingale approximation used
here is, in fact, somewhat simpler than the one used in Philipp and Stout (1975)
since it consists of centering the “blocks” at conditional expectations. This is
particularly useful here since then the approximating martingale is a sequence
of bounded random variables.

We also need some notation on kernel spaces in the simplest setup. Let I'(s, 7)
be a positive definite function on E x E where E — R. Let K,, be the class of
functions on E which can be written in the form

f(x) = Zigm a.T(x, y,)
where y, e E and a, ¢ R. If

9(x) = Xigm B:T(x, y))
then the inner product (f, g) of f and g is defined by

(2 9) = Ziksn 48 T(y5 14) -
(s, t) has the reproducing kernel property on K,, since

(/s T y) = Zism @ Ty i) = f(9i) -
The inner product defines a norm on K = {J,.», K,,. But K is, in general, not
complete. The kernel space H(T') over E associated with T'(s, f) is then defined
as the completion of K. Its norm is denoted by ||+||,,.
LetT ={t, ---, t,} and let I'” denote the restriction of I' to T x T. Denote
by H(I'") the kernel space with reproducing kernel I'7.

LemMa 2.1 (Oodaira (1975)). For each T, the restriction of the unit ball of H(I')
to T is the unit ball of H(I'T).

LemMA 2.2 (Oodaira (1972)). If T'(s, t). is continuous on the unit square then the
unit ball of H(T') is a compact set in C[0, 1].

For more details on reproducing kernel Hilbert spaces see Aronszajn (1950)
or Meschkowski (1962).

The second step in the proof of the functional law of the iterated logarithm
consists of verifying condition (2.2) with K = H(I'). To this end we define
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random vectors y, € R™ with components x,(0,t;) (1 <j< m). Under the
assumptions we are going to make the m x m matrix T',, = (I'(z; ¢;)))";-,
defined by

L(t, ;) = limy_o, N7 35, 4w E(x,(0, £)x,(0, 1))
is positive definite. It then turns out that the sequence
{,_Z_ksyk__. , N> 3}
(2N log log N)} -

of random vectors € R™ is bounded almost surely and has the ellipsoid E,, =
{xe R™: x'T',,~'x < 1} as its set of limit points. This is proved by basic linear
algebra, by means of Lemma 5.1.1, reminiscent of the Cramér-Wold device
coupled with almost sure invariance principles for partial sums of weakly depend-
ent random variables. By a simple linear transformation it is then shown that
E, equals the unit ball in the kernel space H(I',). An application of Lemma
2.1 will then show that (2.1) holds.

3. Functions of strongly mixing random variables.

3.1. Introduction. Let {§,, n = 1} be a strictly stationary sequence of random
variables satisfying a strong mixing condition

(3.1.1) |P(AB) — P(4)P(B)| < p(n) | 0

for all Ae &' and Be & ,3,. Here &, denotes the o-field generated by &,
(a £ n < b). Let f be a measurable mapping from the space of infinite sequences

(ay, @y - - +) of real numbers into the real line. Define

(3.1.2) Do = fl€ms Envrs ) nzl
and

(3‘1‘3) nmn = E(n'a I y’nn+m) ’ m,n g l .

As is usual we assume that 7, can be closely approximated by 7,,, in the form

(3.1.4) By — Y| = ¢(m) | 0
for all m,n = 1.
Denote by F,(f) the empirical distribution function of the sequence {7,, n = 1}

at stage N. Without loss of generality (see the end of this section) we assume
that 7, is uniformly distributed over [0, 1]. Write

(3.1.5) fu(t) = N(Fy(t) — 1)(2N log log N)-, 0<r<1.

THEOREM 3.1. Let{§,,n = 1} be a stricfly stationary sequence of random vari-
ables satisfying a strong mixing condition (3.1.1) with®

(3.1.6) p(n) L n78.

2 Throughout the Vinogradov symbol « instead of 0 is used whenever convenient.
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Suppose that the random variables v, defined by (3.1.2) are uniformly distributed
over [0, 1] and that they satisfy (3.1.4) with

(3.1.7) d(m) L m=*,
Then for each ¢ > O there is with probability 1 a random index Ny = N(¢) such that
(.1.8) /() = fu(3)] < Clt — slio + ¢

forall0 < s <t < landall N = N,. The constant C only depends on the constants
implied by < in (3.1.6) and (3.1.7). In particular (3.1.8) implies that the sequence
{fv(H), N = 3} is with probability 1 relatively compact in D[0, 1]. ’

In order to identify the limits of the sequence { f,(#)} we need some more nota-
tion and an additional hypothesis. Write

(3.1.9) g(t) = {0 < 9, < 1} — t = x,(0, 1) .

Under the hypothesis of Theorem 3.1 the two series defining the covariance
function

(3.1.10)  T'(s, 1) = E(9:(5)9:(1)) + Xiw-z E(9:()9(0) + Xiw-z E(9(5)9:(9))

(0 < s, ¢ < 1) converge absolutely (see Billingsley (1968), Section 22).

Let{T,, m = 1} be an increasing sequence of finite subsets{z,, - - -, ,,} [0, 1]
such that J,,», 7, is dense in [0, 1]. Let B, be the set of all functions f on [0, 1]
defined by

[(¥) = Disma; T(x, 1), a;eR

Dinsm Lt 0) = 1.

THEOREM 3.2. Suppose that in addition to the hypotheses of Theorem 3.1 the
covariance function I'(s, t) is positive definite. Then the sequence { f\(t), N = 3} is
with probability 1 relatively compact and has the unit ball in the kernel space H(T')
as its set of limit points. Equivalently, the set of limit points equals J 3, B,, where
the closure is in the topology defined by the supremum norm over [0, 1].

satisfying

REMARKS. (3.1.8) implies
(3.1.11) lim supy _., SUpy<;<1 |fu(H)] < C  a.s.

Except for the value of the constant, (3.1.11) can be regarded as a generali-
zation of the Chung-Smirnov law of the iterated logarithm for empirical distri-
bution functions of independent uniformly distributed random variables (see
Chung (1949)). For independent random variables Cassels (1951) proved that
(3.1.8) holds with the right-hand side replaced by ((r — s)(1 — ¢ + )t + .
Hence except for the value of C relation (3.1.8) applied to independent random
variables stands somewhere between Cassels’ theorem and the Chung-Smirnov
theorem.

But actually much more is true. We first observe that Theorem 3.2 contains
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Finkelstein’s result as a special case since, as is well known, the limit set appear-
ing in Finkelstein’s (1971) Theorem 1 is precisely the unit ball in the reproducing
kernel Hilbert space of the Brownian bridge.

Second it might be interesting to note that Finkelstein’s theorem (and hence
Theorem 3.2) implies Cassels’ theorem. To prove this we need the following
lemma, due to Riesz (1955), page 75.

LemMA 3.1.1. Let f be a real-valued function on the unit interval. The following
two conditions are equivalent:

1. fis absolutely continuous with respect to Lebesgue measure and
b(f())yde<1.
2. For every finite partition 0 < x, < x, < -+- < x, < 1 of [0, 1]
s () =[xl

X — Xiq

We now shall prove that Finkelstein’s theorem implies Cassels’ theorem which
in turn obviously implies the Chung-Smirnov law of the iterated logarithm.
Indeed, by Lemma 3.1.1 we observe that for each function fe K we have for
0<<s<rgl

POy U0 =L, 10 .

t— s 1 —¢ —

Since by elementary calculations

[ L0 S (1) = f9)
s 1 —1¢ 1 —-t4+s

we conclude that
(@) = f9l = {(t — (1 — ¢ + 5)}t.

Using the relative compactness of { f,(f), N = 3} one can now easily deduce
Cassels’ theorem.

We shall show now that (3.1.8) implies the relative compactness of {f,(?),
N = 3}over [0, 1]. In order to apply the Arzela-Ascoli theorem we approximate
f~(t) by a continuous function #,(7) as follows. Fix o e Q,, where Q, is the set
on which (3.1.8) holds. Denote by «, - - -, ,, the discontinuities of f,(), 0 <
<1 and put @ =0 and a,,, = 1. We define /,(¢) to be a piecewise linear
function on [0, 1] with

(3.1.12) (@) = fy(cty) O<m<M+1.

By comparing the graphs of 4, and f,, we observe that on each interval (a,,, @,,,,]
(3:1.13) 0 < fu(t) = h(1) < fi(@nt) — fln) < 2¢

for N = N, using (3.1.8). Let 0 <5< <1 with C|t — s/ < ¢. Then by
(3.1.13) and (3.1.8)
lhy(s) — ()] < Se
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for N = N,. Hence {#,(f), N = 3} is equicontinuous over [0, 1]. Moreover, it
is uniformly bounded since { f,(f), N = 3}is. Thus by the Arzeld-Ascoli theorem
{hy(t), N = 3}isrelatively compact over [0, 1]and sois {f(f), N = 3} by (3.1.13).

We shall prove now the claim made earlier that in Theorems 3.1 and 3.2 there
is no loss of generality to assume that the random variables 7, are all uniformly
distributed over [0, 1). Suppose that the common distribution function G of a
sequence {{,, n = 1} is continuous. Denote its empirical distribution function
by G, and put

gx(1) = N(Gy(t) — G(1))(2N log log N)~+ .
Then 7, = G({,) has uniform distribution over [0, 1] and the empirical distri-
bution function F, of {7,, n = 1} satisfies
G (1) = Fy(G(1)) a.s.

for all ¢.

Suppose now that the conclusion of Theorem 3.2 holds for the sequence
{9.» n = 1} where each 7, has uniform distribution over [0, 1]. Consider the
mapping ¢ from D[0, 1] — D[0, 1] defined by

(px)(1) = x(G(1)) -

Then ¢ is continuous in the supremum norm and

(ef)t) = fu(G(1) = gu(r) as.
Consequently {g,, N = 1} is with probability 1 relatively compact and the set of
its limit points is ¢(H(T')).

Incidentally, the last two arguments show that the proofs of Finkelstein’s
Theorems 1 and 2 can be somewhat simplified. Indeed, Cassels’ (1951) theorem
and the argument that (3.1.8) implies relative compactness show that her se-
quence {G,, n = 3} is with probability 1 relatively compact. Hence by Oodaira’s
Proposition 2.1 it remains to show that (2.2) holds. But this follows from her
Lemma 4 on page 611.

3.2. Preliminaries.

LemMMA 3.2.1. Let X and Y be random variables with

EX—Y <e.
Suppose that X is uniformly distributed over [0, 1]. Then for all 0 < 1 < 1
Ef{X £ 1} — Y S t}| < 4et.
Proor. By Markov’s inequality

P{lX — Y| = ¢t} < et
Hence, if Y < ¢ then X > ¢ + ¢ with probability not exceeding ¢t. Similarly if
Y > t then X < ¢ — ¢t with probability not exceeding . Consequently,
EMY S0} = XS 0] S §ppan |1 = UX S 04 | + PE< X S 1+ )

+ Spoy HX St — e} + Pt — et < X S 1) < 4et .
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The following lemma is due in part to Volkonskii and Rozanov (1959) and in
part to Davydov (1970). For a proof see Deo (1973).

LemMa 3.2.2. Let p, q and r be positive numbers with p=* + q~* + r=* = 1. Let
§ and 7 be random variables measurable with respect to %' and 5 3,. If

€]l < oo and ]|, < oo,

|E(§n) — E€ - Eq| = 10(o(m)""||€]], /17l -

then

If, in particular
[€]le <00 and lp]]e < o0,

|E(§n) — EE - Ey| < 4o(n)|[€]|.] 7] -
LemMMA 3.2.3. For fixed s and t with0 < s < t < 1

then

(3.2.1) E(Lnsy Xa)" = No* + O((t — )}
where
(3.2.2) 0 = o%(s, 1) = Ex* + 2 317, E(x;x,) € (t — s)}

and where the constants implied by & and by O only depend on the constants implied
by « in (3.1.6) and (3.1.9).

Proor. Recall that the x,’s were introduced in (2.4). In a similar fashion
write

(3.2.3) Xmn = Xpmu($s ) = Hs £ 7 < 1} — 1

where | = t — s was introduced in (2.3). Since |x,| < 1 and |x,,,| < 1 we have
by Lemma 3.2.1 and (3.1.7)

3.2.49) E(x, — X, < 2E|x, — X,,| K m™®,
E(x, — xp,)° « m™®.

Since
(3.2.5) llxalls < # and  |[|x, ||, < 2
we obtain from (3.2.4) and Minkowski’s inequality
(3.2.6) [IXmalls € 1 + m~*
and
(3.2.7) Xmalls < 28 A m=2
By Cauchy’s inequality
(3.2.8) |E(x;x,)| < ][] [Xal] L 1

If n = 3I-*, we put m = [4n] and obtain by Lemma 3.2.2, (3.2.4)—(3.2.7)

IE(xlxn)l é 'E(xn(xl - xml))l =+ |E((xn - xmn)xml) + |E(xmlx'mn)|
(3.2.9) = 1x%allall%r— Xl a4 110 = Xamal ol | X ma |24 1O X | |o] | X [s 03 (772)
L m=3 1. m=% L lin—%
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Hence by (3.2.8) and (3.2.2)
R R L L L
Now by stationarity
(3.2.10) E(Y,<n X)) = NEx?> + 2 3, .w (N — n)E(x,X,,,)
= No* — 2N 310y E(x1 Xy 41) — 2 Zacw nE(xX,1,) -
Suppose first that N < 3/-*. Then by (3.2.8) and (3.2.9)

Dinen BE(xX,11) K N? 1 L A
and

Thwaw Bux, ) € DO 4 Samuetn HE K IF 4 1 1 13 N2
Hence by (3.2.10)
E(ZnéN xn)z — No* < It
If, on the other hand, N > 3/-%, then as before

ZﬂéN E('xl'x'n+1) << T4 Z%_Z_N n—g << I*N‘g
and

Znaw ME(x1X,10) € Dacqtnl + Ll g-in-nd 1B
Consequently, by (3.2.10)
E(Xnsy Xn)" — No* L I}
Lemma 3.2.4. Let g,(1) be defined by (3.1.9) and I'(s, t) by (3.1.10). Then

limy . E(Zm s u(5)9(0) = (5, 1)

for 0 < 5, t < 1. Moreover, I'(s, t) is continuous on the unit square and
a’(s, 1) = ¢%0, 1) + %0, 5) — 2I'(s, 1) .

Proor. By (3.1.9), (3.1.10)and (3.2.9), I'(s, ) is a uniformly convergent series
of continuous functions on the unit square. The remainder of the lemma follows
from Lemma 3.2.3 and the following identity, valid for all 0 < s < ¢t < 1

E(Znsn %u(8: )" = E(Lusn (xa(0, ) — x,(0, 5)))*
(3.2.11) = E(Zuzy %0, )" = 2E(Zin,msr Xa(05 )%n(0, 5))
+ E( Sz %05 5))
We also need the following lemma due to Stout (1974, page 299).
LemMma 3.2.5. Let {U,, & ,}_, be a supermartingale with EU, = 0. Put
Uy=0 and Y,=U;—U_, =1,

Suppose that
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for some constant ¢ > 0 and for all j > 1. For 2 > 0 define
T, = exp{aU, — $2%(1 + $2¢) X, E(YP|F )}, nz 1

and T, = la.s. Then for each 2 with 2c < 1 the sequence {T,, & 1= is a non-
negative supermartingale satisfying

P{supngo Tn > a} é l/a
for each a > 0.

3.3. Relative compactness. In this section we shall proVe Theorem 3.1. This
will imply relative compactness of {f,()} as was shown at the end of Section
3.1. The proof will be carried out in two steps. In the first step we prove ex-
ponential bounds and in the second step we conclude the proof of Theorem 3.1.

3.3.1. Exponential bounds. The following proposition is fundamental for the
proof of Theorem 3.1.

ProrosiTION 3.3.1. Let H > 0, N > 1 be integers and let R = 1. Suppose that
I = N=* and that the hypotheses of Theorem 3.1 are satisfied. Then as N — oo

P{| 2024 x,| = ARI(N log log N)}} « exp(—6RI-rv log log N) 4 R-2N-1.8

where both A (> 1) and the constant implied by & only depend on the constants
implied by (3.1.6) and (3.1.7).

Since the sequence {x,, n = 1} is strictly stationary it is enough to prove the
proposition for H = 0 only.
For simplicity of notation put

(3.3.1)

a=1ig-
We define now blocks H; and /; of consecutive integers inductively as follows.
H ; consists of [ /1] and /; also consists of [ /'] consecutive integers respectively.

We leave no gaps between the blocks. The order is H,, I}, H,, I,, - - -. We define
random variables y; and z; by

.yj = ZneHj xmn
Z; = Znelj Xmn

where we put m = [j**]. Recall that x, and x,,, were defined in (2.4) and (3.2.3)
respectively.

Let M = M, be the index j of the block H; or I; containing N and let %, be
the smallest member of H;. Then

hy < N < hypy
and
Card (HM U ]M) — [MlOOa] _|_ [MlOOa] << MlOOa << NlOOa/(100a+})

since

(3.3.2) Mwatt ¢ 37 e ¢ N
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The proof of the proposition requires a series of lemmas. We are going to
decompose ),y x, in the form (3.3.8) below. This will motivate all of the
lemmas to follow. The first lemma shows that the sum of the x,’s is closely
approximated by the sum over the y,’s plus the z,’s.

LemMMa 3.3.1. AsN — oo
Pl Zactys %o — Zgsur (5 + 2)] 2 RN K RTIN7HEL
Proor. Since [*N* > N®« jt is enough to estimate

P{Zn<hM+1 Ixn - xmnl g RNbsa} é R_sN_174a(Zn<hM+1 ”xn - xmn”3)3
<< R_SN_174a(Zj§M leOa . (j99a)—2)3
<< R—SN—IHC( . (M1—98a)3
<< R—SN—I.]

by (3.2.4). We have also used the fact that by (3.3.1) and (3.3.2)

(3.3.3) _174a+3_1%&—_?£1*l:_%+%<_1.1.
LEMMA 3.3.2. AsN — oo
Tk bl € I=NE
Proor. The sum in question does not exceed
By — by & M™% & NS & 2Nt 0

The next lemma is used in Lemma 3.3.6 below.
LEmMMA 3.3.3. As N > o0
Zisu Byi K IIN.
ProoF. By stationarity, Lemma 3.2.3 and (3.2.4) we have with m = [ j*]
yills = | Znem; Xmalls S (| Znen; Xalle + Zinen; [1Xa — Xmalla
& ol 4 ()

<< jbOal{ _|_ j—197a .
Thus

E}’,-2 << jlooa” + j—394a
and

Zisw By <IN 0
Let .&; be the o-field generated by y,, - -+, y,.
LeEmMA 3.3.4. The random variables y; can be represented in the form
yi=Y;+v;
where (Y;, <£°;) is a martingale difference sequence and v; = E(y;|<£;_,) satisfies

[[95]]e € j71 .



A FUNCTIONAL LOG LOG LAW FOR EMPIRICAL DF 331

Proor. PutY; =y, — E(y;|-<;_;). Then (Y;, ) is a martingale difference
sequence and the 4th moment of v, can be estimated as follows. For simplicity
we drop the subscripts in y; and &, ;. Then by Lemma 3.2.2 with p = oo,
g=4andr=4

E{(E(y|-2)} = E{E(y| L )E(y | L))} = E{y - E(y|-2)}
L Iyl - EHE(Y [2)} - 027 -
We divide by E#{. ..} and obtain

NEG 1) K Iyl L J(G) 7> L o

LemMA 3.3.5. As N — oo
P{Y jan |v;l Z RI*N*} < RTN-E,

ProOF. Since I[*N* = N®< it is enough to estimate

P{Yjsu [v5] = RN®} < RTENT4(R <0 [[04]]0)*

< R-4N—232a(szM j—lOOa)A
K R—4N—z32a(M1—100a)4 & RN

by a calculation similar to (3.3.3).
LeEMMA 3.3.6. Let B = 1 be the constant implied by & in Lemma 3.3.3. Then
PSS jau B(Y| £1) Z 2RBIN) € RON--,
Proor. By Lemma 3.3.4 and Minkowski’s inequality
(3.3.4)  [EY? L5 — Byl NEQ L5200 — Eyflla+ I1EQ; ;1 <520l
+ B L)l -

To estimate the first term in (3.3.4) we put # = y;> — Ey/ and drop the index
in &;_,. As in the proof of Lemma 3.3.4 we obtain

E{(E(u| )y} = E{E(u| L)E(u| =)} = E{uE(u| <)}
K [l EC | 2|20 (") -

Thus

(3.3.5) B 5 — Eyflls < () < j=me.
Next

(3.3.6) 1E@ 50l < [[o,ll < j=.

Finally, by Jensen’s inequality and Lemma 3.3.4

G-3.7)  EQ;9;1L5-0lls = EHE(y;9,0'1 -0} = EHy 2,2 < Hlyslldlolla
<< j75a . j—lOOa << j—25a

since Ey;* < ||yl Ey;* € j™ - j** £ j*™. Hence by (3.3.4)—(3.3.7) and



332 WALTER PHILIPP

Chebyshev’s and- Minkowski’s inequalities
P{Yjsu IE(Y"IQ’ 1) — Ey;’| = RNI*}
€ RN (3, o0 ¢ RON-S#a(M1-ey & RN
since —228 4 198 < —1.03. Thus by Lemma 3.3.3
P} <n E(Y?| <) = 2RBNI**} & R*N-19%,
Lemma 3.3.7. As N — oo
P{| X <u Y;| = 8RBI*(N log log N)}} « exp(—6RI-*loglog N) + RN-1%,

ProoF. We prove the inequality without the absolute”value signs since the
remaining inequality follows then by replacing Y, by — Y;. For simplicity we
introduce the following notation:

U,= X< Y for n< M

J

=U, for n>M
5, = D E(Y?|Z51) for n< M
=5, for n>M

¢ = 2M", 2 = 2I7**(log log M)}M~4=%* K — 4RBI**M'+%« and
T, = exp(iU, — $2(1 + $20)s,) .
Then {U,, n = 1} defines a martingale. Moreover, by Lemma 3.3.4
Y,=U,—U,_ <2™ <¢

and
ic< 1,

Hence Lemma 3.2.5 applies and thus the desired probability does not exceed by
Lemma 3.3.6
P{sup,, U, > 8RBI*(M'*'"« log log M)*}
= P{sup,, U, > iK}
= P{sup,., exp AU, > exp(2K)}
=< Pfsup,;, T, > exp(2K — 12(1 + {Ac)s,’}
< P{sup,;, T, > exp(X’K — 2RBA*M'+10a[3«} 4 R-IN-1.03
< exp(—8RBloglog M - I-*) 4+ RN~ 0
Obviously Lemmas 3.3.3—3.3.7 remain valid if the y ’s are replaced by z,’s.

We denote the corresponding martingale difference sequence by {Z,, j = 1}.
Finally we can complete the proof of Proposition 3.3.1. We have

| X s Xul S [ Dnciygr ¥o — Dssu (0 2)| + T |x,|
(3.3.8) + Xisw ly; — Yol + Zieulz; — Zj] + 1 X i<u Vil
+ [ Zisn Zil -
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By Lemmas 3.3.1, 3.3.2, 3.3.4, 3.3.5 anc_l 3.3.7 we conclude that the RHS of
(3.3.8) does not exceed
10°RBI*(N log log N)*
with probability
L exp(—6RI~*loglog N) + R*N-"%,
3.3.2. Proof of Theorem 3.1. As was proved in Section 3.1 relation (3.1.8)
implies relative compactness. Now (3.1.8) follows at once from Proposition

3.3.1 and the following proposition which we prove in full generality since it is
needed in the next section.

ProrosiTION 3.3.2. Let A= 1, a > 0and 0 < B < 1 be constants. Let x, =
X,(5, 1) be defined by (2.4) for some sequence of random variables y,. Suppose that
(3.3.9) P{| 24, x,(s, )| = ARI*(N log log N)#}

L exp(—3RIl~*loglog N) 4+ R*N~'~#
uniformly for all H= 0, N = 1,R = land (s, ) with0 < s < t < landl = N4,
Then for each ¢ > O there exists with probability 1 a Ny(¢) such that

| Znsw Xa(s, Dl = C(4, @, B)((r — 5)* + €)(N log log N)* .
forall N = Nyand all 0 < s < t < 1. Here the constant C(A, a, ) depends on A,
a and § only.

For the proof of Proposition 3.3.2 we use a triple dyadic expansion of
Yiusw Xau(5, t) and then we sum over all the parameters. This method is a com-
bination of techniques due to Cassels (1951) and Erdos and Gal (1954). We write
for0 < s<¢t<1andintegers P>0,Q0 =1

Z(P,Q, 5, 1) = | ZriEa x.(s, O] -
We observe that for s < r < ¢ ‘
(3.3.10) Z(P,Q,s,t) < Z(P,Q,s, 1)+ Z(P,Q, 1, )

ZP,Q,r,t) S Z(P,Q,s, 1)+ Z(P, 0, 5, 1) .

Let m, M be integers with 1 < m < M to be chosen suitably later. We write s
and ¢ in dyadic expansion:

Then )
(3.3.11) s=a2™ 4 3, 0,270 0,27
t=b2"" 4 ¥ LT 27 0,270
where a and b are integers with0 < @, b < 2™and 0 < 6,, 6, < 1. We note that

Z(P, Q, 27", (h + 6)27") < Z(P, Q, k27", (h + 1)27) + Q2"
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for 0 < h < 2%. Hence by a repeated application of (3.3.10) and by (3.3.11)
we obtain forall P> 0,0 >1land0<s< <1
Z(P, Q,s,1) < Z(P, Q,a2™™, b2™™)
+ ¥ Z(P, Q, a,27 (a, + 1)277)
(3.3.12) + . Z(P, Q, b,27%, (b, + 1)279)

+ Z(P, Q) @y 27, (@y s + 1)277)

+ Z(P, Q) byi27", (bysy + 1)27%) + 2027
where a,b,a,b, (m<i< M+ 1) are integers with 0 <a<b<2" 0=
a, b, <2!(mi< M+ 1).

We also observe that for integers P>0and 1 S Q< Rand0<s< =<1
(3.3.13) Z(P,R,s,t) < Z(P,Q,s,t) + Z(P+ Q, R — Q, 5, 1) .

Let N = 1 be sufficiently large. Put
(3.3.14) n = [log Nflog 2] .
We write N in dyadic expansion:

N=2"4 37 ¢;27!
= 2"+ Dicym 6,277 + ONY,

wheree; = 0,1 (1 <j<n)and 0 < ¢ < 1. Hence foreach0 < s << 1we
obtain applying (3.3.13) repeatedly
(3.3.15) Z(0, N, s, 1) < Z(0,2", 5, t) + Ylyngisn Z(2" + h;29, 277 5, 1) + N?

where A, are integers with 0 < h; < 2"79 (j < n).

Our goal is, of course, to show that Z(0, N, s, 1) is almost surely uniformly
small for all 0 < s < ¢+ < 1 and all sufficiently large N. This w1ll follow from
the next lemma. To simplify the notation we write

(3.3.16) @(k) = 2A(k log log k)? k=3.
Put
(3.3.17) m = [(log n)}] .

We define the following events
E,(a, b) = {Z(0, 2%, a2 ™™, b2-") Z (b — a)2-")"$(2"))
En = Uosa,b<2"” En(a’ b)
F.(i,a) = {Z(0, 2", a2-%, (a + 1)27%) = 2‘“i¢(2")}
Fn = Um<is§n Uosa<zi F'n(i’ a)
G,.(a, b, j, h) ={Z(2" + h24, 2971, @2=™, b2™™) = ((b — a)2"”)“2*‘j“”"9¢(2”)}
Gn = Uosa,b<zm U&nsjsn Uosh<2"—i Gn(a’ b, j’ h)
H. (i, a,j,h)={Z2" + h24,2971, g27% (@ + 1)27%) = 2“”2*""”“’515(2")}
H, = Ujngizn Umn<isyi Uosaczt Uoshcan—i H,(i,a,j, h).
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LemMma 3.3.8. With probability 1 only a finite number of the events E,, F,, G,
and H, occur.

Proor. We estimate the probabilities of these events and apply the Borel-
Cantelli lemma. We first estimate P(E,(a, b)). We apply (3.3.9) with H =0,
N = 2", R =1 and obtain for fixed a and b

P{E, (a, b)} « exp(—2-2™logn) 4 27" .
Hence
(3.3.18) P(E,) € 2°™exp(—2-2™logn) 4 2™ " L n~?
by (3.3.17). Similarly, putting H = 0, N = 2", R = 1 we obtain for fixed i and a
P{F(a, i)} € exp(—2-2*logn) + 27
Hence
(3.3.19)  P(F,) € Tmcigya 2 €XP(—2- 29108 1) + Fpciaya 227"
L nt,
Similarly, putting H = 2* + k24, N = 27!, R = 2¢»-9¢-h we obtain for fixed
a,b,j, h
P{G,(a, b, j, h)} € exp(—2 2™« . 28n=DE=A |og j) 4 2-Hn-E=pQ-30+H
Hence
(3.3.20) P(G,) L 2™ 3, .gisn 2" 7 exp(—2 . 2m2tn=2C=P Jog j)
+ 22 N g 2P TI2THSDA-PD-I0ED ¢ gt
Finally, with the same choice of H, N and R as before we obtain for fixed
i,a,j,h "
P{H,(i, a, ], h)} € exp(—2 - 2272¥n=90=P Jog j) 4 274n=9E=p . 2=30+D

Hence ‘ )
P(H,) € Xlyngisn 2im<isii 2¢. 2m—iexp(—2 - 2€24=9=# log j)

(3.3.21) + Dinsi<n Dim<ists 20D AR IR
L n?t.
Lemma 3.3.8 follows now from (3.3.18)—(3.3.21). []
Finally, we can finish the proof of Proposition 3.3.2. We put in (3.3.12)
P =0, Q = 2*and M = [4n] and obtain that with probability 1
Z(0,2%, 5, 1) K ((b — @)27")"$(2") + Tilmia 276(2") + 24
L ((t = 9" + 39)9(2")
using Lemma 3.3.8 and (3.3.17). Similarly with P = 2* 4 k29, Q = 27~* and
M = [%j] we obtain
Z(2" + h;29,257, 5, 1)
(b = @2 RIIG2) - Ty 2RI - 2578
Kt = s+ 422" + 25
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Hence by (3.3.15)
20, N>5,) & (¢ = % + 39NN + Diagsen 297 & Lpnsson 29+ N
Lt = 9.+ p(N)
fora11N>N0(e)anda110<s<t< 1.
4. Lacunary sequences.
4.1. Introduction. Let {n,, k = 1} be a sequence of real numbers satisfying
Repafly =g > 1 k=1,2,...

forsome g > 1. Forfixedsand rwith0 < s <1< lwriteL = [s,0),l =1 — s
and

4.1.1) =x00=1{sZneo <t} —(t—ys)=1,(no)—1

where 1{. ..} = 1,{.} is extended with period 1. In other words we are investi-
gating the sequence {{n,w), k = 1} = {y,, k = 1} (say) of random variables as
described in Section 1. Denote by F,(¢) the empirical distribution function of
{{n ), k = 1} at stage N. Define

4.1.2) fu(t) = N(Fy(t) — £)(2N log log N)~# 01,
In this section we shall prove the following theorem.

THEOREM 4.1. Let {n,, k = 1} be a lacunary sequence of real numbers. Then for
each ¢ > O there exists with probability 1 a N(¢) such that

(4.1.3) it = fu(o)] = Clt — slt + ¢

forall N= Nyand all 0 £ s < t < 1. The constant C only depends on q. In par-
ticular, (4.1.3) implies that the sequence { f,,(t), N = 3} is with probability 1 relatively
compact in D[0, 1].

The statement about the relative compactness can be shown as in Section 3.1.
As pointed out in Section 1 Theorem 4.1 also implies a law of the iterated
logarithm of the form (1.4). Indeed, we have with probability 1

NIFy(r) — 1|

1
(N loglog N)# <

for all N = N, and for all 0 < ¢ < 1. .Hence taking first the supremum over all
t with 0 < ¢ < 1 and then the limit superior as N — co we obtain the right-hand
side of (1.4).

We can identify the limit points of {f,(f), N = 3} only if we make some fur-
ther assumptions. We assume that for all step functions f with period 1 and
(s f(x)dx =0and for all k > 1,0<i<2*and M, N =1 we have for some
>0 depending on f only

(4.1.4) LT (DI f(ny)) do = *N(1 + o(1))
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where the constant implied by o depends on ¢ and on f only In pamcular,
(4.1.4) and (3.2. 11) imply that

(4.1.5) th—m - E(Z] ks X;(0, 5)x,(0, t))

= I'(s, t) = 1(6%O, t) + %0, s) — az(s, t) .

(4.1.4) says that the conditional variances of the partial sums given the o-field
generated by the dyadic intervals of order k equal asymptotically the variances
of these sums which in turn equal asymptotically a constant multiple of the
length of these partial sums. Under these conditions Berkes (1976) proved an
almost sure invariance principle for the sums 33, f(n, ®).

An almost sure invariance principle for these sums under somewhat simpler
conditions has been recently established by Berkes and Philipp (1977). Let us
say that a sequence of integers {m,, k = 1} satisfies condition B, if there is a
constant C such that the number of solutions of the equation m, + m, = v does
not exceed C for any integer v. We replace (4.1.4) by the following two con-
ditions
(4.1.4)* § (S fny0)) do = 0*N(1 + o(1))
and

for any integer m > 1 the set-theoretic union of the se-
(4.1.6) quences {[n,], k = 1}, {[2n,], k = 1}, - -+, {[mn,], k = 1},
arranged in increasing order and considered as a new se-

quence, satisfies condition B, .

THEOREM 4.2. Let {n,, k = 1} be a lacunary sequence of real numbers such that
either (4.1.4) or both (4.1.4)* and (4.1.6) hold for all step functions f with period 1
and §} f(x)dx = 0. Suppose that I'(s, t) defined in (4.1.5) is positive definite. Then
the sequence {f(f), N = 3} is with probability 1 relatively compact in D[0, 1] and
has the unit ball in the kernel space H(I') as the set of its limit points.

ReEMARK. Equivalently, the set of limits points equals (,z, B, Where the
closure is in the topology defined by the supremum norm over [0, 1]. Here B,
is defined in the same way as in Section 3.1.

An example of a lacunary sequence satisfying the hypotheses of Theorem 4.2
is given in the following corollary.

CoRrOLLARY 4.1. Let {n,, k = 1} be a sequence of real numbers with n,,/n, — co.
Then the sequence {f\(f), N = 3} is with probability 1 relatively compact in D[0, 1]
and has the class K = {h absolutely continuous on [0, 1], A(0) = A(1) = 0,
{5 (W (0))* dt < 1} as its set of limit points.

Proor. By Lemma 3.3 of Berkes (1975, Part I) condition (4.1.4)* is satisfied
with ¢® = {j f*(x)dx. It is well known (see Gaposhkin (1966) or Berkes
(1975)) that {n,, k > 1} satisfies (4.1.6). Hence by (4.1.5) I'(s, /) = s(1 — 1)
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for 0 < s < ¢ < 1 which is the covariance function of the Brownian bridge.
Moreover, as is well known, the limit set appearing in Corollary 4.1 is precisely
the unit ball in the kernel space H(I").

4.2. Relative compactness. In view of Proposition 3.3.2 for the proof of Theo-
rem 4.1 it is enough to show the following exponential bound.

ProrosiTION 4.2.1. Let H= 0, N = 1 be integers andlet R = 1. Suppose that
l = N-t. Thenas N— oo

P{| 3 4}, x| = ARIY(Nloglog N)}} « exp(—10RI-tlog log N) + R°N-#,
where both A and the constant implied by & only depend on q.

The proof of Proposition 4.2.1 is by and large parallel to that of Proposition
3.3.1. We start with two simple observations.

Since the sequence {n,, )7, is lacunary with the same ratio g it is enough to
prove the proposition with H = 0.

Next let r be the smallest integer with

=2, i.e., r:[b_g_g:‘+l.
log ¢

Since each sequence {n,,,,}_, is lacunary with ratio > 2(¢ =0, 1,...,r — 1)
there is no loss of generality if we prove the proposition under the additional
assumption ¢ = 2.

For the proof of the proposition we need a series of simple facts which we
state as lemmas.

LeEmMMA 4.2.1. For0 < a < b <1 we have
(¢ 1,(n,w)do = 1(b — a+ 460n,7%)
where 6 is a constant with |0| < 1.
PROOF. Tﬁe integral equals

n Sank 1,(0) do = n,~([bn] — [an, )l — (b 1(0) do + {3k 1,(0) do}
= n, Y ny(b — a)l + 461} = I(b — a + 46n,7Y) . 0

Let r, be the largest integer r with
4.2.1) 2" < n k*
and let %, be the o-field generated by the intervals
U, = [v27", (v + 1)2-7%) 0= v < 2%,
LeEMMA 4.2.2. We have for k 2 0 and j = 1
E(x;0| F5) < 2% aus.

where the constant implied by < is absolute.
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Proor. We first observe using Lemma 4.2.1 and (4.2.1) that for 0 < v < 27
we have
Su,; Xj4u(@) do L Injl, L 12773 n 05t L 127739270 as.
Hence

E(x;0 | F5) = D051y, ()27 §y,, Xiai(@) do K 1227% aus. 0

We define now blocks /; and H; of consecutive integers inductively as follows.
H; consists of 2[j*] and I, consists of 2[}] consecutive integers respectively.
We leave no gaps between the blocks. The order is H,, I, H,, I,, ---. Thus
H ={1,2},I,=(3,4}, ---, H = {13, 14,15, 16}, I, = {17, 18, 19,20}, - ... Let
M = M), be the index of the block /; or H; containing N and let &, be the largest
number of H;. Then

hM-l < N § hM

and
card H, U I,, = 4[M?] € Nt

since
(4.2.2) M} < Tan P K N.
Define
(4.2.3) W~ = ZyeH X,
4.2.4) yi=EMWw;|.%,)
and
(4.2.5) E, = E(x,,|ﬁ'hj) if veH,,
so that
(4.2.6) y;= Z,e,,j g, .

LEmMA 4.2.3. We have
[1xe — &ells € k7°
where the constant implied by < is absolute.

Proor. The random variables x, assume only two values, namely 1 — ¢ + s
and —¢ 4 5. Thus §, = x, throughout all but at most 2n, intervals U, These
exceptional intervals are these where 1{s < n,0 <t} has a jump. Hence if
keH;

E(x, — &) < 2n,-27" L mye 27 L BT L kT

LemMMA 4.2.4. As N— oo

P{Yjsu|y; — w;l = RN} « RT°N-E,
Proor. We first estimate
E(y; — W) = E(Syen, %, — &.)°
< ZveHj E(x, — £, + Z#oeHj |E(x# - Ey)(xv — &)
& Doen; B, — ) + Tcven, E((x, — €)%,
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since for p, v € H; by (4.2.5)
E(§,8.) = E(§,x,) = E(§,x,) .
Hence by Lemma 4.2.3 we have
4.2.7) E(y, —w,)’ K ZveHj y~2 ZK‘,GHJ, y~8
BTG+ R G T
Since /!Nt 3» N-tN} > N#, the probability in question does not exceed
P{Xisn |y; — Wil Z RN} K RN (X ja |1y — willo)°

K RN D o FE(y; — w)H)

LK RN Y jsn J7)° € RN
by (4.2.7), (4.2.3) and (4.2.4).

LeEmMA 4.2.5. We have
E(wj2|ﬁ?“hj_l) L oas.

where the constant implied by ( is absolute.

Proor. For simplicity we write r = Thjoy and Up,.,=U. We first observe
that for k € H;

(4.2.8) m27 = mhBn oy (jH2 sy 28
Hence by Lemma 4.2.1 we have for k € H;
(4.2.9) {y 1(m,0) do = (27" 4 46n,™)

= 12-7(1 + 462-7*)

where ¢ denotes a constant with || < 1, but not necessarily the same at each
occurrence. Thus

(4.2.10) (o xido = (1 = 20) {, 1,(n,0)do + 27"
Ll-2,
Next we note that
1 (n0) = St (s +v)n, ' < o < (8 + v)n, 7'}
Hence, and since by (4.2.8) n,2-" is large, the integrals
(4.2.11) {y 1.(n,0)1, (0, 0)do i<keH,
can be written as the sum of n,2-" + 26 integrals of the form
{¢ 1,(n,0) do

with b — a = In,~* except for at most two such integrals for whichbd — a < In;~".
By Lemma 4.2.1 such an integral equals
I(In,* + 40n,7Y)
or is
< Sin,!
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respectively. Hence by (4.2.8) the integral in (4.2.11) equals
(7,277 + 26)I(In;* + 46n,~") + 100In,~* = 27" 4 200In,~' 4 402-"n;n,~l
= 2-7(I* + 200123 4 462-++1])
For i < k e H;, we thus obtain using (4.2.9)
S %% do = 1y 1(n0)1(m,0) — 1§y 1(n,0) — 1§, 1,(n0) + P2
& 277123 4 27k
Consequently, we obtain writing Un,., =0, and using (4.2.10)
Ew| T4, ) = D05 1,()27 §y, W/
€ B 1, (V2 (Sien, $o %0 + Dicnen, Vo xixil)
& TV g (W 4127 1 D e, 274
L ljt as.
LEMMA 4.2.6. As N > oo
Tk X, K BN
where the constant implied by  is absolute.
Proor. We have
| 2w X < By — N & M} K Nb  IBNY
LemmA 4.2.7. The random variables y; can be represented in the form
yi=Y;+v;

where (Y;, £°;) is a martingale difference sequence, 2°; is the o-field generated by
Y oy and v; = E(y;| £ ,) satisfies

v, L - 2-% as.

with an absolute constant implied by (.

Proor. PutY; =y, — E(y;|<£-,). Then (Y, &) is a martingale difference
sequence and

v =y — Y= E(y;| L50) = E(E(w; | )| L5-0) = E(w;| £5.,)
= E(E(Wj|~gz7zj_l) | <£5-0) -
But by Lemma 4.2.2 .
Ew;| 55, ) = Sem, B, |55,
& jHhp2t ¢ 1-t g,
This proves the lemma.

LeEmMMA 4.2.8. As N — oo
2w E(Y?L5) KIN as.
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Proor. By Lemma 4.2.5 and Jensen’s inequality
E(y| <L) = E{(E(w;| ) | £}
= EEW? | F3)| L) = B} | L)
= E(Ew/| 55, )| &)
L It
Hence by Lemma 4.2.6
E(Y P £10) < B2 | Lo + B2 Fim) < P+ B9 < as,
We sum the last inequality over j < M and obtain the result.

LEMMA 4.2.9. Let B = 1 be the constant implied by £ in Lemma 4.2.8. Then
as N> oo

P{|Y;<x Y;| > 8RBI}(N log log N)}} < exp(—10R/-#log log N) .

Proor. We prove the inequality without the absolute value signs. The re-
maining inequality follows then by replacing Y, by —Y,. For simplicity we
introduce the following notation:

U,= 2 Y5 for n< M,

=U, for n> M;
S’ = Dz BY| L) for m< M,
= 5, for n> M,

¢ =2M*, 2 = 2l-(log log M)*M-%, K = 4RBItM?
and
T, = exp(AU, — 32(1 + $2)s,?) .

Then {U,};_, defines a martingale. Moreover,
Y, =U; — U, £ 2 < 2Mi = ¢

and
icZ 1.

Hence Lemma 3.2.5 applies and thus the desired probability does not exceed
P{sup,, U, > 8RBI}(M? log log M)}}
= P{sup,;, U, > 4K}
= P{sup,,, exp(2U,) > exp(4’K)}
< Psup,se T, > exp(XPK — $2%(1 + %4c)s,’}
< Pfsup,;, T, > exp(4°K — A*BIM?)}
< exp(— 12RBI~* log log M)
L exp(—10RBI-t loglog N) . 0
Let '
Z; = Zueli £, .

Again, as in Section 3.3.1, we can say that Lemmas 4.2.4—4.2.9 remain valid
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if the y’s are replaced by the z,’s. The remainder of the proof of Proposition
4.2.1 is similar to Section 3.3.1. This concludes the proof of Proposition 4.2.1
and hence of Theorem 4.1.

4.3. Two more lemmas. The following lemmas are needed in Section 5.2.
Lemma 4.3.1. We have for0 < s <t <1
E(Zisw Xi(s, 1) K N(t — )
where the constant implied by & depends on q only.
Proor. We define a new lacunary sequence
nlq_Ha n;‘]_}“'l, M) nlq_ls nl, nz’ *
We choose H so that the jth block H; defined for this new sequence contains
exactly the N elements corresponding to n,, n,, ---,ny. Then [j}] = N and
H ~ 2N® But then w;* defined for this new sequence is just ), X.(s, ?), the
sum whose variance we are to estimate. Hence by Lemma 4.2.5
E(Xisy xiu(s5 1)) = Ew;* = E(E(wj*2|ﬂ'h";,_1)) LIt K IN.
Lemma 4.3.2. I'(s, t) is continuous on the unit square.

Proor. Let0 < s < t, <t < 1. Then

NTE( D sy Xa(s, 1)) — NTE( D sy Xuls, 1))
é N_IE{(Z xn(s’ t) - xn(s’ ’o))(Z xn(s’ t) + Z xn(s’ to))}
< N7 2 xu(to DIINHZ xa(s, O + N7H|Z x,(s5 2)]])
L |t — 1|t
by Lemma 4.3.1. In general, we obtain using the same argument
NTE(E gy Xu($, 1)) — NTE(D gy Xa(S0-1))" K |5 — 5ol 4 [t — 1]
where the constant implied by « depends on g only. From (4.1.4) and (4.1.4)*
respectively we conclude that
|o%(s, 1) — 0(s05 L) K |5 — 5o|* + [t — 1]* .
The lemma follows now from (4.1.5).
5. Identification of the limits. In this section we prove Theorems 3.2 and 4.2
by verifying relation (2.2) with K being the kernel space H(I') where I'(s, 1) is
the appropriate covariance function. For this purpose we require the following

two theorems for sums of strongly mixing and lacunary sequences of random
variables which are special cases of known results.

THEOREM 5.1. Let {§,, n = 1} be a strictly stationary sequence of random vari-
ables satisfying a strong mixing condition of the form (3.1.1) with

5.1 o(n) € n=2,
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Let f be as in Section 3.1 and let 1, and 3, be defined by (3.1.2) and (3.1.3) respec-
tively. Suppose that the function f is bounded. Moreover, assume that f is such that
the ,’s are centered at expectations and satisfy (3.1.4) with
(5.2) ¢(m) « m=* .
Then
o' = En’ + 2 X7, E(qim,)

is absolutely convergent. Moreover, if o* > 0, then

lim sup, .., (2No*loglog N)=t 33 .7, =1 a.s.

This follows from Theorem 2.3 of Reznik (1968). ‘
We also need an almost sure invariance principle due to Berkes (1975) and
Berkes and Philipp (1977). I quote only a special case.

THEOREM 5.2. Let {n,, k > 1} be a lacunary sequence of real numbers and let f
be a measurable bounded function with period 1 and ) f(x)dx = 0. Let s, denote
the nth partial sum of its Fourier series. Suppose that for some a > 0 and A > 0

If = sulls < A~ n=1,2, ...
Suppose that either (4.1.4) or that both (4.1.4)* and (4.1.6) hold. Define a continuous
parameter process {S(f), t = O} by setting
S(t) = Zjs f(n;0) .
Then, without changing its distribution, we can redefine the process {S(t), t = 0} on

a richer probability space together with standard Brownian motion {X(t), t = O} such

that
X(ty) — S(N) € N¥-% a.s.

Here 2 > 0 is an absolute constant and {ry, N = 1} is an increasing sequence of
positive random variables with
lim,_, N-'r, = ¢ a.s.
REMARK. Theorem 5.2 implies that
lim sup,_., (26°N log log N)"tS(N) = 1 a.s.
A proof of this statement can be easily modeled after the proof of Strassen’s
(1964) Theorem 2 or after the proof of Theorem 13.26 in Breiman (1968).

5.1. Analmost sure analogue of the Cramér—Wold device. Let a be an m-column
vector with componentsa, (1 < i < m)andleta’ = (a,, - - -, a,,) be its transpose.
We denote by ab the inner product ab’ of the vectors a and 4 and by |a| the length
of a. The following lemma can be regarded as an almost sure analogue of the
Cramér-Wold device. For its proof we use ideas of Finkelstein (1971).

LemMA 5.1.1. Let {v,, n = 1} be a sequence of random vectors in R™. Suppose
that for each vector s € R™ with |s| = 1 we have

limsup, ., sv, =1 a.s.
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Then the sequence {v,, n > 1} is bounded almost surely and its set V of limit points
satisfies
xeR™": |x|=1}cVc{xeR": x| < 1}.

Proor. By choosing s’ = (1,0, ..-,0), ---, (0,0, --., 1) we observe that
each of the sequences {v,,,n = 1} for 1 < k < m is bounded a.s. and so is
{v,, n = 1}

Since R™ is separable there is a set Q, with P(Q,) = 1 such that for each v € Q,

(5.1.1) lim sup,,_,., sv,(0) = 1
for all se R™ with |s| = 1. Hence by Cauchy’s inequality,
(5.1.2) lim sup, ., [v,(®)] = 1
forall w € Q,. Fixsuchanwe Q,. Suppose that for some subsequence {n;, j > 1}
(5.1.3) [0,,(@)] Z a > 1 =
The vectors s, = v, ,/|v,;| have length 1 and satisfy
(5.1.4) Sn;Vn; = |[Vay(@)] = @
for all j = j,. But {$a;>j = 1} has a limit point s with |s| = 1. Thus by (5.2.4)
lim sup; ., sv, (@) = a
in violation of (5.1.1). Hence (5.1.3) cannot hold and thus by (5.1.2)
(5.1.5) : ‘ limsup, . |v,| =1 a.s.
Consequently,
Vc{xeR™: x| £ 1}.
We finish the proof of the lemma by showing that
Vo{xeR™: x| =1}.
Lete > 0 and let |x| e R™ with |x| = 1. Fix w € Q,. By hypothesis and by (5.1.5)
there is a subsequence {n;, j = 1} such that for all j > 1

x?)nj(w) >1—c¢
and
['v”j(w)| <1l+e.
Hence
|x — ’vﬂj|2 = |x* + |’vnj[2 — 2xv,, < e j=1.
5.2. Proof of Theorems 3.2 and 4.2. Let {y,, k = 1} satisfy the hypotheses of
either Theorems 3.2 or 4.2. LetT = {¢, ---, t,,} be a set of m points ¢, with
0 < t; < 1. Define a sequence of random vectors y, = (V45 - * - » Vim) Dy setting

(5.2.1) Vas = %0, 1) 1<j<m.

Denote the m x m matrix ((I'(z,, ¢;)))";-, by I',, so that by Lemma 3.2.4 and
(4.1.5)

(5.2.2) L, = limy o N7 X sw E( yi) -
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Put

(5.2.3) 7, = ksn Ve
(2N log log N)}

PROPOSITION 5.2.1. The sequence {z,, N = 3} is bounded almost surely and has
the ellipsoid E, = {x e R™: x'T',,~'x < 1} as its set of limit points. Moreover, E,,
is the unit ball in the kernel space H(T',) with kernel T,,.

Proor. Since by hypothesis T is positive definite all eigenvalues of T, are

positive. We write
r, = UAU

where U is unitary and A is diagonal.
We define A-* in the obvious way. Put

(5.2.4) w, = AHU-Y,, k=1
vy = AUz, N>1.

Our goal is to apply Lemma 5.2.1 to {v,, N = 3}.
We first observe that

(5.2.5) Eu, = A-*U-'Ey, = 0.

Moreover, by (5.2.2)

(5:26)  limy . Teraw ) = lim, . + Teasy AU-E(y, y/) UL~
= A-{U-T,UAt =1,

the identity matrix of order m. Now for each vector s € R™ with |s| = 1

(5.2.7) E(s-u) = sEu, =0

by (5.2.5) and

.1 .1
lim — E{¥,_y su,}* = lim — Zeasy E((suy) - (suy))
N N
.1
(5.2.8) = lim N Ziknsy E(Xi jam S i Sty ;)

.1
= lijsm SiS; hmﬁ Dy By uy;)

= Dimsi =1
by (5.2.6). We observe that
su, = sA~*U-Yy, = F(y,),
where F is the step function _
(5.2.9) F(x) = Dizm,({O < x < 1} — 1)) 0=<x<1
extended with period 1. By (5.3.7) and (5.3.8),
E(F(p)) =0, o*=1.
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We first check that in the mixing case {F(7,)} satisfies the hypotheses of Theo-
rem 5.1. Of course, (5.1) holds. Next, we show that F(y,) = F(f(§:, §4irs -+ +)) .
can be approximated by F(p,,) = F(f(§, xvrs « 5 Erior)). We obtain using
(5.2.9), (2.4), (3.2.3) and (3.2.4)

E[F(Uk) — F(p)| = ngm ;| Elx, — xp| L 170

Hence by Jensen’s inequality for conditional expectations (see Billingsley (1968),
page 183) Theorem 5.1 applies in the mixing case.
In the lacunary case the hypotheses of Theorem 5.2 are satisfied because of
(5.2.8) and since we assumed (4.1.4) or (4.1.4)* and (4.1.6) respectively.
Because of (5.2.3) and (5.2.4) we can write

svy = (2Nloglog N)=* 3, su, = (2N loglog N)=t 37, F(n) -
By Theorems 5.1 and 5.2 the hypothesis of Lemma 5.1.1 is satisfied and thus
the sequence {v,, N = 3} is bounded almost surely and its set of limit points
contains the unit sphere and is contained in the unit ball. But then by (5.2.4)
{zy» N = 3} is bounded almost surely and its set ¥, of limit points is contained in
{xeR™: |A-iUx| £ 1} = {xe R™: xX’UA-1A-*U-'x < 1}
={xeR": xT,"x< 1} = E,

i.e.,
(5.2.10) Va C E, .
Similarly,
(5.2.11) V.2 0E, .
This holds for each m > 1. Lety,,,#t;, (1 <j<m)andletT,, , ={t, -,
tms tnia}. Let 7 be the mapping from R™*' onto R™ defined by #(«a,, - - -, a,,
Apyy) = (g, + -+, ay,), for each (ay, - -+, a,,,) € R**'. Then
T(Zyis s Zyms Zymar) = (Zwws ***5 Zym)
and thus
(5.2.12) Vi1 = Vi

We observe that
nE, ., = 7(0E, ;) = E,

where £, is also an ellipsoid. Thus by (5.2.10)—(5.2.12) applied to R™+!

Vi =V C7Epy, = Em =n(0Ey) CaVpuy =V,
or .

Hence by (5.2.10) and (5.2.11)

9E, c E, C E, .
Consequently,
E,=FE,=V,.
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This proves the first half of the proposition. To prove the second half we observe
that the unit ball of the kernel space H(T',) on T = {#,, - - -, 1,,} with kernel T,
consists of all functions f on T with i

(5.2.13) f() = Syana,T(0, 1) 1eT
and
(5.2.14) L2 Iflle = Ziksm @ Lt 1) -

If we write f = (f(#), - - -» f(tn)) and @ = (ay, - - -, a,,)’ then (5.2.13) and (5.2.14)
can be rewritten as

f=T,a or a =TI,
and

12 Iflls* = a'Tpa = fT,7F.

This shows that E,, is the unit ball in H(T,). [

We shall now prove Theorems 3.2 and 4.2. Let f, be defined by (3.1.5) and
(4.1.2) respectively and let &, be defined by (3.1.12). In view of (3.1.13) it is
enough to check (2.1) and (2.2) for (ky, N = 3). First, {hy, N = 3} is with prob-
ability 1 relatively compact. This fact was proved in Section 3.1 to establish
the relative compactness of {f,,, N > 3}. Second, by (5.2.3), z, = f,” and by
(5.2.2) T, = I'". Hence by Proposition 5.2.1, {f,”, N = 3} is bounded almost
surely and has the unit ball in the kernel space H(I") as its set of limit points.
By (3.1.13) the same holds true for {#,”, N = 3}. By Lemma 2.1 the unit ball
of H(I'") is just the restriction of the unit ball of H(I') to 7. Since by Lemmas
3.2.4 and 4.3.2 I'(s, t) is continuous on the unit square the unit ball of H(I") is
compact in C[0, 1] by Lemma 2.2. Hence (2.2) holds for {#,”, N = 3} with
K = unit ball of H(T'). This concludes the proofs of Theorems 3.2 and 4.2.

It remains to show that the unit ball B of H(I') equals U, B,. We first
observe that by Lemmas 3.2.3 and 4.3.1,

(5.2.15) 'egngegl

uniformly in 0 < r < 1. Let fe B. Then given e > 0 there exists f* ¢ H(I') with
(5.2.16) 14l = 1 — ge

and

(5.2.17) 1f = F¥ll < e

Simply put f* = (1 — %¢)f. Moreover, since J,z; T, is dense in [0, 1], and
since by Lemmas 3.2.4 and 4.3.2 I'(s, #) is continuous on the unit square, it fol-
lows from the definition of H(I") (see Section 2.3) that there exists a g€ K, =
K, (t, ---, t,) for some m such that

(5.2.18) I = gl < $e-

Since
5l = N9lal S Nf* = 9l < 3¢
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we have
Holle < IIf*|lx + e =1

by (5.2.16). Thus g ¢ B,, and

(5.2.19) If — 9lla < 2

by (5.2.17) and (5.2.18). By the reproducing kernel property of I, and since by
(5.2.15) I'(¢, #) is uniformly bounded on [0, 1] by M?, say, we conclude from
(5.2.19) that
If(5) =9 = (f — 9, (-, )
= IS = 9ll=T'(t 0t < 2Me

uniformly in0 < ¢ < 1. Hence, f € U,z B, Where the closure is in the topology
defined by the supremum norm. This shows B € U z; Bn-

The opposite inclusion follows from the definition of B,,, B, H(I') and the fact
that B is a closed subset of C[0, 1] with uniform norm.
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