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THE INFINITE SECRETARY PROBLEM AS THE
LIMIT OF THE FINITE PROBLEM

BY JACQUELINE GIANINI
University of Ottawa

In a recent paper by J. Gianini and S. M. Samuels an “‘infinite secre-
tary problem” was formulated: an infinite, countable sequence of rankable
individuals (rank 1 = best) arrive at times which are independent and uni-
formly distributed on [0, 1]. As they arrive, only their relative ranks with
respect to their predecessors can be observed. Given an increasing cost
function g(-), let v be the minimum, among all stopping rules, of the mean
of the function ¢ of the actual rank of the individual chosen. Let v(n) be
the corresponding minimum for a finite secretary problem with » indi-
viduals. Then lim v(n) = v.

1. Introduction. We consider an infinite secretary problem as defined by J.
Gianini and S. M. Samuels [2]: let U, (i = 1, 2, .. .) denote the arrival time of
the ith best of an infinite, countable sequence of rankable individuals (rank 1 =
best); the U,’s are taken to be independent and uniformly distributed on [0, 1].
With the same notation as in [2], for each s, te [0, I]such that 0 < s < t £ 1,
we define

K(s,t)=min{j:s < U; < 1},
K.(s, )y =min{j > K,(s, ): s < U; £ 1}, i=1,2,...,
and
Z(s, 1) = Ug g » i=1,2, ...

Z(t) = Z,(0, t) is the arrival time of the individual who is ith best among those
who arrive by time ¢. The sequence (Z(f), Zy(7), - - -) represents what we can
observe up to time ¢, so we define

&, = o-field generated by (Z,(t), Zy(t), - --) .

{&.} is an increasing sequence of o-fields, and all the stopping rules for the
infinite model are adapted to {&,}.

We also use the notation in [2] for the absolute and relative ranks, respectively,
of “an individual arriving at time u:”

Xu:i if u=Ui
Y, =i if u=Z,u

Xi=Y =o.
Gianini and Samuels have shown in [2] that there exists a stopping rule which
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THE SECRETARY PROBLEM 637

minimizes the expectation of a specified increasing function ¢(+) of the absolute
rank of the individual selected, and that this optimal stopping rule is of ‘““cutoff-
point” type; there is a sequence 0 < 1, < £, £ --. < 1 such that the optimal
stopping rule ¢ selects the first individual arriving after 7, and having relative
rank < k, if there is such a time and if = did not stop before time z,.

r=min{U;:U; = ¢, and Y, <k},

r=1 if nosuch U,.

The usual, finite secretary problem with n individuals can be formulated in
a very similar manner: the best of a sequence of » individuals is equally likely
to arrive first, second, - - -, last, and the second best is equally likely to arrive
in any of the remaining n — 1 positions, and so on. Furthering the analogy
with the infinite model, the “arrival times” can be considered to be {1/n, 2/n, - - -,
1}, rather than {1, 2, ..., n}. Here also, at each arrival, only the relative ranks
of the individuals already seen, including the one under examination, can be
observed, and the object is to find a stopping rule to minimize the function ¢
of the absolute rank of the individual selected. It has been shown by Mucci
[3, 4] and, for the function ¢(i) = i, by Chow, Moriguti, Robbins and Samuels
[1], that an optimal stopping rule exists, and is of “cutoff-point” type.

Let us denote by v and v(n) the minimal expected value for the infinite model
and for the finite model with » individuals, respectively. We shall prove here
with a probabilistic argument that lim v(n) = v. Chow et al. [1] and Mucci
[3, 4] obtained the same result by analytical methods, and without attaching
their asymptotic value to any infinite model.

2. Two intermediate models. One of the basic features of the infinite model
considered here is the “no-recall” property: once an individual has been rejected,
he cannot be called back. We shall now introduce two infinite models with a
new type of selection procedure; we shall allow, to a certain extent, recalling
an individual already seen and dismissed.

We divide the interval [0, 1] into n equal subintervals; at the end of each
subinterval, we must decide whether to stop and select the best individual who
has arrived in that subinterval, or to continue observing. That decision has to
be based on either the relative ranks of all the individuals who have arrived
before the end of the subinterval in question (full memory), or only on the
relative ranks of the best arrivals in each of the preceding subintervals (finite
memory).

First, we need to introduce some new variables, to represent the arrival times
and ranks of the n individuals who are best among those arriving in one of the
n equal subintervals. T, will represent the arrival time of the best among all
individuals arriving in ((k — 1)/n, k/n], and Q, will represent the absolute rank,
among all individuals, of the ith best among the individuals arriving at times
T,T, -+, T,.

n
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Formally,

2.1) Tk:zl<k—1,£), k=1,2,--,n

(2.2) Qu=inf{j > Q,:U;e{Ty, Ty, ---, T,}}, i=0,1,...,n—1.

We note that, since the best among the individuals arriving at times T}, T,, - - -,
T, has to be the best among all individuals, Q, = 1.

We also define modified absolute and relative ranks; for each k = 1,2, .-,
n, X,(k) will represent the absolute rank of the individual arriving at T,
among the n individuals arriving at T\, T,, - .., T,,, while Y (k) will represent
the relative rank of the individual arriving at T',, among the individuals arriving
at Ty, ---, T, )

So, fork=1,2,...,n,

=U,

Q;° i:192a"”n

2.3) Xy =i if Z (k -1 _k_)
n n

(2.49) Yi(k) = if for some ie{j,---,n}, T, =U, and j—1

exactly of U, ,---, U, _ arein (0,k — 1)/n],

j=1,2, k.

X,(k) and Y (k) are ranks defined on the finite sequence of individuals arriving
at Ty, ---, T,. Now, we must define the absolute rank, X,(k), of the individual
arriving at T,, among all individuals, and the relative rank, Y,(k), of the indi-
vidual arriving at T, among all individuals who arrive in (0, k/n].

Fork=1,2,...,n,

2.5) Xy =i if zl<k—1,£>=u,., i=1,2, ...
n n
o k—1 & k .
(2.6) Yik)y=j if zl< . ,7)=zj<7>, j=1,2, ...

We note that, by definitions (2.2) and (2.3) of Q, and X,(k),
(2.7) Xz(k) = QXl(k) .

We shall now introduce the two models which will serve as intermediates
between the finite and infinite modéls.

(i) Finite memory model. In this model, the decision whether to select the
individual arriving at T, or to continue observing, is based on the values of
Y(1), - - -, Y,(k) alone; let

28) F={r:{r=kleBX), -, Vi), k=1,2, -, n},

where, by “z = k,” we mean “select the individual arriving at 7,.”” Then we
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define
(2.9) v,(n) = inf.., {E[g(XA)]} -

v,(n) is the value for the “infinite model with finite memory and partial recall.”
By (2.7), we can also write

vy(n) = inf .o {E[9(Qx,)]}
and thus, this model reduces to a finite model where the absolute ranks, instead
of the integers {1, 2, ---, n}, are n random variables {Q,, Q,, - - -, Q,}. These
random variables have the following properties:
(@) Q, =i with probability 1;
(2.10) (b) Q, isindependent of (X (1), ---, X,(n), Y,(1), ---, Y,(n));
(€) P[Qiyi — Qi = k] = (1 —i[m)(i/m)*~".

(a) follows immediately from definition (2.2).

(b) is proved by induction on i: we first note that Q, = 1 with probability
1, because the best individual of all will necessarily be best in the interval in
which he arrives, so (b) holds for i = 1. Let us assume (b) holds for some i >
1; then, on {Q, = j},

Q.. =k} = HKU,;,,, ---, and U,_, areinone of the i subintervals
(2.11) already occupied by U, ---, or U;, while U,

is not in one of those subintervals} .
This does not depend on the order of arrival of the individuals concerned;
P[Q;y = k| X,(1), - -+, X,(m)]
= 255 PlQi = K HQ: = j} Xi(1), - -, Xi()]P[Q, = j X(1), - -+, Xi(m)]
= DS P[Qiv = k| Q, = JIP[Q; = j] = P[Q:y = K]
thus, Q,,, is independent of X(1), ---, X (n), and since Y, (1), ---, Y (n) are
functions of (X,(1), - - -, Xi(n)), Q,,, is also independent of Y (1), - - -, Y (n).
(©)
P[Qi — Qi = k] = X7 P[Qun — Qi = k| Q; = JIP[Q: = Jj]-
Now, by (2.11),
PlQiys — Qi =k|Q; = j] = P[Qiys = j + k|Q; = j] = (1 — i[n)(i[n)*~";
and finally,
PlQiy — Qi = k] = Z5n, (1 — im)(n)**P[Q; = j] = (1 — i[m)(i[n)*=. 1[I
Now, we are ready to prove

LeMMA 1. v (n), the value for the “random ranks” model, is equal to the value
for a finite model with n individuals, and with cost function q,(i) = E[q(Q,)]-
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Indeed, if the same stopping rule is used for both models, it gives the same
expected cost.

Proor. Recalling (2.10b),

E[9(Qxy0)] = E[E(9(Qxy0) | Q1 Qas -+ -5 Qa)]
= E[ 232 9(Q)P[X(7) = J[Qu @y, - -+, QW]
= L3 E[9(2)]P[X(7) = J]
= 21 (DP[X(r) = J]
= E[¢,(X\(v))] - 0
It follows in particular that for the infinite model with finite memory and

partial recall, there is an optimal stopping rule 7,, and that z, is of “cutoff-
point” type.

ReEMARKs. 1. If ¢ is bounded, so is ¢,. Let L = sup; ¢,(i). Let r be defined by
T=k if k=inf{j>[n2],Y,(j) =1}
r=n - ifnosuch j exists.
It is easy to see that, if n is even,
vi(n) = E[q(Xi()] = q(1)/4 + 3L/4 < L.

2. We know by (2.10a) that Q, = i; it follows that ¢(i) < ¢,(i) for i = 1,
2, ... and that
(2.12) v(n) < vy(n) .

(ii) Full memory model. This model is also a finite model, since we must
only make n decisions, but the decision concerning the individual arriving at
T, is based on the relative ranks of all the individuals who have arrived before
time k/n: let
(2.13) @, = (i {r = K} e Fu),

where by “c = k”” we mean “select the individual arriving at 7,.”
Now, we define:

vy(n, i — 1) = infeq, o0 {E[9(Xi())]}

and

(2.14) vy(n) = vy(n, 0) = inf .o {E[g(Xy(7))]} -

By Proposition 3.1 in Gianini and Samuels [2],

(2.15) E[q(X,(k) | F ua] = Ry(k[n)  on {Yy(k) = j},

where R;(+) is defined in (3.1), in [2] as:

Ri(r) = L= (I)g(k) (1 — =%, 1e (0, 1],
and by Proposition 2.1 in Gianini and Samuels [2], Y,(k) is independent of
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F - and hence, the Y, (k) (k = 1,2, ..., n) are independent. Moreover,

@15) PV = 1 amu] = PV = 1 = - (1)

From (2.15), it is easy to see that the optimal rules are based only on the
Yy(k)’s, that is, there is an optimal rule  such that {r < kin}e (Y, (i):i < k).
Hence,

vy(n, k) = essinf,,,, E[¢(X\(7))| & ,,,] = constant,

v n — 1) = Blg06)] = B3.90) - ("=1)7
and, by (2.15) and (2.16),

vk — 1) = Z;;%("_;_ly'l min (R, (%) vy(n, k)>.

and we have the recursive equations

This shows immediately that there is an optimal policy z,, which selects the
individual arriving at T, if his relative rank j is such that R;(k[n) < vy(n, k),
and no selection has been made previously. This optimal stopping rule is of
“cutoff-point” type: :
(2.17) Ty = (kg kyy -+, k) with  k; = min {k: R,(k/n) < vy(n, k)}

Ty =r if r=inf{j:j>k, and Yy(j)<i}.
We also note that '
(2.18) Vy(n) = Ry(k,/n) .

REMARKs. . 1. If the individual arriving at 7, has relative rank j = M and if
the function g is truncated at ¢(M), then the expected cost for selecting that
individual is R;(k/n) = ¢(j) = ¢(M). An optimal policy for this model will not
select such an individual.

2. If 7 is a policy for the infinite model, then

T = Dia kl{(k — 1)/n < = < k/n}

is a policy for the full memory model with partial recall. By the definition
(2.1) of T, it is clear that X,(r,’) < X, and this implies that

(2.19) V() S 0.

3. Since &, C %, (see (2.8) and (2.13)), by definitions (2.9) and (2.14) of
vy(n) and v,(n), it follows that

(2.20) vy(n) < vy(n) .

3. Asymptotic results. We have proved (see (2.12), (2.19) and (2.20)) some
inequalities relating v(n), v,(n), v,(n) and v. Now, we shall prove:

Lemma 2. v(n) < v.
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Proor. Let us consider an infinite model, and let us define
En =#i:1<i<n U<,
We consider the s-algebra
S, = TN BEW),

and we let v'(n) be the value of the infinite model if we allow strategies adapted
to 57,: o7, contains &, and hence, v'(n) < v. But the arrival times U, (i =
1,2, ..., n) of the n best individuals, are measurable with respect to the cor-
responding 5#7,’s, so the optimal rule here is simply the optimal rule for the
finite model with n individuals. Thus,

v'(n) =v@n) < v. g

We shall now restrict ourselves to functions ¢ which are truncated at
g(M): q(k) = q(M), k = M. For any such function, we shall show that the
value v(n) for the finite model approaches, as n tends to infinity, the value v
for the infinite model. To do this, we shall use the intermediate values v,(n)
and v,(n). Then, we shall extend the result to any increasing function g.

LemMaA 3. For any truncated function q,
Vy(n) > v, n—oco.

Proor. Let us consider the optimal policy z,, defined in (2.17), for the full
memory model with partial recall. We can adapt r, to the infinite model. Let

OGR! if k,=m<k,,
r=inf{r: Y, < 0(r)}.

It is clear that z, = riff r € ((r — 1)/n, r/n]. We want to show that for any ¢ >
0 and n sufficiently large,

(3-1) E[q(X)] = E[9(Xy(za)] + ¢ -

Then we shall have

v = E[9(X))] = E[9(Xy()))] + ¢ = vu(n) + €.

Since by (2.19), v,(n) < v, this implies that v,(n) — v, n — co and proves the
lemma. \

Let us prove (3.1). Since r and r, stop in the same subinterval ((r — 1)/n,
r/n], and since k, is such that P[z, > k,] = 1,

E[q(X,)] — E[q(Xy(75))] = ¢(M)P[z # 7]
= q(M) Z:L:klﬂ Pt # 3, Ta€ ((r — 1)/n, r/n]]
= q(M) 2ok P(A,)

where 4, = “atleast two of the M best arrivalsin (0, r/n] occurin ((r — 1)/n, r/n];”
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but as P(4,) < $M(M — 1)r?,

E[q(X.)] — Elq(X(z)] < ) MM = D) 1

M(M D s

and, to prove (3.1), we only need to prove that k, = k,(n) — oo, n— co. This
is easy, because by (2.18) and (2.20),
R1(k1/n) = Vy(n) = v,(n)
but we have seen that v,(n) < ¢(M) while, for any fixed k,
Ry(kfn) = £529()G — Dk/n)(1 — kjn)’™ —q(M) , n— oo,

and k, bounded would yield a contradiction. Thus (3.1) holds, and the lemma
is proved. []

LemMA 4. For any truncated function q,
v(n) — v (n) -0, n—oo.

PrOOF. We have seen in (2.12) that v(n) < v,(n). Let t(n) be an optimal
stopping rule for the finite model; z(n) is also a stopping rule for the infinite
model with finite memory and partial recall; we have

9(Xy(z(n))) = q(Xy(z(n))) = 9(Qxycnn)
if either of the following occur:
(i) X,(z(n)) = M, because then X,(r(n)) = M, and
9(Xy(z(n))) = q(Xy(z(n))) = 9(M) ;
(i) Xy(z(n)) < M and Qy (.(n)) = Xi(7(n))-

This means that ¢(X,(c(n))) # ¢(X,(c(n))) implies that Q, > i for some i e {1,
2, ..., M — 1}. Hence, by (2.10)c,

E[q(Xy(z(m)] — E[9(Xy(z(m)))]
< g(M)P[Q, > i for some ie{l,2, .-, M — 1}]
=q(M)(1 — I35 (1 — j/m) 5
and, since E[q(X,(z(n)))] = v(n) and E[q(X,(z(n)))] = v,(n), this implies
v(n) — v(n) = gM)(1 — 155" (1 — Jjim)) 5

the right-hand side tends to 0 as n tends to oo, and this, together with (2.12),
proves the lemma. []

THEOREM. For any function q,
v(n) — vV, hn—o00.

Proor. (a) If g is truncated at ¢(M), by Lemma 2, we have v(n) < v; more-
over, from (2.20), it follows that

v — () =0 — vy(n) + vu(n) — v(n) = (v — vy(m) + (v(n) — v(n)),
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and the right-hand side tends to 0 as n tends to co, by Lemmas 3 and 4. Thus
the theorem is proved if ¢ is truncated.
(b) If g is not truncated, then by (2.20) we have

3.2) limsupv(n) < v.
Let g, be the function ¢, truncated at q(M);

gu(k) = q(k) it k<M
=qM) if k=M.

Let v,(n) and v, be the minimal expected costs corresponding to the function
g, in the finite and infinite models, respectively. Then, as ¢,(k) < ¢q(k) for all
k’ M’

Vy(n) < v(n) forall n, M.
The theorem holds for the truncated functions g,:

v, = lim, v,(n) < liminfv(n),
and since, by Proposition (5.5) in Gianini and Samuels [2], v, — v, M — oo,
we have

v = lim, v, < liminfw(n) .

This, and (3.2), prove the theorem. []
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